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On the Group of Automorphisms of a Group

Marian Deaconescu and Gary L. Walls

Abstract. This note gives a generalization of the classical result asserting that if the center of
a group G is trivial, then so is the center of its automorphism group Aut(G).

Let G be a group and let Z(G) denote its center. We will denote the automorphism
group of G by Aut(G). One of the classic results in group theory is the following
theorem.

Theorem 1. If Z(G) = 1, then Z(Aut(G)) = 1.

We use the notation G = 1 to mean that G is the appropriate trivial group, i.e., a
group with one (necessarily trivial) element. This is a convenient abuse of notation, as
the trivial element of Aut(G) is actually the identity automorphism I dG .

Theorem 1 is surprising, being one of the first results establishing a relationship
between the structure of a group and that of its automorphism group. It is a simple
but powerful result, which was the starting point in H. Wielandt’s proof of his elegant
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automorphism tower theorem [2]. It appears already in H. Zassenhaus’s book—see
[3] for a newer, more popular edition—but we were not able to determine its original
source.

These days, Theorem 1 is usually presented as an exercise in a first course in group
theory, as its proof is quite elementary. We give a proof here solely for the convenience
of the reader. The proof presented could actually be much shorter, but we insert some
details which will be useful later.

To start with, people who work in this part of group theory generally use a peculiar
functional notation. For an arbitrary group G, g ∈ G, and α ∈ Aut(G), they denote
the image α(g) by exponentiation; that is, by gα. For the benefit of readers interested
in checking the few statements given without proof in the next paragraph we should
mention that function composition is applied the other way around: that is, we write
gαβ = (gα)β = β(α(g)).

For g ∈ G, consider the inner automorphism Tg induced by g, that is, we define
x Tg := g−1xg, and observe that the mapping T : G → Aut(G) defined by T (g) := Tg

is a group homomorphism satisfying the identity T (gα) = Tgα = α
−1Tgα for all g ∈ G

and all α ∈ Aut(G). This shows at once that the image T (G) is a normal subgroup of
Aut(G)—this group is usually denoted by Inn(G) and is called the group of inner
automorphisms of G. Since the kernel of T is just the center of G, the fundamental
isomorphism theorem applies to give Inn(G) = T (G) ∼= G/Z(G) and therefore G ∼=
Inn(G) whenever Z(G) = 1.

Let now Autc(G) := CAut(G)(Inn(G)) denote the centralizer of Inn(G) = T (G) in
Aut(G). A short calculation shows that α ∈ Autc(G) if and only if gαg−1

∈ Z(G)
for all g ∈ G. In particular, when Z(G) = 1, we see that Autc(G) = 1 and thus
Z(Aut(G)) = 1.

A few years ago, the authors showed in [1] that a result similar to Theorem 1 holds
if one replaces Z(G) with the subgroup R2(G) of all right 2-Engel elements of G. The
subgroup R2(G) consists of those elements x ∈ G satisfying the identity [[x, g], g] =
1 for all g ∈ G. Note that if a, b ∈ G, then the commutator [a, b] is defined by [a, b] =
a−1b−1ab. More specifically it is shown that, if G is a group and if R2(G) = 1, then
R2(Aut(G)) = 1. The proof of this result about R2(G) was rather technical, involving
a lot of commutator calculations.

Both Z(G) and the mentioned R2(G) are what we might call generic subgroups
of G. Actually we begin with an operator, X , which for each group G picks out a
subgroup X (G) of G with the property that if f : G1 → G2 is an isomorphism, then
f (X (G1)) = X (G2). We then refer to such an X (G) as a generic subgroup of G. It
follows that generic subgroups of a group G must be characteristic subgroups of G.
That is, they must be left invariant by every automorphism of G. Since a subgroup
H of G is a normal subgroup, written H E G, if it is left invariant by every inner
automorphism, all characteristic subgroups must be normal. Further, note that if X (G)
is a generic subgroup of G, then so is its centralizer CG(X (G)) in G.

There are many important examples of generic subgroups of arbitrary groups G.
The simplest ones are 1 and G, but there are many others, of which we mention just
a few. All terms of the ascending and descending central series of G, in particular
the well-known commutator subgroup G ′, are generic. The Frattini subgroup 8(G),
defined as the intersection of all maximal subgroups of G (note that 8(G) = G when
G has no maximal subgroups), S(G), the largest normal solvable subgroup of G, which
is called the solvable radical of G, and F(G), the largest normal nilpotent subgroup of
G, called the Fitting subgroup, are also well-known examples of generic subgroups of
G. Note that in order to assure that S(G) and F(G) exist, we need to assume that G is
finite in these cases.
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A natural question suggested by Theorem 1 and the result about R2(G) is: can
we extend Theorem 1 to a statement with the center of G replaced by some kind of
generic subgroup of G. That is, if for each group G, X (G) is a generic subgroup of
G, when will it be true that if for some particular group G, X (G) = 1, we must have
X (Aut(G)) = 1?

Consider first the case when we take X (G) = G ′, the commutator subgroup of G.
Our hypothetical extension of Theorem 1 would then read: “If G is a group and if
G ′ = 1, then Aut(G)′ = 1.” This statement is manifestly false—for a counterexample
it suffices to take G = C2 × C2, the Klein four group, since Aut(C2 × C2) is isomor-
phic to the symmetric group S3. Of course, there are some groups for which the above
implication is true, but we want a result that matches the generality of Theorem 1.
The reader is invited to consider the group G := C p × C p, the direct product of two
cyclic groups of odd prime order p. This group has trivial Frattini subgroup, while
8(Aut(G)) 6= 1.

By now it has become clear that we need to look at some special X (G)’s. Here is
a list of three properties that a generic subgroup X (G) might have. The first two are
properties of Z(G).

(a) Z(G) ≤ X (G),

(b) H ∩ X (G) ≤ X (H), whenever H E G, and

(c) X (H) ≤ X (G) whenever H E G.

For convenience, we will call a generic subgroup having both properties (a) and (b)
an ab-subgroup and one having property (c) a c-subgroup. According to this definition,
Z(G), R2(G), F(G), and S(G) are ab-subgroups, but G ′ and 8(G) are not. However,
G ′ and 8(G) are c-subgroups.

Now comes the surprise: as it happens, all we need to extend Theorem 1 is just a
generic ab-subgroup G. We have the following result.

Theorem 2. Let G be a group and let X (G) be a generic ab-subgroup of G. If
X (G) = 1, then X (Aut(G)) = 1.

Proof. Since Z(G) ≤ X (G) by property (a), the hypothesis X (G) = 1 forces Z(G) =
1 and consequently G ∼= Inn(G). But then X (Inn(G)) = 1, and since Inn(G) E
Aut(G) we have Inn(G) ∩ X (Aut(G)) ≤ X (Inn(G)) = 1 by property (b). Thus
Inn(G) ∩ X (Aut(G)) = 1.

Since X (Aut(G)) E Aut(G), we have [Inn(G), X (Aut(G))] ≤ Inn(G) ∩
X (Aut(G)) = 1, so X (Aut(G)) ≤ Autc(G) = CAut(G)(Inn(G)). Finally, as we have
seen in the proof of Theorem 1, Z(G) = 1 implies Autc(G) = CAut(G)(Inn(G)) = 1,
whence X (Aut(G)) = 1, as asserted.

The examples given above show that Theorem 2 can be useless when dealing with
generic subgroups X (G) not containing Z(G), like for example G ′ and 8(G). But
there is a nice family of generic groups to which this theorem applies: the centralizer in
G of a generic c-subgroup of G is a generic ab-subgroup. Indeed, let Y (G) be a generic
c-subgroup of G and consider X (G) = CG(Y (G)). Then X (G) is a generic subgroup
of G and, moreover, it is also an ab-subgroup. The inclusion Z(G) ≤ X (G) is triv-
ial, and if H E G, then H ∩ X (G) = H ∩ CG(Y (G)) = CH (Y (G)) ≤ CH (Y (H)) =
X (H). The last containment follows from the fact that Y (H) ≤ Y (G), which is just
the c-property enjoyed by Y (G).

We thus have the following result.
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Corollary 3. Let G be a group and let Y (G) be a generic c-subgroup of G. If
CG(Y (G)) = 1, then CAut(G)(Y (Aut(G))) = 1.

After all is said and done, a new question comes to mind: Is Theorem 2 the best
possible result in this direction? But that is a question for another time.
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The Unreasonable Slightness of E2 over
Imaginary Quadratic Rings

Bogdan Nica

Abstract. It is almost always the case that the elementary matrices generate the special linear
group SLn over a ring of integers in a number field. The only exceptions to this rule occur
for SL2 over rings of integers in imaginary quadratic fields. The surprise is compounded by
the fact that, in these cases when elementary generation fails, it actually fails rather badly:
the group E2 generated by the elementary 2-by-2 matrices turns out to be an infinite-index,
non-normal subgroup of SL2.

We give an elementary proof of this strong failure of elementary generation for SL2 over
imaginary quadratic rings.

1. INTRODUCTION. For n ≥ 2, the special linear group SLn(Z) is generated by
the elementary matrices. That is, every n × n matrix with integer entries and determi-
nant 1 can be written as a product of matrices which have 1 on the diagonal and at
most one nonzero off-diagonal entry. The proof rests on the fact that Z is a Euclidean
domain: row- and column-operations dictated by division with remainder will reduce
any matrix in SLn(Z) to the identity matrix.

What happens if we replace Z by another ring of integers? To make this question
precise, we first pass from Q to a number field K—that is, a finite field extension of Q.
Next, we take the ring of integers of K—i.e., the ring consisting of all elements from
K which are roots of monic polynomials with coefficients in Z—and we denote it by
OK. Our vague query crystallizes into the following problem: is SLn(OK) generated
by the elementary matrices?

We owe to Cohn [3] the first result in this direction: when n = 2, the answer is
negative for all but five imaginary quadratic fields.
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