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Artifacts for Stamping Symmetric Designs

H. M. Hilden, J. M. Montesinos, D. M. Tejada, and M. M. Toro

Abstract. It is well known that there are 17 crystallographic groups that determine the pos-
sible tessellations of the Euclidean plane. We approach them from an unusual point of view.
Corresponding to each crystallographic group there is an orbifold. We show how to think of
the orbifolds as artifacts that serve to create tessellations.

1. TESSELLATIONS. The history of human civilization gives an enormous number
of examples of tessellations or, equivalently, tilings or mosaics. A tessellation is a
design made up of one or more types of tiles (tessellas) that are repeated several times
and are placed in such a way that they cover completely a surface without gaps or
overlaps.

Since humans started to build walls, floors, and ceilings, the placement of stones
or bricks (as tiles) has naturally given rise to tessellations. The search for beautiful
designs, the selection of shapes and colors of the tiles, and the systematic repetition of
motifs produced symmetric patterns as examples of tesellations.

Translation Rotation Reflection

mirror

Figure 1. Some rigid moves on a plane.

Even though we have infinitely many ways to make symmetric designs, basically
there are 17 “methods” which suffice to construct all symmetric tessellations on a
plane. In fact, the crystallographer E. S. Fedorov proved in 1891 that, up to a natu-
ral equivalence, there are only 17 plane crystallographic groups. Having a tile on a
plane, it is possible to translate it, to rotate it about a point, and to reflect it about an
axis. These moves are rigid, i.e., they neither deform nor change the size of the tile
but change the place of the tile on the plane; see Figure 1. Any other rigid move can
be obtained using a combination of translations, reflections, or rotations. Taking these
rigid moves as generators, we generate 17 different algebraic groups. They are called
the two-dimensional or plane crystallographic groups. Each one of the 17 plane crys-
tallographic groups gives one possible way of making a symmetric tessellation. See
[8].

To study symmetric tessellations there are two points of view. On the one hand, we
can use algebraic language, and in this sense we speak in terms of crystallographic
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groups; on the other hand, we are able to use geometric or topological language, and
in this sense we speak in terms of orbifolds. Historically, symmetry was first under-
stood from the point of view of algebra. Following the ideas of W. Thurston (see [11])
it is possible to understand the symmetry of designs by means of the concept of orb-
ifold. This concept belongs to the world of geometry and topology. Both languages are
equivalent. The advantage of the geometric language is that orbifolds can be visual-
ized as artifacts that stamp the corresponding symmetric design. For each Euclidean
crystallographic group there is basically one Euclidean orbifold.

In the interest of rigor, at this point we would like to define some terms with more
precision. A plane crystallographic group is a subgroup of the symmetry group of a
tessellation of the Euclidean plane such that its translation subgroup is generated by
translations in two independent directions. Two such groups are said to be equivalent
if they are conjugate in the larger group of affine transformations of the Euclidean
plane. In two dimensions these groups turn out to be equivalent if and only if they are
isomorphic as groups. The idea of this equivalence is that mere changes of scale and
shears should not give rise to inequivalent groups. The reader is referred to the web-
site http://en.wikipedia.org/wiki/Wallpaper_group where the classification
into 17 groups is explained in great detail.

Given such a group G, a fundamental domain for G is a subset D of the plane (in
this paper always a convex polygon) such that for any point x in the plane there is an
element g of G with g(x) in D and such that for any two distinct points x and y in
the interior of D there is no element in G with g(x) = y. The tiles in this paper are
fundamental domains.

As the group G acts on the Euclidean plane there is an equivalence relation on the
points of the plane. Point x is equivalent to point y if there is an element in G with
g(x) = y. The quotient space of this action, the set of equivalence classes of points in
the plane, turns out to be a two-dimensional Euclidean orbifold and can be constructed
from a fundamental domain by pasting edges.

A two-dimensional Euclidean orbifold is a compact surface with or without bound-
ary. Points in the interior that are not singular have neighborhoods that are isometric
to Euclidean discs. Singular interior points are called cone points and have neighbor-
hoods isometric to Euclidean cones with cone angle an integral fraction of 360◦, that
is to say, spaces constructed by starting with a radial disc segment of angle 360◦/n and
gluing the two linear sides.

Boundary points that are not singular have neighborhoods isometric to Euclidean
half discs. Singular boundary points have neighborhoods isometric to radial disc seg-
ments of angle 360◦/n.

Alternatively, two-dimensional Euclidean orbifolds can be thought of as surfaces
that are locally isometric to the quotient spaces arising from the actions of rotation
groups or dihedral groups on a Euclidean disk.

We can illustrate these concepts with a couple of examples. Consider the tessellation
of the plane by squares with integer coordinate vertices. Let G1 be the group generated
by reflections in the lines x = an integer and y = an integer. It can be shown that the
translation subgroup T of G1 is generated by translations by 2 in the x and y directions
and that a fundamental domain for G1 is the unit square {(x, y) : 0 ≤ x, y ≤ 1}. No
two points in the square are equivalent, so the quotient orbifold is the square itself. The
vertices of the square are singular points. Later, in Section 3.1, you will see that this
orbifold is D2222; see Figure 6.

Let G2 be the orientation preserving subgroup of G1. It can be shown that G1 is
generated by 180-degree rotations about points with integer coordinates and that a
fundamental domain for G2 is the rectangle {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 1}. There
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are equivalences on the boundary of this rectangle. The point (−1, y) is equivalent
to (1, y), (−x, 0) to (x, 0), and (−x, 1) to (x, 1). Gluing points to their equivalent
points we obtain a topological sphere. Thus the quotient orbifold is topologically the
2-sphere. There are four singular points, all with cone angle 180◦. Later, in Section
4.3, you will see that this orbifold is S2222. We invite the reader to see [5] and [6].

Table 1 contains the list of the 17 plane crystallographic groups. On it we find both
the notation used in the literature of algebra and the notation used in the literature of
the geometry of orbifolds. See [2] and [9].

Table 1. The 17 crystallographic groups.

S236 D 2 3 6

S244

D 3 3 3

D 3 3

D22

D 2 2 2 2

D 2 4

Crystallograpic Groups

Orbifolds

P 22

S333

S2222

D 2 2 2

D 24

T
A
M
K

p6

p4

p3

p2

p1

p m6
p m4
p g4

p m3 1
p m31

pgg
pmg
pmm
cmm
pm
cm
pg

4

Admittedly, this notation is confusing. In the course of the paper we will explain
the notation, at least in the case of orbifolds. For the moment the reader ought simply
to observe that there are 17 plane crystallographic groups, 17 entries in columns two
and three of Table 1 and 17 entries in columns one and four of Table 1, and that the
letters S, T, D, P, A, M , and K are the first letters of sphere, torus, disk, projective
plane, annulus, Möbius band, and Klein bottle, respectively. See [4] and [8].

2. KALEIDOSCOPES AND THE FIRST EXAMPLES OF ORBIFOLDS. Real
world kaleidoscopes, those that one could buy in a museum shop, consist of three or
four rectangular mirrors fastened along pairs of opposite edges in such a way that the
unfastened edges form triangles or rectangles at both ends. A triangle or a rectangle
is decorated and glued to one of the ends. We look through the other end and we
see a tessellation of the plane in which the decorated triangle or rectangle lies, and
we think that this plane is covered completely with a design formed by the repetition
of the decorated triangle. Given, for example, a fixed triangular kaleidoscope we can
obtain using it infinitely many symmetric designs by changing the decoration of the
given triangle. In this way we can think of a kaleidoscope as an artifact for producing
symmetric designs. Examples of these kinds of tessellations are found in the mosaics
of the Alhambra in Granada, Spain (see the institutional DVD [7] and [8]), and also
in the beautiful well-known Escher designs. For example, Figure 2 is a sketch of the
Escher design known as the Lizard, Fish, and Bat. This design can be found online
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Figure 2. Tile and tessellation of D333.

at http://britton.disted.camosun.bc.ca/jbescher2.htm, see [3]. Figures 3
and 4 are sketches of Alhambra mosaics. Figure 5 is inspired by Escher (see the design
“1950 4 motifs” in the gallery of http://www.tessellations.org).

Not all triangles produce tessellations. There are only three that work: an equilateral
triangle, which we denote by D333, an isosceles right triangle with two acute angles
of 45◦, which we denote by D244,and a right triangle with acute angles of 30◦ and
60◦, which we denote by D236. There is one more (not so common) kaleidoscope
constructed with 4 mirrors placed so as to form a rectangle. This one is denoted by
D2222. The letter D in the notation refers to the fact that we have a topological disk
with a border, and the index n means that we have an angle of 180◦/n formed by two
consecutive mirrors. See Figures 2 through 5. The patterns on the tiles in Figures 2
through 5, and in others figures throughout this paper, have been chosen arbitrarily
and have no mathematical significance.

In each of these four cases the triangle or rectangle corresponds to the quotient space
of the action of a plane crystallographic group. Therefore D333, D244, D236, and D2222
are Euclidean orbifolds. We will refer to them as “kaleidoscopic” orbifolds. The crys-
tallographic groups corresponding to these kaleidoscopic orbifolds are, respectively,
p3m1, generated by three reflections in the sides of an equilateral triangle; p4m, gen-
erated by three reflections in the sides of an isosceles right triangle with two acute

2

mirror

mirror

mirrormirror

mirror

mirror

4

4

Figure 3. Tile and tesellation of D244.
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Figure 4. Tile and tesellation of D236.
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Figure 5. Tile and tesellation of D2222.

angles of 45◦; the group p6m, generated by three reflections in the sides of a right
triangle with acute angles 30◦ and 60◦; and, finally, the group pmm, generated by four
reflections in the sides of a rectangle. This notation is the usual notation in crystallog-
raphy. The tile associated to a crystallographic group is an example of a fundamental
domain. Figures 2 to 5 illustrate tessellations corresponding to these four kaleidoscopic
orbifolds.

The vertices of the triangles delineated by the three mirrors in Figures 2, 3, and 4,
and of the rectangle delineated by the four mirrors in Figure 5, are centers of rotation.
If the rotation is 360◦/n it is called an n-fold center. In Figures 2 to 5 an n-fold center
is labeled by n. It is known (Barlow’s theorem; although we do not prove it here) that
for any n-fold center, n must be equal to 2, 3, 4, or 6. (See [2] and [9].)

3. ARTIFACTS FOR RIGID MOVES. We have already said that rigid moves can
be produced from reflections, translations, and rotations. Let us see how to produce
these basic moves with some simple artifacts.

3.1. Reflections. Think of a very thin, porous tile with a design on it (specially shaped
with straight borders), such that when it is impregnated with ink on one side, the other
side also gets inked. Roll it over a plane stamping alternately with one side and then
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the other. The manner of stamping each side is similar to the technique used in silk-
screening. When we say “roll it,” we mean that we do not want to separate the tile
from the surface while we are turning it, i.e., the border of the tile has to be in contact
with the surface while we are turning the tile. If this special tile is a rectangle we have
in our hands an artifact that mimics the effect of the kaleidoscope corresponding to the
kaleidoscopic orbifold D2222. So we do not need mirrors anymore. See Figure 6.

rolling direction

rolling
direction

porous tile

D2222

Figure 6. Tile and tesellation of D2222.

Now, if the shape of the tile is not rectangular but an equilateral triangle like the tile
in Figure 2, the above procedure of stamping with this artifact will produce exactly the
tessellation corresponding to the kaleidoscopic orbifold D333. Similarly, using shapes
like the tiles of Figures 3 and 4 there are two more artifacts that mimic the other two
kaleidoscopic orbifolds.

3.2. Translations. Ancient cultures used seals to decorate their fabrics. A common
seal was shaped like a cylinder that when impregnated with ink and rolled over a cloth
produced a pattern that is translated in one fixed direction, in this case, perpendicular
to the axis of the cylinder. Gluing two opposite sides of a rectangle we are able to
construct two different kinds of cylinders giving different patterns along a ribbon. We
illustrate both situations in Figure 7.

Vertical cylinder Horizontal cylinder

rolling
direction

rolling
direction

glue

glue

Figure 7. Horizontal and vertical translations.
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glue
rolling
direction

c

c

c

Figure 8. Translations corresponding to a parallelogram.

Gluing opposite sides of a parallelogram we obtain cylinders that give translations
in two directions that are not orthogonal. As an exercise, we invite the reader to make
a cylinder from a parallelogram of paper. See Figure 8.

In this way, the effect of translations can be produced by artifacts modelled as cylin-
ders.

3.3. Glide reflection. When we compose a reflection followed by a translation we
obtain an interesting rigid move that can be observed in many symmetric designs of
Escher or in the Alhambra. It is called a glide reflection.

What artifact can produce a glide reflection? We need an artifact similar to those
that produce reflections. Think, for example of a thin, flexible, and porous parallelo-
gram and construct a Möbius band with it, i.e., choose a pair of opposite sides of the
parallelogram, make a twist in the parallelogram, and glue the chosen opposite sides.
Rolling a Möbius band is difficult to visualize. We invite the reader to actually con-
struct one and to roll it. Impregnating the band with ink and rolling it over a plane we
obtain a rigid move consisting of a reflection followed by a translation, i.e., a glide
reflection. We illustrate the case when the parallelogram is a rectangle in Figure 9.

rolling
direction

twist
and glue

Figure 9. Band and stamped ribbon with glide reflection.

3.4. Rotations. What about a rotation? A seal shaped like a cone (with special angle)
rolling on a plane produces the same effect as a rotation. Figure 10 illustrates what
happens with a cone with an angle of 90◦. The center of the circle is a 4-fold center.
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glue

90°

90°

Figure 10. Stamping with a 90◦ cone.

Similarly, to obtain an n-fold center the cone must have an angle of 360◦/n. We note
that n has to be a positive integer in order to guarantee no overlapping.

4. SEVENTEEN ARTIFACTS.

4.1. The groups p3m1, p4m, p6m, and pmm. In the last section we have seen that
different artifacts mimic rigid moves. Moreover we already have found four artifacts
that produce the same symmetric designs we can get with the four kaleidoscopic orb-
ifolds D333, D244, D236, and D2222 or, respectively, with the crystallographic groups
p3m1, p4m, p6m, and pmm. See Table 1.

In the sequel we are going to explain how to obtain thirteen more artifacts, one for
each of the remaining crystallographic groups.

4.2. The group p1. Gluing a pair of opposite sides of a rectangle we construct a
cylindrical seal that mimics translations in one determined direction. Now if we want
translations in two simultaneous perpendicular directions we need to glue simultane-
ously both pairs of opposite sides. See Figure 11. We get a torus, which we can ideally

glue

glue

T

Figure 11. Stamped design with a torus.
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think of as an artifact such that rolling it along a plane produces translations in two
perpendicular directions. If we want to produce nonperpendicular translations we start
with a nonrectangular parallelogram to construct the torus. See, for example, Escher’s
Pegasus in the gallery of http://www.tessellations.org.

This artifact, shaped like a torus, and denoted by T , produces symmetric designs
that are the same as those produced by the crystallographic group p1, which is gener-
ated by two nonparallel translations.

In the real world it is not easy to obtain a material so flexible that it makes a torus
that neatly stamps the designs. There is another possibility for this artifact. Let us
describe it. Start with a parallelogram with zippers on its sides as shown in Figure
12. We have to operate both zippers alternately. For example, first we close the zipper
labeled with A, obtaining a vertical cylinder that we roll stamping a ribbon. Next we
open the zipper A and close the zipper B, getting a horizontal cylinder that we roll a
complete turn, producing a translation perpendicular to the first stamped ribbon. Next
we open the zipper B, close the zipper A, again roll the cylinder, and so on. In this
manner it is possible to completely stamp the plane.

A A

B

B

Figure 12. Zippered torus.

4.3. The group p2. Now, let us construct another artifact. Glue a pair of opposite
sides of a parallelogram to construct a cylinder. Now, look for the midpoint of each
of the two free sides and glue half of each side with the other half of the same side as
illustrated in Figures 13 and 14. Note that if the parallelogram is a rectangle we obtain
a pillow (see Figure 13). Each of the four vertices is the vertex of a cone with an angle

glueglueglue

180° 180°

180° 180°
S2222

Figure 13. Pillow S2222 constructed from a rectangle and its stamped design.
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glue

180°

glueglue

180°

180°

180°

glue
glue

a

a
a

a

a

bb

b

b

b

c
c

c

c

twisted pillow

Figure 14. Translations corresponding to a twisted pillow.

of 180◦. If the parallelogram is nonrectangular we obtain a twisted pillow, as in Figure
14, that can be thought of as being tetrahedral, with four vertices that are vertices
of cones with 180◦ angles. Again, we invite the reader to do the exercise using paper
parallelograms. See Escher’s Squirrels (1936), Frogs (1942), Pattern (1967), or Flower
Pattern (1967) in the gallery of http://www.tessellations.org.

Any of these pillows is an artifact that impregnated with ink stamps symmetric
designs when it rolls on a plane as a seal. It is denoted by S2222 and corresponds to
the crystallographic group p2, which is generated by four (actually, three is enough)
rotations of 180◦.

The letter S, in S2222, means that we have a topological sphere, and the subindex n
means that there is a vertex that is an n-fold center, i.e., we have a rotation of 360◦/n; in
other words, each subindex n means that the pillow has a cone point of angle 360◦/n.

There is another way to construct the twisted pillow. Start from an acute triangle.
Draw the three lines that join consecutive midpoints of its sides. Fold along these lines
and you get a tetrahedron with vertices that are cones with angle 180◦. (See Figure
15.) Observe that the four triangles in the tetrahedron pillow correspond to the four
triangles in a parallelogram on the right side of Figure 15 when the pillow is rolled.

4.4. The groups pm and cm. If we make a cylinder of very flexible porous material
we are able to turn the cylinder inside out and to perform reflections using it. Rolling
the cylinder we stamp a ribbon with motifs that are translated along it, and turning
the cylinder inside out we stamp another parallel ribbon that is the reflection of the
first one. As a cylinder is topologically an annulus, this new artifact is denoted by A
and is called a ring. It corresponds to the crystallographic group pm generated by two
parallel reflections and a translation.
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Figure 15. Acute triangle, tetrahedron, and its stamped design.

We have already explained that a Möbius band permits us to stamp a ribbon where a
motif is glide reflected and translated along the ribbon. In fact, using the same artifact,
we are able to fill a plane with a symmetric design. Let us explain: First stamp a ribbon
rolling a porous Möbius band (as in Figure 9), and next turn the band “inside out” and
stamp another parallel ribbon that reflects the first one. Continue in this way to fill out
the plane. This artifact is denoted by M and is called a Möbius band. It corresponds to
the crystallographic group cm, which is generated by a reflection and a glide reflection,
where both axes of reflection are parallel. See Escher’s Scarabs (1953) in the gallery
of http://www.tessellations.org. This motif represents an A tessellation if the
colors are considered but it represents an M tessellation if we do not consider the
colors.

Figure 16. A and M symmetric designs.

4.5. The groups p3, p4, and p6. We have already studied the kaleidoscopic orb-
ifolds D333, D244, D236, and D2222. Comparing D2222 with the pillow S2222, we see that
they are very similar except that S2222 is thick and has two sides with different designs,
while D2222 is very thin and has two sides but the porosity of the material effects the
transfer of the design on one side to the other side. We say that S2222 is the double of
D2222. Recall that S2222 has four singularities that are vertices of four cones with angles
of 180◦.

Similarly, the doubles of D333, D244, and D236 exist. These doubles are like “air
cushions” and are denoted by S333, S244, and S236, respectively. Each of these “cushion”
orbifolds is a topological sphere and has three cone-point singularities with cone angles
of 360◦/n, where n is one subindex in the notation. We illustrate these three cushions
in Figure 17.

The crystallographic group corresponding to S333 is the group p3, which is gener-
ated by two rotations of 120◦ with different centers. The crystallographic group corre-
sponding to S244 is the group p4, which is generated by a rotation of 180◦ and a rotation
of 90◦. And finally, the crystallographic group corresponding to S236 is the group p6,
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120° 120° 180° 90° 180° 120°

120° 90° 60°

Figure 17. S333, S244, and S236.

which is generated by rotations of 180◦ and 120◦. For example, the Escher design Fish
(1964) illustrated in http://www.tessellations.org/-eschergallery26.htm
can be stamped by rolling the cushion S244 along a plane.

4.6. The groups cmm and pmg. To construct another artifact, let us start with the
following observation. Consider an untwisted pillow S2222 with no design on it. Think
of it as an air pillow, i.e., a surface with nothing inside. Now, let us cut the pillow
along the plane of symmetry that passes through the four singularities. Then we get
two rectangular pieces of the same size. If, moreover, they are made of porous material,
then each piece could be thought of as the artifact D2222 studied before. So from S2222

we have obtained two copies of D2222. This is the reason we call S2222 the double of
D2222.

Analogously, for each plane of symmetry of an untwisted pillow S2222 we could cut
the pillow into two pieces (with the same shape and size) and each of them will furnish
another artifact that, if made of porous material, will stamp a different symmetric de-
sign. There exist three types of planes of symmetry for S2222. The first type is the plane
P1 that passes simultaneously through the four singularities A, B, C , and D (this is the
plane mentioned in the paragraph above). The second type is represented by a plane
P2 that passes through the midpoints of two opposite sides of the rectangle ABC D.
And the third type is represented by a plane P3 that passes simultaneously through two
opposite singularities, for example, through A and C (in this case the rectangle has to
be a square, and since we have four singularities, two planes of this kind are possible).
In Figure 18, we illustrate the three types of planes of symmetry of S2222.

P1 is the plane of the paper

A B

D C

A B

D C

A B

D C

P2

P3

Figure 18. Symmetry planes for S2222.

So, cutting the pillow along any of these planes we obtain three different artifacts.
We have already seen that cutting along the plane P1 we obtain the kaleidoscopic
orbifold D2222. Cutting along the plane P2 we obtain the artifact denoted by D22 (also
a topological disc). It resembles a pillowcase with two singularities of 180◦ and a
flat border. The flat border permits us to perform reflections with it when we roll it
turning inside to outside. We think of it as being made with a porous material. The
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Figure 19. D22 and its symmetric design.

crystallographic group corresponding to D22 is the group pmg, which is generated by
a reflection and two rotations of 180◦ with different centers. See Figure 19.

Now, cutting along the plane P3 we obtain the artifact denoted by D222 (also a
topological disc). It resembles a party hat with a singularity of 180◦ and also with two
90◦ angles on the border. The border of this strange hat makes it possible to perform
reflections with it. If it is made with a porous material we could stamp a special design
by rolling the hat and alternately using outside and inside. This artifact corresponds to
the crystallographic group cmm, which is generated by two perpendicular reflections
and one 180◦ rotation. See Figure 20. The artifact D222 can also be obtained from
a twisted pillow S2222 by cutting along a plane of symmetry (if it exists) that passes
simultaneously through two singularities of 180◦ and the middle point of the edge that
joins the other two singularities.

Figure 20. D222 and its symmetric design.

4.7. The groups p4g and p31m. Now let us construct two more artifacts. Like D222,
both of them resemble party hats and are topological discs.

The first one, denoted by D24, corresponds to the crystallographic group p4g, gen-
erated by a 90◦ rotation and a reflection. It has a border with one 90◦ angle and also it
has one 90◦ singularity. To produce this artifact we start from the cushion orbifold S244

and cut it along the plane of symmetry that passes through the 180◦ singularity and the
midpoint between the other two singularities. Once more, we think of this artifact as
being made with a porous flexible material. See Figure 21. See Escher’s Strong Men
(1936) in the gallery of http://www.tessellations.org.

The second artifact is analogous to D24. It is denoted by D33 (Figure 22) and it is
constructed from S333 by cutting along the plane of symmetry that passes through one
of the singularities and also through the midpoint between the other two singularities.
D33 corresponds to the crystallographic group p31m, which is generated by a rotation
of 120◦ and a reflection. See Escher’s China Boy (1936) in the gallery of http://
www.tessellations.org.

5. THE GROUPS pg AND pgg. To finish we are going to describe the last two ar-
tifacts. The first one corresponds to the group pg, generated by one glide reflection
and one translation. It is denoted by K , and it is called a Klein bottle. Theoretically,
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90°90°

90°

90°

90°

180°

Figure 21. D24 and its symmetric design.

glue

120°

120°

120°120°

60°

120°

60°

Figure 22. D33 and its symmetric design.
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a Klein bottle could be constructed from a quadrilateral by gluing its sides as illus-
trated in Figure 23. It is impossible to construct a Klein bottle in our real world. It
is necessary to have at least 4 dimensions, but fortunately we can imagine an artifact
that could stamp a symmetric design that would correspond to a design stamped by an
ideal Klein bottle.

A

A

A

B

B

Figure 23. Zippered Klein bottle and stamped design.

In this case the artifact is made from one rectangular piece that has zippers on its
sides as shown in Figure 23. Compare the direction of the zippers in Figures 12 and 24.
We have to operate both zippers alternately. For example, we close the zipper labeled
with A to obtain a Möbius band that when rolling stamps a ribbon. Next we open the
zipper A and close the zipper B, obtaining a cylinder that when rolled one complete
turn produces a translation perpendicular to the first stamped ribbon. Next we open the
zipper B, close the zipper A, and again roll the Möbius band, and so on. See Escher’s
Swallows and Dragonflies (1938) in the gallery of http://www.tessellations.
org.

Finally, the last artifact corresponds to the group pgg, generated by two perpendic-
ular glide reflections. This artifact is denoted by P22 and it is called a projective plane.
The P in the notation recalls the projective plane and the subindices mean that we have
two singularities of 180◦. As in the case of the Klein bottle a projective plane can ide-
ally be constructed from a rectangle by gluing its sides as shown in Figure 24. Also, in
our real world it is impossible to construct a projective plane because we would again
need at least 4 dimensions, but fortunately we also can think of an artifact that could
stamp the same symmetric design as an ideal projective plane. As in the last case we
have a zippered artifact as shown in Figure 24. In the same way, we operate alternately

A

A

B

B

Figure 24. Zippered projective plane and stamped design.
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both zippers. The difference in this case is that closing any zipper we obtain a Möbius
band. To operate this artifact we start, for example, by closing the zipper labeled A,
obtaining a Möbius band that we roll stamping a ribbon. Next we open the zipper A
and close the zipper B, getting a new Möbius band that we roll perpendicularly to the
first stamped ribbon, and so on. We notice the centers of rotation of 180◦ placed on the
vertices of the rectangle. See Escher’s Lions (1937) or Dogs (1938) in the gallery of
http://www.tessellations.org.

6. CONCLUSION. The concept of orbifold introduced by Thurston in the seventies
gave rise to a new way of looking at manifolds. This plays an important role in geom-
etry and topology today, such as in Perelman’s proofs of the Poincaré conjecture and
geometrization conjecture.

In this paper we have tried to avoid technical language and to approach orbifolds
from an intuitive point of view. Thus we have described seventeen artifacts which
give interpretations of the seventeen crystallographic groups or the seventeen two-
dimensional orbifolds arising from them. Readers are referred to the Associação
Atractor–Matemática Interactiva (Atractor) website http://www.atractor.pt/
mat/orbifolds/info-en.htm, where they will find some applets and videos that
illustrate some of these artifacts. The Atractor project also has a beautiful interactive
DVD, Symmetry–dynamical presentation.

In higher dimensions orbifold theory becomes more complicated. For example, in
dimension three knot theory comes into play. The figure eight knot and the Borromean
rings can be considered as the singular sets of both Euclidean and hyperbolic three-
dimensional orbifolds. See Figure 25. In three dimensions there are exactly 219 pair-
wise nonisomorphic crystallographic Euclidean groups. The interested reader should
read the beautiful paper of Bonahon and Siebenmann [1]. We strongly recommend as
an introduction to tessellations the nice and elementary book of Seymour and Britton
[10].

Figure 25. The figure eight knot and Borromean rings.
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