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A. PAIRS OF COMPATIBLE SYMPLECTIC FORMS

On a real or complex 2n-dimensional manifold M consider a pair of closed

2-forms ω, ω1, symplectic the first one. Let J be the (1,1)-tensor field defined

by the relation ω1(X,Y ) = ω(JX, Y ); then ωk(X,Y ) = ω(JkX,Y ) is a 2-form.

One will say that ω, ω1 are compatible if ω2 is closed, which is equivalent to say

that NJ = 0. When (ω, ω1) is compatible a local classification can be given on

an open dense set of M (the regular open set).

1. Examples. 1) Let Ω be a symplectic form on a complex manifold

P of complex dimension 2k. Set Ω = ω + ıω1, where ω, ω1 are the real and

the imaginary part respectively. Then (ω, ω1) is a compatible pair when P is

regarded as a real manifold of dimension 4k.

2) Take two symplectic manifolds (M1, β1), (M2, β2), then on M = M1 ×M2

the pair ω = β1 + β2, ω1 = β1 − β2 is compatible.

3) Let (G,ω) be a Lie group endowed with a left invariant symplectic form,

and let ω1 be the right invariant 2-form such that ω(e) = ω1(e) where e is the

neutral element of G. Then (ω, ω1) is a compatible pair on G.

4) On a n-manifold N consider a (1,1)-tensor field H, which gives rise to a

vector bundle morphism ϕH : T ∗N → T ∗N by setting ϕH(λ) = λ ◦H. Let ω

be the symplectic Liouville form of T ∗N and let ω1 = (ϕH)∗ω. Then (ω, ω1) is

a compatible if and only if NH = 0.

2. The algebraic structure.

Let (α, α1) be a couple of 2-forms on a 2n-dimensional, real or complex,

vector space V the first one symplectic (αn 6= 0). We define J ∈ End(V ) by the

relation α1(v, w) = α(Jv,w) for any v, w ∈ V . Then α(J, ) = α( , J) and

each αk = α(Jk, ) is a 2-form [k may be negative if J is an isomorphism]. The

classification of the couple (α, α1) is given by that of J and, therefore, by the

family of elementary divisors of J . From now on, the characteristic polynomial,

the minimal polynomial and the elementary divisors of (α, α1) will be those of

J .

For understanding the algebraic classification better consider the following

situation. Let H be an endomorphism of a n-dimensional vector space W ; then

on W ⊕W ∗ one has the symplectic form α((v, λ), (w, µ)) = λ(w) − µ(v) and
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the 2-form α1((v, λ), (w, µ)) = λ(Hw) − µ(Hv), whose relation endomorphism

J equals H ⊕ H∗. In this way it can be constructed all the models of couples

(α, α1). Thus the elementary divisors of (α, α1) occur an even number of times

and the characteristic polynomial is the square of another polynomial, which is

divided by the minimal polynomial.

3. The regular open set. A first reduction.

Let KP [t] be the polynomial algebra in one variable over the ring of differ-

entiable functions on a manifold P . A polynomial ϕ ∈ KP [t] is said irreducible

if it is irreducible at every point of P . Two polynomials ϕ,ψ ∈ KP [t] are called

relatively prime if they are at each point. Given a vector bundle E over P

of dimension m̃ and a morphism H : E → E, its characteristic polynomial

ϕ =
∑m̃
j=0 hjt

j belongs to KP [t]. Set gj = trace(Hj). Since h0, ..., hm̃−1 are, up

to sign, the elementary symmetric polynomials of the roots and each gj the sum

of their j-th powers, every function gj may be expressed as a rational polynomial

of h0, ..., hm̃−1, and each function hj like a rational polynomial of g1, ..., gm̃. In

particular gj when j ≥ m̃+ 1 equals a rational polynomial of g1, ..., gm̃.

One will say that H : E → E has constant algebraic type if there exist

relatively prime irreducible polynomials ϕ1, ..., ϕs ∈ KP [t] and positive integers

ajk, j = 1, ..., rk, k = 1, ..., s, such that at each point p ∈ P the family {ϕajkk (p)},

j = 1, ..., rk, k = 1, ..., s, is that of elementary divisors of H(p). Though in

general the algebraic type of H is not constant, the set of all points such that

around of them H has constant algebraic type is open and dense.

Now suppose that E is a foliation and NH = 0; then jdgj+1 = (j+1)dgj ◦H.

Therefore
⋂m̃
j=1Kerdgj(p) =

⋂m̃−1
j=0 Kerdhj(p) is a H-invariant vector subspace

of TpP because each gj , j ≥ m̃+ 1, is a function of g1, ..., gm̃.

One will be say that a point p ∈ P is regular if there exists an open neigh-

bourhood B of p such that:

(1) H has constant algebraic type on B,

(2)
⋂m̃
j=1Kerdgj , restricted to B, is a vector sub-bundle of E and therefore a

foliation,

(3) H restricted to
⋂m̃
j=1Kerdgj has constant algebraic type on B.

The set of all regular points is a dense open set P , called the regular open

set. On the other hand H, aH + bI, a ∈ K − {0}, b ∈ K, and H−1 if H is
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invertible, have the same regular open set.

Now consider a compatible pair (ω, ω1) on a 2n-manifold M ; by definition its

regular open set will be that of J . Assume that about some regular point p the

characteristic polynomial ϕ of (ω, ω1) equals the product ϕ1 · ϕ2 of two monic

polynomials, relatively prime at each point. Then, always around p, (M,ω, ω1)

decomposes into a product (M ′, ω′, ω′1)× (M ′′, ω′′, ω′′1 ) of two compatible pairs

in such a way that ϕ1 is the characteristic polynomial of (ω′, ω′1) [more exactly

ϕ1 is the pull-back of the characteristic polynomial of (ω′, ω′1) by the the first

projection], ϕ2 that of (M ′′, ω′′, ω′′1 ) and p′, p′′ are regular points where p =

(p′, p′′).

Reiterating the process reduces the classification problem to the case where

ϕ is a power of an irreducible polynomial, that is to say ϕ = (t + f)2n or

ϕ = (t2 + ft+ g)n, with f2 − 4g < 0; this last case only on real manifolds.

3. The local classification.

First one has:

Theorem 1. Consider a compatible pair (ω, ω1) whose characteristic poly-

nomial equals (t + f)2n. Then about any regular point p there exists a system

of coordinates ((xji ), y1, y2), with p ≡ 0, such that:

(a) i = 1, ..., 2rj and r1 ≥ ... ≥ r` including the two limit cases: no coordinates

(y1, y2) or no coordinates (xji ).

(b) ω =
∑`
j=1

∑rj
i=1 dx

j
2i−1 ∧ dx

j
2i + dy1 ∧ dy2

ω1 = (y2 + a)ω + τ + α ∧ dy2

where a is constant, τ =
∑`
j=1

∑rj−1
i=1 dxj2i−1 ∧ dx

j
2i+2 and

α = dx1
2 +

∑`
j=1

∑rj
i=1([i+ 1

2 ]xj2idx
j
2i−1 + [i− 1

2 ]xj2i−1dx
j
2i).

Remark. In the foregoing theorem the local model is completely determined

by the elementary divisors of (ω, ω1). When (ω, ω1) is 0-deformable, that is if

there are no coordinates (y1, y2), they are {(t − a)rj , (t − a)rj}, j = 1, ..., `,

whereas for the non 0-deformable case one has (t − (y2 + a))r1+1, (t − (y2 +

a))r1+1, {(t− (y2 + a))rj , (t− (y2 + a))rj}, j = 2, ..., `.
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The case where the characteristic polynomial equals (t2+ft+g)n, f2−4g < 0,

is dealt with by considering the semi-simple part H of J0 = 2(4g − f2)−1/2J +

f(4g − f2)−1/2Id, which is a complex structure. If we set Ω = ω + ıω̃ and

Ω1 = ω1 + ıω̃1, where ω̃(X,Y ) = −ω(HX,Y ) and ω̃1(X,Y ) = −ω1(HX,Y ),

then (Ω,Ω1) is a holomorphic compatible pair whose characteristic polynomial

equals (t+ h)n, with h = 1
2 (f − ı(4g − f2)−1/2). In other words, (ω, ω1) is the

real part of a complex compatible pair with the same regular open set. Thus:

Theorem 2. Let (ω, ω1) be a compatible pair. Then its local model around

any regular point is a finite product of factors chosen among:

(a) If the manifold is complex those of theorem 1.

(b) If the manifold is real those of theorem 1 and the real part of the complex

models of this theorem.

The elementary divisors of (ω, ω1) completely determine the local model.

4. Symplectic bihamiltonian structures.

Let (Λ,Λ1) be a bihamiltonian structure on a 2n-manifold M . Assume that

rangΛ = 2n everywhere; let H be the (1,1)-tensor field defined by Λ1(α, β) =

Λ(H∗α, β) = Λ(α ◦ H,β). Since the problem is local, one may suppose Λ1

invertible too (if not take Λ1 + aΛ for a suitable scalar a instead of Λ1). Let

(ω, ω1) be the dual symplectic pair of (Λ,Λ1). Recall that H = J−1 where

ω1 = ω(J, ); moreover if ω(X, ) = α and ω(Y, ) = β then Λ1(α, β) =

ω1(J−1X, J−1Y ) = ω−1(X,Y ).

For obtaining the explicit local model of (Λ,Λ1) at any regular point, it

suffices to apply theorem 2 to (ω, ω−1). Indeed, if (z1, ..., z2n) are coordinates

as in theorems 1 and 2 with respect to (ω, ω−1), then the coefficients of Λ are

easily deducted from the expression of ω and those of Λ1 from ω−1 through

the rule Λ1(dzi, dzj) = ω−1(Zi, Zj), where dzk = ω(Zk, ) = dzk, k = 1, ..., 2n

(note that each Zk is just a partial derivative).
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B. VERONESE WEBS (LOCAL THEORY)

Veronese webs were introduced as a tool for studying the bihamiltonian

structures of constant rank without symplectic factor. As before our structures

will be real (at least of class C∞) or complex (holomorphic). Among the different

approaches to this theory, here we will chose that consisting in giving a r-

codimensional foliation F on a n-manifold and a suitable morphism ` : F → TN .

1. Algebraic Veronese webs.

Consider a n-dimensional vector space V . A curve γ(t), t ∈ K, in ΛrV ∗, r ≥

1, is called a Veronese curve if there exists a basis {eij}, i = 1, ..., nj , j = 1, ..., r,

of V such that γ(t) = γ1(t)∧ ...∧γr(t) where each γj(t) =
∑nj

i=1 t
i−1e∗ij . Thus γ

is a polynomial curve of degree n− r; moreover, up to permutation, the family

of natural numbers {n1, ..., nr} only depends on γ and this last one completely

determines the Veronese curve. For convenience one will set γ(∞) = lim γ(t)
tn−r

when t→∞.

A family w = {w(t) | t ∈ K} of (n − r)-planes of V is called a Veronese

web of codimension r if there exists a Veronese curve γ in ΛrV ∗ such that

w(t) = Kerγ(t), t ∈ K. The curve γ will be named a representative of w. If γ̃ is

another representative of w then γ̃ = aγ, a ∈ K− {0}. This allows us to define

w(∞) = Kerγ(∞), which does not depend on the representative. Moreover if

{βij}, i = 1, ..., nj , j = 1, ..., r, is a basis of V ∗ such that γ(t) = γ1(t)∧ ...∧γr(t)

where each γj(t) =
∑nj

i=1 t
i−1βij , then w(∞) = Ker(βn11 ∧ ... ∧ βnrr).

Proposition 1. Consider a n-dimensional vector space V and a natural

number 1 ≤ r ≤ n.

(a) Given a r-codimensional vector subspace W ⊂ V and J ∈ End(V ), if

(W ′, J∗) spans V ∗ where W ′ is the annihilator of W in V ∗ then γ(t) = ϕ(t)((J+

tI)−1)∗β, where ϕ is the characteristic polynomial of −J and β a r-form such

that Kerβ = W , represents a Veronese web w of codimension r.

Moreover limt→∞t
r−nγ(t) = β, w(∞) = W and (J + tI)w(∞) = w(t) for

any t ∈ K.

(b) Any Veronese web on V of codimension r may be represented in this way.
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(c) Assume that γ(t) = ϕ(t)((J + tI)−1)∗β and γ̃(t) = ϕ̃(t)((J̃ + tI)−1)∗β̃

represent two Veronese webs w and w̃ respectively. Then w = w̃ if and only if

β̃ = aβ, a ∈ K− {0}, and Ker(J̃ − J) ⊃ w(∞) = w̃(∞).

In this last case γ̃ = γ if and only if β̃ = β.

(d) Up to permutation the family of natural numbers {n1, ..., nr}, associated to

a splitting of a representative of a Veronese web w, only depends on w. This

family characterizes the Veronese web up to isomorphism.

By definition n1, ..., nr will be called the the characteristic numbers of w and

their maximum the height of w.

Remark. It is easily checked that (W ′, J∗) spans V ∗ if and only if W does

not contain any non-zero J-invariant vector subspace.

By (c) of proposition 1 the restriction of J to w(∞) gives rise to a morphism

` : w(∞) → V with no `-invariant vector subspace different from zero (this

notion is meaningful since : w(∞) ⊂ V ) and which only depends on the Veronese

web w. Moreover (` + tI)w(∞) = w(t), t ∈ K, that is to say `∗α = −tα|w(∞)

for any α ∈ V ∗ such that α(w(t)) = 0 and any t ∈ K. This last property

characterizes ` completely because the union of the annihilators of w(t), t ∈ K,

spans V ∗.

Conversely given a morphism ` : W → V whose only `-invariant vector

subspace is zero, we may construct a Veronese web by considering an endomor-

phism J of V such that J|W = ` and applying (a) of proposition 1.2 to it. This

Veronese web only depends on `. In fact w(t) = (`+ tI)W . Thus:

Giving a Veronese web of codimension r ≥ 1 is equivalent to giving a mor-

phism ` : W → V , where W is a r-codimensional vector subspace, without

non-zero `-invariant vector subspaces.

Proposition 2. Consider a Veronese web w of codimension r ≥ 1, a basis

{α1, ..., αn} of V ∗ and scalars a1, ..., an. Assume that αj(w(−aj)) = 0, j =

1, ..., n. Then w can be constructed through (a) of proposition 1 by means of the

endomorphism J defined by J∗αj = ajαj, j = 1, ..., n.

Before ending this paragraph we recall the classification of pairs of bivectors.

Consider, on a finite dimensional vector space W , a pair of bivectors (Λ,Λ1).

One defines the rank of (Λ,Λ1) as the maximum of ranks of (1 − t)Λ + tΛ1,
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t ∈ K. Note that rank((1−t)Λ+tΛ1) = rank(Λ,Λ1) except for a finite number of

scalars t, which is ≤ dimW
2 (they are given by the polynomial equation ((1−t)Λ+

tΛ1)k = 0 where rank(Λ,Λ1) = 2k). We will say that (Λ,Λ1) is maximal (or of

maximal rank) if rank(Λ) = rank(Λ1) = rank(Λ,Λ1). Obviously if (Λ,Λ1) is

not maximal one may choose Λ′ = (1− a)Λ + aΛ1, Λ′1 = (1− a1)Λ + a1Λ1, with

a 6= a1, which is maximal. Consequently it suffices classifying maximal pairs.

Let U be a (2m−1)-dimensional vector space. The action of the linear group

GL(U) on (Λ2U)× (Λ2U) possesses one dense open orbit; each element of this

orbit, all of them isomorphic, will be named the elementary Kronecker pair in

dimension 2m− 1. By a Kronecker pair we mean a pair that is isomorphic to a

finite product of Kronecker elementary pairs, while a pair is called symplectic if

it is the dual of a couple of symplectic forms; in both cases they are maximal.

As is well known:

Any maximal pair of bivectors (Λ,Λ1) on a finite dimensional vector space

is isomorphic to the product of a symplectic pair and r Kronecker elementary

pairs, where r = corank(Λ,Λ1), including the case with no symplectic factor

and that where r = 0.

Moreover, up to isomorphism and change of order, the factors are unique.

2. Veronese webs on manifolds.

Let N be a real or complex manifold of dimension n. A family w = {w(t) |

t ∈ K} of involutive distributions (or foliations) on N of codimension r ≥ 1

is named a Veronese web of codimension r, if for any p ∈ N there exist an

open neighborhood A of this point and a curve γ(t) in the module of sections of

ΛrT ∗A (that is to say γ(t)(q) ∈ ΛrT ∗q A = ΛrT ∗qN for every q ∈ A) such that:

1) w(t) = Kerγ(t), t ∈ K, on A

2) for each q ∈ A, γ(t)(q) is a Veronese curve in ΛrT ∗qN .

The curve γ is called a (local) representative of w.

Although curves γ(t)(q) and γ(t)(q′) could be not isomorphic when q 6= q′,

γ(t) =
∑n−r
i=0 t

iγi where γ0, ...γn−r are differentiable r-forms on A. On the

other hand Kerγn−r is an involutive distribution of dimension n− r since each

Kerγ(t) was integrable and limtr−nγ(t) = γn−r, t → ∞. This allows us to

define w(∞) = Kerγn−r, which does not depend on the representative because

if γ̃ is another representative then γ̃ = fγ on the common domain. In particular,
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there exists a global representative if and only if w(∞) is transversally orientable.

Obviously w as map from K∪{∞} ≡ KP 1 to the Grassmann manifold of (n−r)-

plans of TN is smooth.

Examples. 1) On S3 regarded as a Lie group consider three left invariant

contact forms ρ1, ρ2, ρ3. Suppose that ρ1∧ρ2∧ρ3 6= 0 and set γ(t) = (ρ1 +tρ2)∧

ρ3. Then γ defines a codimension two Veronese web which is not flat because

Kerρ3 = w(0)⊕ w(∞) is a contact structure.

2) On K4 with coordinates (x1, x2, y1, y2) set γ(t) = (dx2∧dy2 +x2dx1∧dx2) +

t(x2dx2 ∧ dy1 − dx1 ∧ dy2) + t2dy1 ∧ dy2. Then γ defines a Veronese web of

codimension two since dγ(t) = 0 and γ(t) = (−dx1 +x−1
2 dy2 +tdy1)∧(−x2dx2 +

tdy2) when x2 6= 0, while γ(t) = (dx2 − tdx1 + t2dy1) ∧ dy2 if x2 = 0.

Note that γ(t)(q) and γ(t)(q′) are not isomorphic as Veronese curves when

q2 6= 0 and q′2 = 0.

3) Let V be the 3-dimensional Lie algebra spanned by the vectors fields on

K: X1 = (∂/∂t), X2 = t(∂/∂t) and X3 = t2(∂/∂t). Set w̃(t) = {v ∈ V |

v(t) = 0}. As w̃(t) = Ker{e∗1 + te∗2 + t2e∗3} where {e∗1, e∗2, e∗3} is the dual basis

of {X1, X2, X3}, w̃ = {w̃(t) | t ∈ K} is an algebraic Veronese web on V . But

V is isomorphic to the Lie algebra of SL(2,K) and each w̃(t) is a subalgebra

of V ; therefore w̃ gives rise to a Veronese web w of codimension one on any

3-dimensional homogeneous space of SL(2,K).

A local description of Veronese webs is given by the following result:

Theorem 1. Let N be a n-dimensional real or complex manifold.

(1) Consider a Veronese web w on N of codimension r and non-equal scalars

a1, ..., an−k, a where 1 ≤ k ≤ r. Then for each p ∈ N there exist an open set

p ∈ A and a (1, 1)-tensor field J on A whit characteristic polynomial ϕ(t) =

(
∏n−k
j=1 (t− aj))(t− a)k, which is flat and diagonalizable, such that:

(I) (Ker(J∗−ajI))w(−aj) = 0, j = 1, ..., n−k, and (Ker(J∗−aI))w(−a) = 0.

(II) For any q ∈ A, (w(∞)(q)′, J∗(q)) spans T ∗q A, that is to say w(∞)(q) con-

tains no J-invariant vector subspace different from zero.

In particular, if β is a r-form and Kerβ = w(∞) then γ(t) = (
∏n−k
j=1 (t +

aj))(t+ a)k((J + tI)−1)∗β represents w.

Moreover is λ is a closed 1-form such that Kerλ ⊃ w(∞) then d(λ◦J)|w(∞) =

0.
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(2) Conversely, on N consider a foliation F of codimension r ≥ 1, a r-form

β̄ such that Kerβ̄ = F and (1, 1)-tensor field J̄ with characteristic polynomial

ϕ̄(t). Suppose that:

(I) (F ′, J̄∗) spans T ∗N , that is to say F does not contain any non-zero J̄-

invariant vector subspace.

(II) (NJ̄)|F = 0 and d(µ◦J̄)|F = 0 for each closed 1-form µ such that Kerµ ⊃ F

(note that if F = Ker(λ1 ∧ ... ∧ λr) where each λj is a closed 1-form, this last

condition is satisfied if and only if λ1 ∧ ... ∧ λr ∧ d(λj ◦ J̄) = 0, j = 1, ..., r).

Then γ̄(t) = (−1)nϕ̄(−t)((J̄ + tI)−1)∗β̄ defines a Veronese web w̄ of codi-

mension r for which w̄(∞) = F . This Veronese web only depends on F and J̄ .

Example. On an open set A of Kn consider a (1, 1)-tensor field J =∑n
j=1 fj(xj)

∂
∂xj
⊗dxj where fj(xj) 6= fk(xk) whenever x = (x1, ..., xn) ∈ A. Set

β =
∑n
j=1 dxj . As NJ = 0, (β, J∗) spans T ∗A and d(β ◦ J) = 0, by (2) of theo-

rem 1 the curve γ(t) =
∏n
j=1(t+ fj)β ◦ (J + tI)−1 =

∑n
j=1(

∏n
i=1;i6=j(t+ fi))dxj

defines a Veronese web w on A of codimension one, which generally is not flat.

For obtaining a 2-codimensional Veronese web w̃, one may consider a second

1-form β′ =
∑n
j=1 gj(xj)dxj such that β ∧ β′ never vanishes and set γ̃(t) =∏n

j=1(t+fj)((J+ tI)−1)∗(β∧β′) =
∑

1≤j<k≤n(
∏n
i=1;i6=j,k(t+fi))(gk−gj)dxj ∧

dxk.

Theorem 1 gives a method for constructing all Veronese webs locally. If r ≥ 2

the scalars a1, ..., an−k, a do not determine J which prevent us constructing this

tensor globally; on the contrary, when r = 1 the tensor J exists on the whole

N .

In view of proposition 1, the restriction of J to w(∞) gives rise to a morphism

(of vector bundles) ` : w(∞) → TN , which only depends on the Veronese

web, without non-zero `-invariant vector subspace at any point of N . Moreover

w(t) = (`+ tI)w(∞), t ∈ K.

In some cases the Nijenhuis torsion of a partial (1,1)-tensor field can be

defined. More exactly, on a manifold M consider a foliation F and a morphism

(of vector bundles) G : F → TM . If α is a s-form defined on an open set A of

M , then G∗α [we also write α(G, ..., G) or α ◦ G instead G∗α] is a section on

A of ΛsF∗ and can regarded as a s-form on the leaves of F ; thus we shall say
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that is closed on F if it is closed on its leaves. Besides, when Ḡ : TM → TM is

a prolongation of G, then d(Ḡ∗α)|F equals the exterior derivative of G∗α along

the leaves of F ; thus G∗α is closed on F if and only if d(Ḡ∗α)|F = 0. One has:

Lemma 1. Assume that G∗α is closed on F for every closed 1-form α such

that Kerα ⊃ F . Then the restriction of NḠ to F , which will be named the

Nijenhuis torsion of G and denoted by NG, does not depend on the prolongation

Ḡ.

Note that the Nijenhuis torsion of ` : w(∞) → TN vanishes and `∗α is

closed on w(∞) for every closed 1-form α such that Kerα ⊃ w(∞) since J ,

its local prolongation given by (1) of theorem 1, has zero Nijenhuis torsion and

d(α ◦ J)|w(∞) = 0.

Conversely, given a foliation F on N of codimension 1 ≤ r ≤ n and a

morphism ` : F → TN with the algebraic and differentiable properties stated

before, then w(t) = (` + tI)F , t ∈ K, defines a Veronese web of codimension r

for which w(∞) = F . Indeed apply (2) of theorem 1 to a prolongation J̄ of `.

Thus:

Giving a Veronese web on N of codimension r ≥ 1 is equivalent to giving

a morphism ` : F → TN , where F is a r-codimensional foliation without non-

vanishing `-invariant vector subspace at any point such that:

1) whenever α is a closed 1-form whose kernel contains F , restricted to the

domain of α, then `∗α is closed on F ,

2) N` = 0.

Note that if F = Ker(α1 ∧ ... ∧ αr), where dα1 = ... = dαr = 0, then `∗α is

closed on F for any 1-form α such that dα = 0 and Kerα ⊃ F , if and only if

`∗α1, ..., `
∗αr are closed on F .

Example. On an open set A of K2m, endowed with coordinates (x, y) =

(x1, ..., xm, y1, ..., ym), consider the foliation F defined by dy1 = ... = dym = 0

and the morphism ` : F → TA given by `( ∂
∂xj

) =
∑m
k=1 fjk

∂
∂yk

, j = 1, ...m.

Assume | fjk |6= 0 everywhere, which implies that ` : F → TA defines a m-

codimensional Veronese distribution w on A with characteristic numbers n1 =

... = nm = 2. Then w is a Veronese web if and only if d(
∑m
j=1 fjkdxj)|F = 0,

k = 1, ...,m, and
[∑m

k=1 fjk
∂
∂yk

,
∑m
k̃=1 fj̃k̃

∂
∂yk̃

]
= 0, 1 ≤ j < j̃ ≤ m (indeed
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consider the prolongation J of ` given by J( ∂
∂yk

) = 0, k = 1, ...,m).

When m = 1 there are no conditions at all. If m = 2 one has a partial

differential system of order one with four equations and four functions; for m ≥ 3

the system is over-determined.

More generally when n = 2m, the m-dimensional Veronese webs on N , with

characteristic numbers n1 = ... = nm = 2, are given by a morphism ` : F → TN

such that dimF = m and TN = F ⊕ Im`. As ` is determined by its image

and its graph, which may be identified to w(1) = (` + I)F , from the algebraic

viewpoint giving a Veronese web w with all its characteristic number equal to

2 is like giving the 3-web {F = w(∞), w(0), w(1)}. Conversely, for any 3-web

D = {D1,D2,D3} on N there exists just one Veronese distribution wD such

that wD(∞) = D1, wD(0) = D2 and wD(1) = D3. It is easily seen that wD is a

Veronese web if and only if the torsion of the Chern connection of D vanishes

(the Chern connection of D is the only connection making D1,D2,D3 parallel

such that T (D1,D2) = 0).

3. Kronecker bihamiltonian structures.

A bihamiltonian structure (Λ,Λ1) on a m-dimensional manifold M is called

Kronecker when there exists r ∈ N − {0} such that each (Λ(p),Λ1(p)), p ∈ M ,

is the product of r Kronecker elementary pairs. In this case from the algebraic

model at each point follows that m−r = rank(Λ,Λ1) = rank(Λ) = rank(Λ1) =

rank(Λ + tΛ1) for any t ∈ K; moreover D =
⋂
Im(Λ + tΛ1), t ∈ K, is a foliation

of dimension m−r
2 lagrangian for both Λ and Λ1, and D ⊂ ImΛ1. This foliation

will be named the axis of (Λ,Λ1).

Let N be the local quotient of M by the foliation D, which is a manifold

of dimension n = m+r
2 , and let π : M → N be the canonical projection. Then

w = {w(t) = π∗(Im(Λ + tΛ1)) | t ∈ K} is a Veronese web of codimension r,

whose limit when t→∞ equals π∗(ImΛ1). Thus a Veronese web of codimension

r is locally associated to any Kronecker bihamiltonian structure with r factors,

and:

Theorem 2. From the local viewpoint the Veronese web completely de-

termines the Kronecker bihamiltonian structure, at least, in the following four

cases: complex manifold, real analytic category, C∞ category when r = 1, and

12



flat Veronese web.

Besides:

Proposition 3. Consider a Veronese web w of codimension r ≥ 1 defined

on a n-manifold N . Let T ∗w(0) be the cotangent bundle of the foliation w(0),

which is a vector bundle over N of dimension n−r (so as manifold dimT ∗w(0) =

2n − r). Then, on T ∗w(0), there exists a Kronecker bihamiltonian structure

(Λ,Λ1) of corank r such that:

(1) The axis D is given by the fibres of the fiber bundle T ∗w(0)→ N ; therefore

T∗w(0)
D = N .

(2) w is the Veronese web associated to (Λ,Λ1).

4. Versal models; local classification of codimension one Veronese

webs.

On a real or complex manifold N of dimension n consider a Veronese web

w of codimension r ≥ 1. Given non-equal scalars a1, ..., an−r, a and any point

p ∈ N , let J be a (1, 1) tensor field like in part (1) of theorem 1 and let

(x1, ..., xn−r, y1, ..., yr) be a system of coordinates, around p, such that dxj ◦J =

ajdxj , j = 1, ..., n−r, and Ker(dy1∧...∧dyr) = w(∞). Then dyk◦J = adyk+α̃k,

k = 1, ..., r, where each α̃k =
∑n−r
j=1 fkjdxj . As (w(∞)′, J∗) spans the cotangent

bundle around p, by linearly recombining functions y1, ..., yr and considering

bjxj instead xj for a suitable bj ∈ K − {0}, we assume that each f1j(p), j =

1, ..., n− r, is a positive real number.

On the other hand d(dyk ◦ J)∧ dy1 ∧ ...∧ dyr = 0 and NJ = 0; a calculation

shows that these last two conditions are equivalent to system

(*)


dα̃k ∧ dy1 ∧ ... ∧ dyr = 0, k = 1, ..., r

(
d(α̃k ◦ J0)−

r∑
`=1

α̃` ∧
∂α̃k
∂y`

)
∧ dy1 ∧ ... ∧ dyr = 0, k = 1, ..., r

where J0 =
∑n−r
j=1 aj

∂
∂xj
⊗ dxj +

∑r
`=1 a

∂
∂y`
⊗ dy`.

Moreover γ(t) = (
∏n−r
j=1 (t+aj))(t+a)r((J+tI)−1)∗(dy1∧...∧dyr) represents

w.

13



Therefore, in view of (2) of theorem 1, locally Veronese webs correspond

to those solutions of system (∗) such that f11(p), ..., f1n−r(p) ∈ R+ (this last

assumption implies that (dy1, ..., dyr, J
∗) spans the cotangent bundle near p).

Hereafter the standard case will mean that the structured considered are

complex, real analytic, or C∞ with r = 1 in this last case. Let S be the

submanifold defined by xj−xn−r = xj(p)−xn−r(p), j = 1, ..., n−r−1 [S = M

if n = r, r + 1].

The next theorem gives us all solutions of (*) suitable for our purposes.

Theorem 3. In the standard case, given a germ at p of maps ϕkj : S → K,

k = 1, ..., r, j = 1, ..., n− r, such that every ϕ1j(p), j = 1, ..., n− r, is a positive

real number, then there exists one and only one germ at p on M of 1-forms

α̃1 =
∑n−r
j=1 f1jdxj,..., α̃r =

∑n−r
j=1 frjdxj such that

(*)


dα̃k ∧ dy1 ∧ ... ∧ dyr = 0, k = 1, ..., r

(
d(α̃k ◦ J0)−

r∑
`=1

α̃` ∧
∂α̃k
∂y`

)
∧ dy1 ∧ ... ∧ dyr = 0, k = 1, ..., r

and that fkj |S = ϕkj, k = 1, ..., r, j = 1, ..., n− r.

When r ≥ 2 the tensor field J is not unique and consequently we may

associate more than one model to a same Veronese web; thus our model of every

Veronese web is versal.

To remark that a classification in codimension≥ 2 seems rather difficult as

the following example shows. Consider a field of 2-planes and a local basis of

it {X,Y }. Let w̃(t), t ∈ K, be the 1-foliation defined by X + tY . Then to

classify the 1-dimensional (local) Veronese web w̃ = {w̃(t) | t ∈ K}, roughly

speaking, is like locally classifying the fields of 2-planes in any dimension; but

it is well known the difficult of this problem (first dealt with by Élie Cartan in

”Les systèmes de Pfaff à cinq variables” and later on by several authors).

Now let us examine the remainder case. Assume r = 1 until the end of

this section. Then a1, ..., an−1, a completely determines J since Ker(J∗ − ajI),

j = 1, ..., n − 1, is the annihilator of w(−aj) and Ker(J∗ − aI) that of w(−a).

The next step will be to construct an intrinsic surface S. By technical reasons

one will suppose that a1, ..., an−1, a are non-equal real numbers.

14



The polynomial
∑n−1
j=1

∏n−1
k=1;k 6=j(t+ ak) has n− 2 different roots b1, ..., bn−2

since it is the derivative of
∏n−1
k=1(t+ak), whose roots are −a1, ...,−an−1; more-

over b` 6= −aj , ` = 1, ..., n− 2, j = 1, ..., n− 1.

Let R be the germ at p of the leaf of the 1-foliation w(b1) ∩ ... ∩ w(bn−2) ∩

w(∞) passing through this point, and let S0 be the germ at p of the surface

containing R and to which the 1-foliation w(−a1) ∩ ... ∩ w(−an−1) is tangent.

By construction S0 is intrinsic.

Since R is transverse to every w(−aj), j = 1, ..., n − 1, one may take co-

ordinates (x1, ..., xn−1, y) constructed before, with two additional properties:

R is defined by the equations x1 = ... = xn−1, y = 0, and x1(p) = ... =

xn−1(p) = y(p) = 0; of course we write y and α̃ =
∑n−r
j=1 fjdxj instead y1

and α̃1 =
∑n−r
j=1 f1jdxj . In these coordinates S0 is defined by the equations

x1 = ... = xn−1. Moreover

γ(t) = −
n−1∑
j=1

 n−1∏
k=1;k 6=j

(t+ ak)fj

 dxj +

n−1∏
k=1

(t+ ak)dy.

On the other hand γ(b`)(q)((∂/∂x1) + ... + (∂/∂xn−1)) = 0, ` = 1, ..., n −

2, for every q ∈ R because (∂/∂x1) + ... + (∂/∂xn−1) is tangent to R and

TqR = (w(b1) ∩ ... ∩ w(bn−2) ∩ w(∞))(q). Therefore b1, ..., bn−2 are the roots

of
∑n−1
j=1

∏n−1
k=1;k 6=j(t + ak)fj(q) when q ∈ R; so f1 = ... = fn−1 on R since

b1, ..., bn−2 are the roots of
∑n−1
j=1

∏n−1
k=1;k 6=j(t+ak) too, which implies that both

polynomials are equal up to multiplicative factor (conversely, if f1 = ... = fn−1

on R then (∂/∂x1) + ... + (∂/∂xn−1) is tangent to this curve and R is defined

by x1 = ... = xn−1, y = 0).

The change of coordinates between two of such system can be regarded as a

diffeomorphism (x1, ..., xn−1, y)→ G(x1, ..., xn−1, y). But G has to preserve R,

S0, the foliations of dimension n−1 defined by dx1,..., dxn−1 and dy respectively

(that is to say w(−a1),..., w(−an−1) and w(∞)), and the origin. Therefore

G(x1, ..., xn−1, y) = (h1(x1), ..., h1(xn−1), h2(y)) where h1, h2 are one variable

functions such that h1(0) = h2(0) = 0 and h′1(0) 6= 0, h′2(0) 6= 0.

Denote by J ′ the pull-back of J by the diffeomorphism G. Then dxj ◦ J ′ =

ajdxj , j = 1, ..., n− 1, and dy ◦ J ′ = ady + α̃′ where
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α̃′ =

n−1∑
j=1

h′1(xj)(h
′
2(y))−1fj(h1(x1), ..., h1(xn−1), h2(y))dxj .

Now we may take h1, h2 in such a way that

h′1(x1)(h′2(y))−1f1(h1(x1), ..., h1(xn−1), h2(y)) = 1

on the curves x1 = ... = xn−1, y = 0, and x1 = ... = xn−1 = 0.

In other words, there exist coordinates (x1, ..., xn−1, y) as before with a third

additional property: f1 = ... = fn−1 = 1 on the curve x1 = ... = xn−1, y = 0,

and f1 = 1 on the curve x1 = ... = xn−1 = 0.

In turn, a change of coordinates between two system with this last property

is given by two functions h1, h2 such that h′1(x1)(h′2(y))−1 = 1 on the curves

x1 = ... = xn−1, y = 0, and x1 = ... = xn−1 = 0. Therefore h′1, h
′
2 are

constant. In short, the only possible change of coordinates is a homothety of

ratio b ∈ K− {0}, and α̃′(x1, ..., xn−1, y) = α̃(bx1, ..., bxn−1, by).

A germ at the origin of a map φ = (ϕ1, ..., ϕn−1) from S0 to Kn−1 will be

called admissible if ϕ1 = ... = ϕn−1 = 1 on the curve x1 = ... = xn−1, y = 0,

and ϕ1 = 1 on the curve x1 = ... = xn−1 = 0. Two admissible germs φ and φ̄

will be named equivalent if there exists b ∈ K−{0} such that φ̄(x1, ..., xn−1, y) =

φ(bx1, ..., bxn−1, by).

From theorem 1, theorem 3 and system (*), applied to the last kind of

coordinates system, follows (remark that in this last step the number a does

not play any role, which is due to the fact that a Veronese web is determined

by w(∞) and J|w(∞)):

Theorem 4. Consider non-equal real numbers a1, ..., an−1. One has:

(1) Given a Veronese web of codimension 1 on a real or complex n-manifold N

and any point p ∈ N , there exist coordinates (x1, ..., xn−1, y) around p such that

x1(p) = ... = xn−1(p) = y(p) = 0 and the Veronese web is represented by

γ(t) = −
n−1∑
j=1

 n−1∏
k=1;k 6=j

(t+ ak)fj

 dxj +

n−1∏
k=1

(t+ ak)dy,

where α̃ =
∑n−r
j=1 fjdxj satisfies to the system
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dα̃ ∧ dy = 0

d
n−1∑
j=1

ajfjdxj

− α̃ ∧ ∂α̃
∂y

 ∧ dy = 0,

f1 = ... = fn−1 = 1 on the curve x1 = ... = xn−1, y = 0, and f1 = 1 on the

curve x1 = ... = xn−1 = 0.

(2) Let S0 be the surface of equation x1 = ... = xn−1 and let φ = (ϕ1, ..., ϕn−1)

be a germ at the origin of a map from S0 to Kn−1. Assume φ admissible. Then

there exists one and only one germ at the origin of 1-form α̃ =
∑n−r
j=1 fjdxj,

which satisfies to the system of part (1) and such that fj |S0
= ϕj, j = 1, ..., n−1.

Moreover

γ(t) = −
n−1∑
j=1

 n−1∏
k=1;k 6=j

(t+ ak)fj

 dxj +

n−1∏
k=1

(t+ ak)dy,

defines a Veronese web of codimension 1 around the origin.

(3) Finally given two admissible germs at the origin φ and φ̄ of maps from S0

to Kn−1, the germs of 1-codimensional Veronese webs associated to them by

virtue of part (2) are equivalent, by diffeomorphism, if and only if φ and φ̄ are

equivalent as admissible germs.
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C. THE LOCAL PRODUCT THEOREM FOR BIHAMILTONIAN

STRUCTURES

One will shows that, around each point of a dense open set (regular points),

a real analytic or holomorphic bihamiltonian structure decomposes into a prod-

uct of a Kronecker bihamiltonian structure and a symplectic one if a necessary

condition on the characteristic polynomial of the symplectic factor holds. More-

over we will give an example of bihamiltonian structure for showing that this

result does not extend to the C∞- category.

As main tool for this purpose, to any bihamiltonian structure we associate

a new object called a Veronese flag, which generalizes the notion of Veronese

web introduced by Gelfand and Zakharevich (codimension one) and later on

by others authors (higher codimension). After that, and roughly speaking, the

crucial point is to show that, about each regular point, a Veronese flag is the

product of a Veronese web and a pair of compatible symplectic forms.

1. Veronese flags.

On a manifold P consider a foliation F of positive codimension and a mor-

phism of vector bundles ` : F → TP . Let A(p), p ∈ P , be the largest `-invariant

vector subspace of F(p). We will say that the pair (F , `) is a weak Veronese

flag if the following three conditions hold:

1) `∗α is closed on F for every closed 1-form α such that Kerα ⊃ F ,

2) N` = 0,

3) dimA(p) does not depend on p.

It is easily seen that the distribution A =
⋃
p∈P A(p) is a foliation when

(F , `) is a weak Veronese flag.

Lemma 1 Consider a weak Veronese flag (F , `) and for every integer k ≥ 0

set gk = trace((`|A)k). Then kdgk+1 = (k + 1)dgk ◦ ` on F .

Now let ω, ω1 be a couple of 2-forms defined on A. One will say that

(F , `, ω, ω1) is a Veronese flag on P if:

1) (F , `) is a weak Veronese flag.

2) ω is symplectic on A, ω1 closed and ω1 = ω(`, ) [that is ω1(X,Y ) =

ω(`X, Y )].
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3) Whenever f is a function on an open set of P such that `∗df is closed on F ,

then LXf
` = 0 where Xf is the ω-hamiltonian of f along A.

When A = 0, Veronese web and Veronese flag are equivalent notions.

Example. Consider a Veronese web w on a manifold M1 and a compatible

symplectic pair (ω, ω1) on a manifold M2. Associated to w one has a morphism

`1 : F1 → TM1, where F1 = w(∞); let `2 be the (1, 1)-tensor field on M2

defined by ω1 = ω(`2, ). With the obvious identifications, on M1 ×M2 we

may consider the foliation F = F1 ⊕ TM2, the morphism ` = `1 ⊕ `2 and the

forms ω, ω1 along {0} × TM2. Then (F , `) is a weak Veronese flag, for which

A = {0} × TM2, and (F , `, ω, ω1) a Veronese flag.

Coming back to the general problem, on a real or complex m-manifold M

consider a bihamiltonian structure (Λ,Λ1) such that:

1) (Λ,Λ1) is maximal, that is every (Λ(p),Λ1(p)), p ∈M , is maximal,

2) the rank of (Λ,Λ1) and the dimension of the the symplectic factor at each

point are constant.

Set r = corank(Λ,Λ1) and let 2m′ be the dimension of the symplectic factor.

Since r is the number of Kronecker elementary factors, m + r is even and one

may set m = 2m′+2n−r. Note that, at every point, 2n−r equals the sum of the

dimensions of the Kronecker elementary factors (warning these last dimensions

could depend on the point).

Our next aim is locally to associate a Veronese flag in dimension 2m′+ n to

(Λ,Λ1). For each p ∈ M let A1(p) be the intersection of all vector subspaces

Im(Λ+ tΛ1)(p), t ∈ K, such that rank(Λ+ tΛ1)(p) = m−r. From the algebraic

model follows that dimA1(p) = m− n = 2m′ + n− r. It is not hard to see that

A1 is a foliation, which be called the (primary) axis of (Λ,Λ1).

Moreover, A1 ⊂ ImΛ1 and dim(Im(Λ + tΛ1) + A1) = m − r, t ∈ K. Set

w̃(t) = Im(Λ+tΛ1)+A1, t ∈ K; then w̃ = {w̃(t) | t ∈ K} is a family of foliations

of codimension r whose limit at each point, when t→∞, is ImΛ1.

Let N be the local quotient of M by A1, which is a n-dimensional manifold,

and πN : M → N the canonical projection. Then w̄ = {w̄(t) = (πN )∗w̃(t) | t ∈

K} is a Veronese web on N of codimension r.

The Poisson structure Λ is given by a symplectic form ω̃ defined on ImΛ
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while Λ1 is given by a symplectic form form ω̃1 on ImΛ1. Therefore the re-

stricted 2-forms ω̃|A1
and ω̃1|A1

are closed; besides Ker(ω̃|A1
) = Ker(ω̃1|A1

) =

Λ(A′1, ) = Λ1(A′1, ) whereA′1 is the annihilator ofA1 and dim(Ker(ω̃|A1
)) =

n − r. Thus A2 = Ker(ω̃|A1
) is a foliation of dimension n − r, which will be

called the secondary axis of (Λ,Λ1), and A2 ⊂ A1.

Let P be the local quotient of M by A2 and πP : M → P the canonical

projection; then dimP = 2m′ + n, A1 projects into a 2m′-dimensional foliation

A and ω̃|A1
, ω̃1|A1

in two symplectic forms ω, ω1 on A. Moreover Λ projects

in the Poisson structure defined by A and ω, whereas Λ1 does in the Poisson

structure defined by A and ω1. Let F be the r-codimensional foliation on P

projection of ImΛ1. Obviously the local quotient of P by A is identified in a

natural way to N and π◦πP = πN where π : P → N is the canonical projection.

In short, we have three of the four elements of a Veronese flag on P . Let us

construct the fourth one.

As Λ(A′1, ) = Λ1(A′1, ) = A2 and A′1 contains KerΛ and KerΛ1, the

Poisson structures Λ, Λ1 give rise to two isomorphisms λ̃, λ̃1 from T∗M
A′1

to ImΛ
A2

and ImΛ1

A2
respectively, by setting λ̃([α]) = [Λ(α, )] and λ̃1([α]) = [Λ1(α, )].

Thus ˜̀ = λ̃ ◦ λ̃−1
1 is a monomorphism from ImΛ1

A2
to TM

A2
whose image equals

ImΛ
A2

. By construction ˜̀ is an invariant of (Λ,Λ1); moreover ˜̀ projects into

a morphism ` : F → TP . In turn, a non-elementary calculation shows that

(F , `, ω, ω1) is a Veronese flag.

2. The local product theorem

Consider a bihamiltonian structure (Λ,Λ1) on a real or complex manifold M

of dimension m. The set of all p ∈ M such that rank(Λ,Λ1) is constant about

p is open and dense. For simplicity sake, suppose r = corank(Λ,Λ1) locally

constant by the moment. Since our problem is local, by considering (1−b)Λ+bΛ1

and (1 − b′)Λ + b′Λ1 for suitable scalars b, b′ instead of Λ,Λ1, we may assume

maximal (Λ,Λ1), that is r = corankΛ = corankΛ1 = corank(Λ,Λ1), without

loss of generality.

In turn, it is easily seen that the dimension of A1 and that of the symplectic

factor are locally constant on a dense open set.

Observe that if (Λ,Λ1) decomposes into a product near p, then the dimension

of the symplectic factor has to be constant close to p.
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In short, suppose that on an open set M ′ ⊂M the bihamiltonian structure

is maximal and its rank and the dimension of the symplectic factor are constant.

Then, following section 1, set m = 2m′ + 2n − r where 2m′ is the dimension

of the symplectic factor and consider the Veronese flag (F , `, ω, ω1) on the local

quotient P of M ′ by the secondary axis A2.

Let ϕ̃ = t2m
′

+
∑2m′−1
j=0 h̃jt

j be the characteristic polynomial of the sym-

plectic factor of (Λ,Λ1) on M ′, that is t2m
′
+
∑2m′−1
j=0 h̃j(p)t

j , for each p ∈M ′,

is the characteristic polynomial of the symplectic factor of (Λ(p),Λ1(p)) when

regarded as a couple of (linear) symplectic forms.

On the other hand let ϕ = t2m
′
+
∑2m′−1
j=0 hjt

j be the characteristic polyno-

mial of `|A. By means of the algebraic model of (Λ(p),Λ1(p)) it is not hard to see

that the symplectic factor of (Λ(p),Λ1(p)) is isomorphic to (ω(πP (p)), ω1(πP (p))).

Thus the characteristic polynomial of (`|A)(πP (p)) equals ϕ̃(p), that is locally

h̃j = hj ◦ πP , j = 0, ..., 2m′ − 1, which in particular shows the differentiability

of h̃0, ..., h̃2m′−1.

Proposition 1. The functions h̃0, ..., h̃2m′−1 are in involution both for Λ

and Λ1. Moreover {Λ(dh̃j , )(p)}j=0,...,2m′−1 and {Λ1(dh̃j , )(p)}j=0,...,2m′−1

span the same vector subspace of TpM
′ for any p ∈M ′.

Now assume that (M ′,Λ,Λ1) is diffeomorphic to a product of a Kronecker bi-

hamiltonian structure and a symplectic one (M1,Λ
′,Λ′1)× (M2,Λ

′′,Λ′′1). Let B1

and B2 be the foliations given by the first and second factor respectively. Then

A1 ⊃ B2 and h̃0, ..., h̃2m′−1 are B1-foliate functions; therefore the dimension of

the vector subspace of T ∗qM
′ spanned by dh̃0(q), ..., dh̃2m′−1(q) equals the di-

mension of the vector subspace of A∗1(q) spanned by dh̃0|A1(q), ..., dh̃2m′−1|A1(q)

whenever q ∈ M ′. Thus the foregoing property is necessary for the existence

of a local decomposition into a product of a Kronecker bihamiltonian structure

and a symplectic one.

A point p of M is called regular for (Λ,Λ1) if the three following conditions

hold:

1) The rank (Λ,Λ1) is constant on an open neighbourhood M ′ of this point.

Observe that this first condition allows assuming maximal (Λ,Λ1) by replac-

ing (Λ,Λ1) by (1− b)Λ + bΛ1 and (1− b′)Λ + b′Λ1, for suitable scalars b, b′, and
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shrinking M ′. Then:

2) The dimension of the symplectic factor is constant near p, that is on M ′ by

shrinking this neighbourhood again if necessary.

3) The point πP (p) is regular for `|A.

Obviously there are many choices of scalars b, b′ such that ((1−b)Λ+bΛ1, (1−

b′)Λ+ b′Λ1) is maximal around p, but it is easily checked that conditions 2) and

3) do not depend on them.

Since the set of regular points of `|A is open and dense and the projection

πP is a submersion, the set of regular points of (Λ,Λ1) is dense and open on M ;

it will be named the regular open set.

Theorem 1. Consider a real analytic or holomorphic bihamiltonian struc-

ture (Λ,Λ1) on M and a regular point p. Let ϕ̃ = t2m
′

+
∑2m′−1
j=0 h̃jt

j be the

characteristic polynomial of the symplectic factor of (Λ,Λ1) near p. Assume

that when q is close to p the vector subspace spanned by dh̃0(q), ..., dh̃2m′−1(q)

and that spanned by dh̃0|A1(q), ..., dh̃2m′−1|A1(q) have the same dimension. Then,

around p, (Λ,Λ1) decomposes into a product of a Kronecker bihamiltonian struc-

ture and a symplectic one.

Moreover, if ϕ̃(p) only has real roots then in the C∞ category (Λ,Λ1) locally

decomposes into a product Kronecker-symplectic.

The way for proving this theorem is to show that the Veronese flag (F , `, ω, ω1),

associated to (Λ,Λ1) on the local quotient by the secondary axis, locally decom-

poses into a product. That is to say, showing the existence around any point of a

(1, 1)-tensor fieldG that extends ` and coordinates (x, z) = (x1, ..., xn, z1, ..., z2m′)

such that dx1 = ... = dxn = 0 defines A, G =
∑n
j,k=1 gjk(x)(∂/∂xj) ⊗ dxk +∑2m′

j,k=1 hjk(z)(∂/∂zj) ⊗ dzk and the coefficient functions of ω, ω1 with respect

to dz1|A, ..., dz2m′ |A only depend on z. Then, it suffices to consider, on an open

set of M , the foliation Ker(π∗P (dz1 ∧ ... ∧ dz2m′)) and that spanned by the Λ-

hamiltonians of z1 ◦πP , ..., z2m′ ◦πP , which gives us the required decomposition

into a product.

Note that if a bihamiltonian structure decomposes into a product Kronecker-

symplectic, then its associated Veronese flag does into a product as well.

3. The bihamiltonian structure over a (1, 1)-tensor field and a
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foliation.

Let N be a n-manifold. Recall that on ΛrT ∗N it is defined a r-form R, called

the Liouville r-form, as follows: if v1, ..., vr ∈ Tµ(ΛrT ∗N) then R(v1, ..., vr) =

µ(π∗v1, ..., π∗vr) where π : ΛrT ∗N → N is the canonical projection. In turn

Ω = dR will be named the Liouville (r + 1)-form of ΛrT ∗N . When r = 1,

that is on the cotangent bundle, the Liouville forms will be denoted ρ and ω

respectively.

Given a (1, 1)-tensor field H on N , let ϕH : T ∗N → T ∗N be the morphism

of vector bundles defined by ϕH(τ) = τ ◦ H, that is ϕH(τ)(v) = τ(Hv). Set

ω1 = ϕ∗Hω. Then the formula ω1(X,Y ) = ω(H∗X,Y ) gives rise to a (1, 1)-

tensor field H∗ on T ∗N as manifold, which will be called the prolongation of H

(to the cotangent bundle).

Now suppose thatH is an inversible (1, 1)-tensor field and G a r-codimensional

foliation both of them defined on N . Assume that:

1) α ◦H is closed on G whichever α is a closed 1-form such that Kerα ⊃ G,

2) the restriction of NH to G vanishes.

Let G0 be the ω-orthogonal of the foliation π−1
∗ (HG) = {v ∈ T (T ∗N) | π∗v ∈

HG}, which equals the ω1-orthogonal of the foliation π−1
∗ (G) = {v ∈ T (T ∗N) |

π∗v ∈ G} because ω1 = ω(H∗, ) and H∗ projects in H. Note that G0 is a

symplecticly complete foliation (also called a Libermann foliation) for ω and

ω1. On the other hand the quotient M of T ∗N by G0 is globally defined and

there is a projection π′ : M → N such that π′ ◦ π̃ = π, where π̃ : T ∗N → M

is the canonical projection. In fact, M can be regarded as the quotient of T ∗N

by a vector sub-bundle and π′ : M → N as its quotient vector bundle.

Since G0 is both ω and ω1 symplecticly complete, the Poisson structures Λω

and Λω1 , respectively associated to ω and ω1, project in two Poisson structures

Λ and Λ1 on M .

Proposition 2. The pair (Λ,Λ1) is a bihamiltonian structure.

Examples. 1) On N = Kn, n ≥ 1, consider the foliation given by the closed

1-form α =
∑n
j=1 dxj and the (1, 1)-tensor field H =

∑n
j=1 hj(xj)(∂/∂xj)⊗dxj

where the functions h1, ..., hn never vanish. Then the associated bihamiltonian

structure (Λ,Λ1), defined onM = T ∗(Kn)/G0, has a symplectic factor of positive
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dimension at p ∈M if and only if h̃(π′(p)) = 0 where h̃ =
∏

1≤j<k≤n(hj − hk).

In other words (Λ,Λ1) is Kronecker just on the open set (h̃ ◦ π′)−1(K− {0}).

2) Now on N = Rn − {0}, n ≥ 1, consider the foliation G defined by α =∑n
j=1 x

aj
j dxj , where a1, ..., ar are positive natural numbers, and the (1, 1)-tensor

field H =
∑n
j=1 j(∂/∂xj) ⊗ dxj . Then the associated bihamiltonian structure

(Λ,Λ1), defined on M = T ∗(Rn − {0})/G0, has non-trivial symplectic factor on

the closed set (h ◦ π′)−1(0), where h = x1 · · · xn, and is Kronecker on the open

set (h ◦ π′)−1(R− {0}).

Let φt be the flow of the vector field ξ =
∑n
j=1(aj + 1)−1xj∂/∂xj . As

Lξα = α and LξH = 0, the foliation G and the (1, 1)-tensor field H project

in a foliation G̃ and a (1, 1)-tensor field H̃ respectively, defined on the quotient

manifold Ñ = (Rn−{0})/G where G = {φk | k ∈ Z}. Obviously G̃ and H̃ satisfy

1) and 2), which gives rise to a bihamiltonian structure on M̃ = (T ∗Ñ)/G̃0.

Moreover Ñ is diffeomorphic to S1 × Sn−1.

4. A counter-example.

Here one will apply the construction of the foregoing section to N = R7

endowed with coordinates (x, y) = (x1, x2, x3, y1, y2, y3, y4), the foliation G =

Ker(α1∧α2) where α1 = dx1−dx2 and α2 = x2dx2−dx3, and the (1, 1)-tensor

field

H =
∑3
j=1 aj(∂/∂xj)⊗ dxj +

∑2
j=1[(∂/∂y2j)⊗ dy2j−1 − (∂/∂y2j−1)⊗ dy2j ]

+(∂/∂y1)⊗ dy3 + (∂/∂y2)⊗ dy4

+[(y3g1 − y4g2)(∂/∂y1) + (y3g2 + y4g1)(∂/∂y2)]⊗ dx1

where a1, a2, a3 are non-equal and non-vanishing real numbers and functions

g1, g2 only depend on x.

Now dimG0 = 2, dimM = 12, the secondary axisA2 of (Λ,Λ1) has dimension

one and the quotient P = M/A2, which is globally defined, is a vector bundle

over R7.

Moreover, (Λ,Λ1) defines a G-structure and the characteristic polynomial of

its symplectic factor equals (t2 + 1)4; therefore any point of M is regular and

the hypothesis of theorem 1 on the coefficients of this polynomial automatically

holds.
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A calculation shows that if the Veronese flag on P associated to (Λ,Λ1)

decomposes into a product around some point, then there exists a function ϕ

on some non-empty open set such that

(*) (JX − ıX) · ϕ+ g1 + ıg2 = 0

whereX = ∂/∂x1+∂/∂x2+x2∂/∂x3 and JX = a1∂/∂x1+a2∂/∂x2+a3x2∂/∂x3.

But this equation is equivalent to the Lewy’s example, which allows us to

chose two C∞ functions g1, g2 : R3 → R for which (*) has no solution in any

neighbourhood of any point of R3.

Thus a counter-example to theorem 1 is constructed in the C∞ category.
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