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Liouville integrable systems: generalities

A Liouville integrable Hamiltonian system (IHS) (M, ω, h1, . . . , hn) is a
symplectic 2n-manifold (M, ω) with commuting functions
h1, . . . , hn : M → R whose differentials are almost everywhere
independent. The momentum map F : M → Rn is given by
F(x) := (h1(x), . . . , hn(x)). A point x ∈ M is called a singular (critical)
point of rank r , 0 ≤ r < n, if rk dF(x) = r .

Definition. Let (M, ω, h1, . . . , hn) be an IHS and P ∈ M be a zero-rank
singular point, i.e. dhi (P) = 0 for each i . The point P ∈ M is called
non-degenerate if operators ω−1d2h1, . . . , ω

−1d2hn generate a Cartan
subalgebra of sp(2n,R).

Among other reasons which make this definition important there is a
theorem (Eliasson, Ito, Vey) stating that integrable systems have simple
normal forms in a neighborhood of a non-degenerate singularity.

We present a criterion for non-degeneracy of zero-rank singularities.



A criterion for non-degeneracy
Theorem 1.
Consider an analytic IHS (M, ω, h1, . . . , hn). Let F : M → Rn be the
momentum map and P ∈ M be a zero-rank singular point. Denote by K
the set of all singular points of rank 1 in a neighborhood of P. If the
following conditions hold, then P is non-degenerate:
(a)

∩n
i=1 ker d

2hi (P) = {0}.
(b) The image F(K ∪ {P}) contains n smooth curves γ1, . . . , γn, each
curve having P as its end point or its inner point. The vectors tangent to
γ1, . . . , γn at F(P) are independent in Rn. (Figures 1,2,3 show examples
for n = 2.)

(1) (2) (3)

Figure: Images F(K ∪ {P}) diagrams satisfying condition (b). The diagram
(2) appears in the non-analytic case and (3) only when the zero-rank point is
degenerate (in this situation condition (a) fails). The image of the momentum
map is shaded gray.



Informal explanation of Theorem 1

If P is a non-degenerate zero-rank singular point, then the bifurcation
diagram around F(P) looks (up to a diffeomorphism) in one of the
several standard ways, depending on the type of the singularity.

In physical examples, the converse is usually true: if the bifurcation
diagram around F(P) looks in a standard way (Condition (b)), then P is
non-degenerate. The converse is not true in general, as illustrated by the
following artificial example: M = R4(p1, p2, q2, q2),
ω = dp1 ∧ dq1 + dp2 ∧ dq2, h1 = p41 + q41 , h2 = p42 + q42 .

Theorem 1 says that P will be non-degenerate if we add to Condition (b)
the simple Condition (a) involving d2hi (P) but not the symplectic
structure.



Application to the Manakov top, I

We omit the definition of the 2DoF Manakov top system (aka the
4-dimensional rigid body) here. Its bifurcation diagram (i.e. the F-image
of all singular points) was found by A. Oshemkov [3]. The system
depends on several parameters (moments of inertia and the values of
Casimir functions of the so(4)-bracket).
We deduce the following natural result from Theorem 1.

Proposition 2. Consider the Manakov top system with a given set of
parameters S . If for any sufficiently small change of parameters the
bifurcation diagram of the system remains the same up to a
diffeomorphism on R2, all zero-rank singular points of the system with
parameters S are non-degenerate.



Application to the Manakov top, II

Q

Figure: Three types of generic bifurcation diagrams of the Manakov top. Point
Q is the image of two saddle-saddle singularities; it will be studied further.

Using Theorem 1, Proposition 2 is proven easily, with only minor
computation. Alternatively, it can be proven using the bi-Hamiltonian
structure of the system. On the other hand, in preprint [1], a result
essentially equivalent to Proposition 2 is obtained by rather hard direct
computation. Thus Theorem 1 does simplify computation.



Saddle-saddle singularity of the Manakov top
Proposition 2 describes when non-degenerate singularities appear in the
Manakov top. Now we explicitly describe the singular Liouville foliation
on a neighborhood of the fiber containing non-degenerate saddle-saddle
singularities of the Manakov top.

Proposition 3. Let Q ∈ R2 be the point on the bifurcation diagram of
the Manakov top shown above and V ⊂ R2 be its neighborhood. The
preimage F−1(V ) is fiberwise homeomorphic to the quotient

(C̃2 × C̃2)/(α, α) where C̃2 is the fibered 2-manifold with boundary

shown on the figure below, and α : C̃2 → C̃2 is rotation by π.

Figure: The fibered 2-manifold C̃2



An application to the quantum Manakov top, I

Proposition 3 yields the following result.

Proposition 4. Suppose the parameters of the Manakov top system are
taken such that a saddle-saddle point P is present, and the group of
F-fiberwise symplectomorphisms of the system acts transitively on the
set of connected components of each Liouville fiber. Let V ⊂ R2 be a
neighborhood of Q := F(P) and U := F−1(V ). There is a 1-form θ on
U such that dθ = ω|U .
For h > 0, let Lh be the union of all Liouville tori in U satisfying the
following condition: the values of all action functions (with respect to the
1-form θ) on the torus belong to 2πhZ.
Let D2 ⊂ R2(x , y) be the unit disc. There is a homeomorphism ψ of the
plane which takes the bifurcation diagram to some transversal curves and
for each h ∈ R+ takes F(Lh) to the sublattice of the straight
2πhZ⊕ 2πhZ-lattice shown on the next frame.



An application to the quantum Manakov top, II

Figure: The lattice ψF(Lh) from Proposition 4



An application to the quantum Manakov top, III

Propositions 3 and 4 are an easy application of Fomenko’s theory [2] and
Zung’s theorem. Proposition 3 is interesting in the context of
quantization of the Manakov top.

Suppose ĥ1, ĥ2 are operators obtained by some quantization procedure
applied to the classical integrals of Manakov top. Their joint spectrum
can usually be approximated by the lattice F(Lh) defined above (after a
possible Maslov-type correction). For example, this is true for Toeplitz
quantization on Kähler manifolds, which works for the Manakov top.

So Proposition 3 predicts the qualitative view of the joint spectrum
lattice of the quantum Manakov top.

It completely agrees with the picture of the joint spectrum obtained
through numerical computation by Sinitsyn and Zhilinskii [4] which we
reproduce on the final frame.



The actual spectrum lattice of the quantum Manakov top

Figure: The joint spectrum of the two operators of the quantum Manakov top,
taken from [4]. It agrees with Proposition 4.
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