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Lecture I

References: [Arn73]

Basic objects: M a manifold (smooth, analytic etc.), for example M = Rn; the tangent bundle
τ : TM → M , for example pr1 : Rn × Rn → Rn; the cotangent bundle π : T ∗M → M , for example
pr1 : Rn × (Rn)∗ → Rn, E(M) the set of functions on M (smooth, analytic, etc.)

A vector field v ∈ Γ (TM): a section of the tangent bundle, i.e. a map (smooth, analytic etc.)
v : M → TM such that τ ◦ v = IdM . Local description v(x) = (

∑
i)v

i(x) ∂
∂xi (we will skip the sum

sign - ”Einstein convention”), here x ∈M , (x1, . . . , xn) local coordinates on U ⊂M , { ∂
∂xi} the corre-

sponding basis of the fiber of the tangent bundle, vi ∈ E(U). For example v(x) = (x, v1(x) . . . , vn(x))
(a vector function).

Another point of view: v is a differentiation of the algebra E(M), i.e. an R-linear map v : E(M)→
E(M) with v(fg) = v(f)g + fv(g).

Commutator of vector fields: [, ] : Γ (TM) × Γ (TM) → Γ (TM), [v, w]i(x) = vj(x)∂w
i(x)
∂xj −

wj(x)∂v
i(x)
∂xj .

Another point of view: [v, w]f = (vw − wv)f (commutator of differentiations). Exercise: check
that the commutator of differentiations is a differentiation.

A Lie algebra on a vector space V : a bilinear skew-symmetric operation [, ] : V × V → V
satisfying the Jacobi Identity:

1. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ V , or, equivalently,

2. adx[y, z] = [adxy, z] + [y, adxz] ∀x, y, z ∈ V , where adxy := [x, y], or, equivalently,

3. ad[x,y] = [adx, ady] ∀x, y ∈ V , where the bracket in the RHS denotes the commutator of the
operators.
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The second condition means that adx is a differentiation of the bracket [, ]. The third one has the
following interpretation. A pair (V, [, ]), where V is a vector space and [, ] : V × V → V is a bilinear
operation, is called an algebra. Given algebras (V1, [, ]1) and (V2, [, ]2), we say that a linear map
L : V1 → V2 is a homomorphism of algebras, if L[x, y]1 = [Lx, Ly]2 ∀x, y ∈ V1.

So the third condition means that the map x 7→ adx : V → End(V ) a homomorphism of algebras
(V, [, ]) and (End(V ), [, ]). Note that the last algebra is in fact a Lie algebra. A homomorphism of
Lie algebras (V, [, ])→ (End(W ), [, ]) is called a representation of the Lie algebra (V, [, ]) in the vector
space W (so x 7→ adx is a representation of (V, [, ]) in V ).

Examples:

1. V = End(W ) with commutator, in other words V = Matn×n(R) = gl(n,R), [A,B] := AB−BA.

2. V = sl(n,R) (traceless matrices), V = so(n,R) (skew symmetric matrices), etc.

3. V = Γ (TM) with commutator of vector fields.

Ordinary differential equation on a manifold:

dc

dt
(x) = v(x), (or ẋ = v(x) for short)

here v ∈ Γ (TM) is given, c is unknown. A solution of this equation (or a trajectory of v) with an
initial condition x0 ∈M is a curve c : R→M such that c(0) = x0 and the vector v(x) is tangent to
c at any x ∈ c(R).

A solution always exists locally and is unique: in local coordinates (x1, . . . , xn) we have v =
vi(x) ∂

∂xi and the equation is equivalent to the system of ODE

dci(t)

dt
= vi(c1(t), . . . , cn(t)), i = 1, . . . , n

with the initial condition ci(0) = xi0, i = 1, . . . , n, and we can use the corresponding existence-
uniqueness theorem.

Globally, if supp v := {x ∈M | v(x) 6= 0} is compact (eg. M is compact itself) one can extend
any local solution to a global (in time and space) solution.

Example 1: ”nonextendability in time”: M :=]0, 1[, ẋ = 1.

Example 2: ”nonextendability in space”: M := R, ẋ = x2.

Example 3: ”Winding line on a torus”: M := T2 = R2/Z2, the vector field va,b := a ∂
∂x1 +b ∂

∂x2 ,
where a, b ∈]0,∞[ are fixed, can be projected onto the vector field ṽa,b on T2. Its trajectories are the
projections t→ P (x1 + at, x2 + bt) of the lines t→ (x1 + at, x2 + bt).

Rational case: b/a is a rational number, b = mλ, a = nλ for some λ ∈ R. Then for t := 1/λ we
have (x1 +at, x2 + bt) = (x1 +m,x2 +n) and P (x1 +at, x2 + bt) = P (x1, x2) (the trajectory is closed,
i.e. periodic).

Irrational case: b/a is an irrational number (any trajectory is dense in M).
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A submanifold S of M of codimension r: A subset N ⊂ M such that there exists an atlas
A := {(Uα, ψα)}α∈A, ψα = (ψ1

α, . . . ψ
n
α) : Uα → Rn, on M with N ∩ Uα = {x ∈ Uα | ψ1

α(x) =
0, . . . ψrα(x) = 0} for those α ∈ A for which N ∩ Uα 6= ∅.

Smooth maps and submanifolds: A smooth map F : M1 → M2 is called an immersion if
TmF : TmM1 → TF (m)M2 is injective for any m ∈M1. The image of an injective immersion is called
an immersed submanifold. An injective immersion F is an embedding if F is a homeomorphism onto
F (M1), where F (M1) is endowed with the topology induced from M2.

Remarks: 1. The image N := F (M1) of an embedding is a submanifold in M2 and, vice versa,
given a submanifold N ⊂ M , the inclusion N ↪→ M is an embedding. 2. If N ⊂ M is an immersed
submanifold, then for any x ∈ N there exists an open neighbourhood U of x in M such that the
connected component of N ∩ U containing x is a submanifold in U . Vice versa, . . .

Example of an immersed submanifold, which is not a submanifold: ”The irrational torus
winding” R→ T2.

A foliation F of codimension r on M : A collection F = {Fβ}β∈B of path-connected sets on M
such that there exists an atlas A := {(Uα, ψα)}α∈A on M with the following properties:

1. M =
⋃
β∈B Fβ;

2. Fβ ∩ Fγ = ∅ for any β, γ, β 6= γ;

3. for any α ∈ A and any (c1, . . . , cr) ∈ ψα(Uα) there exists β ∈ B such that the set {x ∈ Uα |
ψ1(x) = c1, . . . ψ

r(x) = cr} coincides with one of the path-connected components of the set
Uα ∩ Fβ if it is nonempty.

By the remark above the sets Fβ are immersed submanifolds.

Example: Collection of the trajectories of the vector field ṽa,b on T2.

A distribution D on M of codimension r: A subbundle of the tangent bundle TM with the
r-codimensional fiber, or in other words a collection of subspaces Dx ⊂ TxM smoothly (analytically)
depending on x ∈ M . Such a distribution is locally spanned by n− r linearly independent (at each
point) vector fields.

Example : The distribution tangent to a foliation: D = TF := {v ∈ TM | v is tangent to F}.

Integrable distribution: A distribution which is tangent to some foliation.

Example: Take a nonvanishing vector field v ∈ Γ (TM) (if it exists) and put Dx = Rv(x). This is
an integrable 1-dimensional distribution tangent to the trajectories of the vector field v.

Involutive distribution: A distribution D such that for any two vector fields X, Y ∈ Γ (TM)
which are tangent to D (i.e. X(x), Y (x) ∈ Dx for any x ∈ M) their commutator [X, Y ] is also
tangent to D (equivalently, locally there exist v1, . . . , vm, vi ∈ Γ (TM), and functions fkij such that
Span{v1, . . . , vm} = D and [vi, vj] = fkijvk; Exercise: prove the equivalence).

The Frobenius theorem (standard): A distribution D is integrable if and only if it is involutive.
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Example of nonintegrable distribution: X = ∂
∂x

+ y ∂
∂z
, Y = ∂

∂y
.

A generalized distribution D on M of codimension r: A collection of subspaces Dx ⊂ TxM
locally spanned by n− r vector fields linearly independent at least at one point (but not necessarily
linearly independent at other points).

A generalized foliation F on M : . . .

Example of a generalized foliation which is not a foliation: The trajectories of a vector field
x1 ∂

∂x1 + x2 ∂
∂x2 .

The generalized Frobenius theorem (Nagano [Nag66]): An analytic generalized distribution
D is integrable if and only if it is involutive, i.e. for any two vector fields X, Y ∈ Γ (TM) which are
tangent to D (i.e. X(x), Y (x) ∈ Dx for any x ∈M) their commutator [X, Y ] is also tangent to D.

An example of smooth involutive nonintegrable distribution: Let ϕ(x) be a smooth function
on R such that ϕ(x) ≡ 0 for x 6 0 and ϕ(x) > 0 for x > 0. Take X = ∂

∂x
, Y = ϕ ∂

∂y
on R2. Then

[X, Y ] := ∂ϕ
∂x

∂
∂y

can be expressed as a linear combination of X, Y . But it is nonintegrable: look at its
”leaves”.

Lecture II

References: [dSW99, Arn89]

A bivector field on M : A section (smooth, analytic) η of the second exterior power of the tangent
bundle

∧2 TM . Locally η = ηij(x) ∂
∂xi ∧ ∂

∂xj , ηij(x) being a skew-symmetric matrix depending on
x ∈M .

A covector field on M (differential 1-form): A section γ of the bundle T ∗M . Locally γ =
γi(x)dxi.

A differential 2-form on M : A section ω of the second exterior power of the cotangent bundle∧2 T ∗M . Locally ω = ωij(x)dxi ∧ dxj.

Bivector fields and 2-forms as morphisms: Let η ∈ Γ (
∧2 TM) and γ ∈ Γ (T ∗M). The

contraction γy η =: η(γ) (in the first index) is a vector field defined by v = vj(x) ∂
∂xj , v

j(x) :=
γi(x)ηij(x). Since this operation is pointwise it defines a morphism of bundles η] : T ∗M → TM , i.e
a smooth map such that the following diagram is commutative

T ∗M
η]

−−−→ TM

τ

y yπ
M M

and the induced mappings η]x : T ∗xM → TxM are linear for any x ∈ M . Note that it is skew-
symmetric, i.e. (η])∗ = −η]. Conversely, given such a morphism, we can construct a bivector field.

Analogously, a differential 2-form ω defines a skew-symmetric morphism ω[ : TM → T ∗M .

A symplectic form on M : A differential 2-form (2-form for short) ω on M such that
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1. ω is nondegenerate, i.e. ω[ is an isomorphism of bundles, or, equivalently, ωij(x) is a nonde-
generate matrix for any x in some (consequently in any) local coordinate system;

2. dω = 0.

A nondegenerate Poisson structure on M : A bivector field (bivector for short) η such that
η] : T ∗M → TM is inverse to ω[ : TM → T ∗M for some symplectic form ω.

The Poisson bracket on E(M): Given a bivector field η : T ∗M → TM (not necessarily Poisson),
put {f, g} := η(df)g, f, g ∈ E(M). (From now on we will often skip ] and [ indices.) Then {, } is a
bilinear skew-symmetric operation on E(M). We say that η(f) := η(df) is a hamiltonian vector field
corresponding to the function f .

Proposition. Let η be a nondegenerate bivector. Then it is Poisson if and only if {, } satisfies the
Jacobi identity,

∑
c.p. f,g,h{{f, g}, h} = 0. �

Proof Put ω := η−1, i.e. ω(η(α), v) = α(v) for any vector field v and 1-form α. Then
η(f)ω(η(g), η(h)) = η(f)(dg(η(h))) = η(f)(η(h)g) = η(f){h, g} = {f, {h, g}} = −{f, {g, h}} and
ω([η(f), η(g)], η(h)) = −ω(η(h), [η(f), η(g)]) = −dh([η(f), η(g)]) = −[η(f), η(g)]h = −η(f)η(g)h +
η(g)η(f)h = −η(f){g, h} + η(g){f, h} = −{f, {g, h}} + {g, {f, h}}. Thus dω(η(f), η(g), η(h)) =∑

c.p. f,g,h η(f)ω(η(g), η(h)) − ω([η(f), η(g)], η(h)) = −
∑

c.p. f,g,h{g, {f, h}} (we use the Cartan for-
mula (dω)(X, Y, Z) =

∑
c.p.X,Y,Z Xω(Y, Z) − ω([X, Y ], Z)). So, if dω = 0, then {, } satisfies the

Jacobi identity.

Conversely, if the JI holds, dω vanishes on all hamiltonian vector fields. To finish the proof it
remains to note that the hamiltonian vector fields span TxM at any x ∈M . Indeed, it is enough to
take η(xi), where (xi) are local coordinates.

Example: the canonical symplectic structure on the cotangent bundle T ∗Q: Let πQ :
T ∗Q → Q be a cotangent bundle to a manifold Q. There is a canonical differential 1-form λ ∈
Γ (T ∗M),M := T ∗Q determined uniquely by the following condition: for any α ∈ Γ (T ∗Q), the
following equality holds α∗λ = α, here α in the LHS is regarded as a map α : Q → T ∗Q. We
call λ the Liouville 1-form. If (U, q1, . . . , qn) is a local chart on Q, the 1-forms dq1, . . . , dqn form a
basis of the vector space T ∗xQ, x ∈ U , and define the chart (π−1

Q (U), q1, . . . , qn, p1, . . . , pn). In these
coordinates λ = pidq

i. Indeed, α : (q1, . . . , qn) 7→ (q1, . . . , qn, α1(q), . . . , αn(q)), where α = αi(q)dq
i.

Thus α∗λ = αi(q)dq
i = α.

The canonical symplectic form ω on M is given by ω := dλ, or, locally, ω = dpi ∧ dqi.

Hamiltonian differential equation on a symplectic manifold (M,ω): The ODE related to a
hamiltonian vector field η(f), f ∈ E(M), here η = ω−1. In the context of the example above (in the
canonical coordinates (q, p)): η = − ∂

∂pi
∧ ∂

∂qi , η(H) = ∂H
∂qi

∂
∂pi
− ∂H

∂pi

∂
∂qi , the corresponding equations

read:

q̇i = −∂H(q, p)

∂pi
, ṗi =

∂H(q, p)

∂qi
.

A Poisson structure on M : A bivector η : T ∗M → TM (not necessarily nondegenerate) such
that the corresponding bracket {, } on E(M) satisfies the Jacobi identity (JI for short).
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Consider the Lie algebra (E(M), {, }) on a Poisson manifold. The corresponding adf -operator,
f ∈ E(M), coincides with η(f) : E(M)→ E(M).

The characteristic (generalized) distribution of a Poisson structure η : T ∗M → TM :
Dη := im η (locally generated by the hamiltonian vector fields η(x1), . . . , η(xn), where (x1, . . . , xn)
are some local coordinates).

By the third form of the JI the map f 7→ η(f), (E(M), {, }) → (Γ (TM), [, ]) is a homomor-
phism of Lie algebras, here [, ] is the commutator of vector fields. This implies involutivity of
Dη: [η(xi), η(xj)] = η({xi, xj}) = η(ηij(x)), where η = ηij(x) ∂

∂xi ∧ ∂
∂xj . On the other hand,

η(f) = ηij(x) ∂f
∂xi

∂
∂xj = ∂f

∂xiη(xi) for any f . In particular, [η(xi), η(xj)] is a linear combination (with
smooth coefficients) of η(x1), . . . , η(xn).

Theorem: The characteristic distribution Dη is integrable (we call the corresponding foliation char-
acteristic or symplectic).

Proof In analytic category this follows from the involutivity of D by the generalized Frobenius
theorem. In the smooth case this is also true, but the proof is more complicated, so we skip it. �

Digression on linear algebra of bivectors: Let V be a vector space and e a bivector on V . Then
e can be treated as: 1) an element e ∈

∧2 V ; 2) a linear skew-symmetric map e] : V ∗ → V ; 3) a
bilinear form ẽ on V ∗.

Proposition. Let W := im e] ⊂ V . Then there exists a correctly defined bivector e|W ∈
∧2W ,

called the restriction of e to W . Moreover, the restriction e|W is nondegenerate, i.e. e|]W : W ∗ → W
is an isomorphism.

Proof I. A theorem from linear algebra says that there exists a basis v1, . . . , vn of V such that
e = v1 ∧ v2 + · · · + v2k−1 ∧ v2k (the number 2k is equal to dimW and is called the rank of e). It is
easy to see that v1, . . . , v2k span W . �

Proof II. e is skew-symmetric, i.e. (e])∗ = −e]. This implies ker e] = (im e])⊥, where (·)⊥ stands for
the annihilator of (·). So the natural isomorphism ê : V ∗/ ker e] → im e] = W induced by e] can
regarded as a map from W ∗ ∼= V ∗/(W⊥) to W ⊂ V . The map ê being skew-symmetric induces the
element of

∧2W , which we denote by e|W . �

Proof III. Let ω be a skew-symmetric bilinear form on a vector space L. Put kerω := {x ∈ L |
ω(x, y) = 0 ∀y ∈ L}. The form is called nondegenerate if kerω = {0}.

Any ω induces a nondegenerate skew-symmetric bilinear form on the vector space L/ kerω.

Treating e as a skew-symmetric bilinear form ẽ on V ∗ we have ker ẽ = ker e]. The restriction e|W
treated as a skew-symmetric bilinear form on W ∗ ∼= V ∗/ ker ẽ is the above mentioned nondegenerate
form induced from ẽ. �

Symplectic leaves of a Poisson structure η on M : These are the leaves of the characteristic
foliation Dη. Since Dη,x = im η]x for any x ∈ M , the bivector η admits a restriction η|S to any
symplectic leaf S ⊂ M , which is a nondegenerate bivector on S. Moreover, since any hamiltonian
vector field η(f) is tangent to S at points of S, the value {f, g}(x) = (η(f)g)(x), x ∈ S, depends only
of g|S and by the skew-symmetry the same is true with respect to f . In other words, {f |S, g|S}η|S =
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({f, g}η)|S for any f, g ∈ E(M) and the operation {, }η|S satisfies the JI, hence η|S is a nondegenerate
Poisson structure on S. This explains the term ”symplectic leaf” ((η|S)−1 is a symplectic form).

Example 1: Let M := R2, η = x1 ∂
∂x1 ∧ ∂

∂x2 . On the open set U := {x1 6= 0} the form (η|U)−1 =
−(1/x1)dx1 ∧ dx2 is symplectic. Thus the JI holds for {, }η on U and by continuity it holds also on
the whole M . The symplectic leaves are U and all the points on the line {x1 = 0}.

Example 2: Let M := R3, η = ∂
∂x1 ∧ ∂

∂x2 . On each plane Pc := {x3 = c} the form (η|Pc)
−1 =

−dx1 ∧ dx2 is symplectic. The JI holds for {, }η on Pc for any c ∈ R. Since Pc sweep the whole space
M as c runs through R, the JI holds for {, }η globally. The symplectic leaves are the planes Pc.

Example 3: Let M := R3, η = x1 ∂
∂x2 ∧ ∂

∂x3 + x2 ∂
∂x3 ∧ ∂

∂x1 + x3 ∂
∂x1 ∧ ∂

∂x2 (we will prove that this is a
Poisson bivector later). The symplectic leaves are . . .

Example 4: Let M = T2 × R, let y be a coordinate on the second component. Put η = ṽa,b ∧ ∂
∂y

,
where ṽa,b is the generator of winding line. η is Poisson because locally it looks like the bivector from
Example 2. If b/a is irrational, the symplectic leaves (which are two-dimensional) are dense in M .

Casimir functions of a Poisson structure η on M : Let U ⊂ M be an open set. We say
that f ∈ E(U) is a Casimir function if η(f) ≡ 0 on U . In particular, since {f, g} = η(f)g on U
the Casimir functions constitute the centre of the Lie algebra (E(U), {, }|U). The space of Casimir
functions over U will be denoted by Cη(U).

Proposition. The Casimir functions are constant on the leaves of the symplectic foliation.

Proof We have η(f)g = −η(g)f = 0 for any f ∈ Cη(U), g ∈ E(U). So, since η(g) span the
characteristic distribution, f is constant along its leaves. �

Example 1’: Cη(M) = R, the space of constant functions.

Example 2’: Cη(M) = Fun(x3), the space of functions functionally generated by x3.

Example 3’: Cη(M) = Fun((x1)2 + (x2)2 + (x3)2). Hence the symplectic leaves are the concentric
spheres and the point {(0, 0, 0)}.

Example 4’: If b/a is irrational Cη(M) = R. However, for sufficiently small U the space Cη(U) will
be functionally generated by one nonconstant function. So ”local Casimirs” are not obtained as the
restriction of the ”global Casimirs”.

Lie–Poisson structures, Definition I: Let (g, [, ]) be a finite-dimensional Lie algebra, g∗ its dual
space (space of linear functionals on g). Given f, g ∈ E(g∗) define {f, g}g(x) := 〈x, [df |x, dg|x]〉, x ∈ g∗.
Here we identify T ∗xg

∗ with g, 〈, 〉 stands for the canonical pairing between vectors and covectors.

Lie–Poisson structures, Definition II: Let (g, [, ]) be a finite-dimensional Lie algebra, e1, . . . , en ∈
g its basis, x1 = e1, . . . , xn = en these vectors regarded as linear functions on g∗ (in particular
x1, . . . , xn are linear coordinates on g∗). Let [ei, ej] = ckijek (ckij are called the structure constants

corresponding to the basis e1, . . . , en). Put ηg := ckijxk
∂
∂xi
∧ ∂

∂xj
.

Proposition. The bivector corresponding to the bracket {, }g coincides with ηg.
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Proof Exercise: Prove that, given {, } : E(M)×E(M)→ E(M), a bilinear skew-symmetric operation
being a differentiation with respect to each argument, there exists a bivector η ∈ Γ (

⊗2 TM) such
that {f, g} = η(df, dg).

Let η = ηij(x) ∂
∂xi
∧ ∂

∂xj
be the bivector corresponding to {, }g. Take f := xi, g := xj, then

{f, g}(x) = ηij(x). On the other hand, by Definition I, {f, g}(x) = 〈x, [xi, xj]〉 = ckijxk. �

Exercise: 1) Let η ∈ Γ (
∧2 TM), in local coordinates η = ηij(x) ∂

∂xi
∧ ∂

∂xj
. Show that the JI for

{, }, {f, g} = ηij(x) ∂f
∂xi

∂g
∂xj

holds if and only if the expression

[η, η]ijkS :=
∑

c.p. i,j,k

ηir(x)
∂

∂xr
ηjk(x)

vanishes for all i, j, k ∈ {1, . . . , n}. 2) Show that, given η, ζ ∈ Γ (
∧2 TM), η = ηij(x) ∂

∂xi
∧ ∂

∂xj
, ζ =

ζ ij(x) ∂
∂xi
∧ ∂

∂xj
, the expression

[η, ζ]ijkS :=
1

2

∑
c.p. i,j,k

ηir(x)
∂

∂xr
ζjk(x) + ζ ir(x)

∂

∂xr
ηjk(x)

is a local representation of a trivector on M (called the Schouten bracket of η and ζ).

Proof of the Jacobi identity for the Lie–Poisson structure: [ηg, ηg]
ijk
S =

∑
c.p. i,j,k c

l
irxlc

r
jk.

The last expression vanishes for all i, j, k if and only if
∑

c.p. i,j,k c
l
irc

r
jk = 0 for all l, i, j, k, which is

equivalent to the JI for [, ]. �

An action of a Lie algebra g on a manifold: A homomorphism of Lie algebras ρ : (g, [, ]) →
(Γ (TM), [, ]) (in the target space [, ] stands for the commutator of vector fields) is called a (right)
action of g on M (a left action corresponds to an antihomomorphism, i.e. a map ρ : (g, [, ]) →
(Γ (TM), [, ]) such that ρ([v, w]) = −[ρ(v), ρ(w)], v, w ∈ g).

Orbits of an action ρ : (g, [, ])→ (Γ (TM), [, ]): Put Dx := {ρ(v)|x | v ∈ g}, x ∈M .

Proposition. Let g be finite-dimensional. Then the generalized distribution D := {Dx}x∈M is
integrable.

Proof The distribution D is involutive: [ρ(v), ρ(w)] = ρ([v, w]). Thus in the analytic category the
proof follows from the generalized Frobenius theorem. We skip the proof in the smooth case (roughly
it consists in integrating the action of the Lie algebra to a local action of the corresponding Lie group).
�

The leaves of the corresponding generalized foliation are called the orbits of the action ρ. If the
Lie algebra g is finite-dimensional, the action can be ”integrated” to a local action of a Lie group G
such that g is its Lie algebra. Then the orbits of the Lie algebra action and of the Lie group action
coincide.

Linear representations and actions: Let V be a vector space and A ∈ End(V ) a linear operator.
It induces a uniquely defined vector field Ã on V given by x 7→ (x,Ax) : V → V × V ∼= TV . If

8



e1, . . . , en is a basis of V , x1, . . . , xn the dual basis of V ∗ (i.e. the coordinates on V ) and Aei = Ajiej,
we have Ã = Ajix

i ∂
∂xj .

Exercise: The map A 7→ Ã : End(V ) → Γ (TV ) is an antihomorphism of Lie algebras, i.e. a left
action of the Lie algebra End(V ) on V .

Let L : (g, [, ])→ (End(V ), [, ]) be a representation of a Lie algebra g in a vector space V . Then

the map L̃ : g → Γ (TM), L̃(x) := L̃(x) is a left action of g on the manifold V . Note, that the dual
representation L∗ : g→ End(V ∗) given by L∗(v) := (L(v))∗ is an antihomomorphism, hence the map

L̃∗ : g→ Γ (TM), L̃∗(v) := ˜(L(v))∗ is a right action of g on V .

The adjoint and coadjoint actions: Let (g, [, ]) be a Lie algebra. The homomorphism v 7→ adv :
g → End(g), where advw := [v, w], gives the adjoint representation (of g on g). The corresponding

(left) action v 7→ ãdv : g→ Γ (Tg) is also called adjoint. The homomorphism v 7→ ad∗v : g→ End(g∗),

where ad∗v is the transposed operator to adv, and the corresponding (right) action v 7→ ãd∗v : g →
Γ (Tg∗) are called the coadjoint (anti)representation and action, respectively.

The symplectic leaves of the Lie-Poisson structure ηg on g∗ coincide with the orbits of the

coadjoint action : We claim that ãd∗v = ηg(v
′), where v′ denotes the linear function on g∗ defined

by an element v ∈ g. Indeed, let v = vjej, then v′ = vjxj. Here x1, . . . , xn are the elements e1, . . . , en

regarded as linear functions on g∗. Then advei = vjckjiek, ad∗vx
i = vjcijkx

k, hence ãd∗v = vjcijkxi
∂
∂xk

.

The last expression obviously coincides with ηg(v
′). �

An invariant symmetric bilinear form on (g, [, ]): A symmetric bilinear form (, ) : g × g → R
satisfying the equality (adxy, z) = −(y, adxz) for any x, y, z ∈ g.

Proposition. Let (, ) be a nondegenerate invariant symmetric bilinear form on g. Identify g with
g∗ by means of the map v 7→ (v, ·). Then the adjoint orbits become coadjoint ones under this
identification.

Proof Indeed, if A : g → g is a linear operator the transposed operator A∗ : g∗ → g∗ becomes the
adjoint one under this identification: (A∗y, z) = (y, Az) for any y, z ∈ g. Thus ad∗x becomes −adx.
�

Notations (for the Lie algebras): gl(n,R) := {n × n − matrices with real entries}, sl(n,R) :=
{x ∈ gl(n,R) | Tr(x) = 0}, so(n,R) := {x ∈ gl(n,R) | x = −xT}

The sets above are Lie algebras with respect to the commutator of matrices.

Notations (for the Lie Groups): GL(n,R) := {X ∈ gl(n,R) | detX 6= 0}, SL(n,R) := {X ∈
gl(n,R) | detX = 1}, SO(n,R) := {X ∈ gl(n,R) | XXT = In}. All these sets are groups with
respect to the matrix multiplication. It is easy to see that if x ∈ g, where g is one of the Lie algebras
above, then exp(x) ∈ G, where G is the corresponding Lie group. Also g = TIG.

The Lie algebras from Examples 1-4, below, have an invariant nondegenerate symmetric form
(x, y) = Tr(xy) by means of which we can make an identification g ∼= g∗. The coadjoint orbits are
identified with the adjoint ones, which can be described as the orbits of the corresponding Lie group
with respect to the conjugation of matrices: {XxX−1 | X ∈ G}, x ∈ g.
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Example 1: g := gl(n,R), Cηg(g) = Fun(Tr(x),Tr(x2), . . . ,Tr(xn)).

Example 2: g := sl(n,R), Cηg(g) = Fun(Tr(x2), . . . ,Tr(xn)). In particular, for n = 2 we have
a basis e1 := e11 − e22, e2 := e12, e2 := e21 and the commutation relations [e1, e2] = 2e2, [e1, e3] =
−2e3, [e2, e3] = e1. Hence ηg = x1

∂
∂x2
∧ ∂

∂x3
+ 2x2

∂
∂x1
∧ ∂

∂x2
− 2x3

∂
∂x1
∧ ∂

∂x3
. The Casimir function

Tr(x2) reads as x2
1/2 + 2x2x3. The symplectic leaves are the 1-sheet hyperboloids, sheets of 2-sheet

hyperboloids, two sheets of the cone (without zero) and the point 0.

Example 3: g := so(2n,R), Cηg(g) = Fun(Tr(x2),Tr(x4) . . . ,Tr(x2n−2),Pf(x)).

Example 4: g := so(2n+ 1,R), Cηg(g) = Fun(Tr(x2),Tr(x4) . . . ,Tr(x2n)).

Example 5 (the Heisenberg algebra): g := R3, [e1, e2] = e3, here e1, e2, e3 is the standard basis
of R3. We have ηg = x3

∂
∂x1
∧ ∂

∂x2
, Cηg(g∗) = Fun(x3), so the coadjoint orbits consist of the planes

{x3 = c}, c 6= 0 and of the points of the plane {x3 = 0}. The adjoint orbits are generated by the
vector fields ckijx

i ∂
∂xk , where {xi} is the basis dual to {xi}, i. e. by x1 ∂

∂x3 , x
2 ∂
∂x3 , so they are the lines

parallel to the x3-axis and the points of this axis.

The Arnold–Liouville theorem: Let (M,ω) be symplectic, dimM = 2n. Assume a hamiltonian
vector field v(H) admits n functionally independent integrals g1 = H, g2, . . . , gn in involution. Then

1. if the common level sets Mc := {x ∈ M | gi = ci, i = 1, . . . , n} of these integrals are compact
and connected, they are diffeomorphic to (n-dimensional) tori Tn = {(ϕ1, . . . , ϕn)mod2π};

2. the restriction of the initial hamiltonian equation to Tn gives an almost periodic motion on Tn,
i.e. in the ”angle coordinates” ϕ the equation has the form

d−→ϕ
dt

= −→a ,

here −→a = (a1, . . . , an) is a constant vector depending only on the level;

3. the initial equation can be integrated in ”quadratures”, i.e. the solutions can be obtained by
means of a finite number of algebraic operations and operations of taking integral.

The proof of this theorem essentially breaks into two parts. The first shows that a compact n-
dimensional manifold with n commuting nonvanishing vector fields v1, . . . , vn (in our case vi = η(gi))
is diffeomorphic to Tn.

The second builds special coordinates on M , the ”action-angle” coordinates. The ”angles”
ϕ1, . . . , ϕn are defined in the fiest part of the proof for a fixed level set Mc, but it turns out that they
smoothly depend on c. The ”action” coordinates I1, . . . , In depend only on g1, . . . , gn and satisfy
ω = dI i ∧ dϕi (i.e. (ϕ, I) are canonical or Darboux coordinates). The initial equations in these
coordinates are of the form

d
−→
I

dt
= 0,

d−→ϕ
dt

= −→a (I).

Due to the fact that (I, ϕ)-coordinates are canonical, we get −→a (I) = − ∂H

∂
−→
I
, ∂H
∂
−→ϕ = 0. Thus, knowing

the ”action-angle” coordinates, we can easily calculate the vector of ”frequences”−→a and the solutions:
−→ϕ = −→ϕ0 + t−→a .
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Example (harmonic oscillator I): Let M = R2, H = (1/2)(p2+q2), ω = dp∧dq. Then in the polar
coordinates q = r cosϕ, p = r sinϕ we have dp ∧ dq = − sinϕdr ∧ r sinϕdϕ + cosϕrdϕ ∧ cosϕdr =
−rdr ∧ dϕ = d(−r2/2) ∧ dϕ. Hence I = −H, a1 = 1, the solution is ϕ(t) = ϕ(0) + t, i.e.

t 7→ (R cos(ϕ(0) + t), R sin(ϕ(0) + t)).

Example (harmonic oscillator II): Let M = R2, H = (1/2)(a2p2 + b2q2), ω = dp ∧ dq. The
hamiltonian vector field is η(H) = −a2p∂

∂q
+ b2q ∂

∂p
, here η = ω−1 = − ∂

∂p
∧ ∂

∂q
. The level sets

Mc = {(q, p) | H(q, p) = c} are ellipses {(q, p) | q2/(2c/b2) + q2/(2c/a2) = 1} with the semiaxes√
2c/b,

√
2c/a. Note that the standard parametrization of the ellipse, ϕ 7→ (

√
2c/b cosϕ,

√
2c/a sinϕ)

is not a trajectory of η(H)

The recipe gives I(c) = 1
2π

∫
Mc
pdq = 1

2π

∫
Mc

ω = − c
ab

, which up to − 1
2π

is the area of the figure

M c := {(q, p) | q2/(2c/b2) + q2/(2c/a2) 6 1} bounded by the ellipse. From this we conclude that
H = −abI and that the solution of the hamiltonian system

q̇ = −a2p, ṗ = b2q

is given by H = c, ϕ(t) = ϕ(0)− t∂H
∂I

= ϕ(0) + tab or, in other words, by

t 7→ ((
√

2c/b) cos(t0 + tab), (
√

2c/a) sin(t0 + tab)).

Example (harmonic oscillator III): Let M = R4, H = (1/2)(p2
1 + p2

2 + q2
1 + q2

2), ω = dp ∧ dq.
The hamiltonian vector field is η(H) = −p1

∂
∂q1
− p2

∂
∂q2

+ q1
∂
∂p1

+ q2
∂
∂p2

. Obviously η(H)f = 0 for
f := q1q2 + p1p2 so this is a Liouville–Arnold integrable system.

Lecture III

References: [Mag78, GZ89, Bol91]

A Poisson pencil on M : Let a pair (η1, η2) of linearly independent bivectors on a manifold M be
given. Assume ηt := t1η1 + t2η2 is a Poisson structure for any t = (t1, t2) ∈ R2. We say that the
Poisson structures η1, η2 are compatible (or form a bihamiltonian structure or a Poisson pair) and
that the whole family Θ := {ηt}t∈R2 is a Poisson pencil.

Exercise: Show that the following conditions are equivalent:

1. ηt is Poisson, i.e. [ηt, ηt]S = 0, for any t ∈ R2 (here [, ]S is the Schouten bracket);

2. [ηt, ηt]S = 0 for any three pairwise nonproportional values of t ∈ R2;

3. [η1, η1]S = 0, [η1, η2]S = 0, [η2, η2]S = 0.

Example 1: Let η1, η2 be bivectors on Rn with constant coefficients. Then they form a Poisson pair
(recall that, given a bivector η = ηij(x) ∂

∂xi
∧ ∂

∂xj
, we have [η, η]ijkS :=

∑
c.p. i,j,k η

ir(x) ∂
∂xr η

jk(x)).
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Example 2: Let g be a Lie algebra and ηg the Lie–Poisson structure on g∗. Let c : g × g → R be
a 2-cocycle on g, i.e. c is skew-symmetric and

∑
c.p. v,w,u c([v, w], u) = 0 for any v, w, u ∈ g. Then

c ∈ (g ∧ g)∗ ∼= g∗ ∧ g∗ can be regarded as a bivector on g∗ with constant coefficients. It turns out
that (η1, η2), where η1 := ηg, η2 := c, is a Poisson pair.

Indeed, it is easy to see that the bracket [(v, α), (w, β)]′ := ([v, w], c(v, w)) defines a Lie algebra
structure on g′ := g × R (Exercise: check this). The R-component lies in the centre of g′, we say
that g′ is a central extension of g. The affine subspaces g∗x0

:= g∗ × x0 ⊂ (g′)∗ = g∗ × R are Poisson
submanifolds of the Poisson manifold ((g′)∗, ηg′). The restriction ηg′|g∗x0

coincides with η1 + x0η2, i.e.

the last bivector is Poisson at least for three different values of x0. We conclude that (η1, η2) is a
Poisson pair.

In coordinates this looks as follows. Let e1, . . . , en be a basis of g and [ei, ej] = ckijek, c(ei, ej) =
cij, i, j, k = 1, . . . , n, for some constants ckij, cij ∈ R. Put η′0 := (0, 1), η′i := (ηi, 0) ∈ g′, i = 1, . . . , n,
and let x′0, . . . , x

′
n denote the same elements regarded as coordinates on (g′)∗. Then ηg′ = (ckijx

′
k +

x′0cij)
∂
∂x′i
∧ ∂
∂x′j

and ηt = (t1c
k
ijxk + t2cij)

∂
∂xi
∧ ∂
∂xj

. Here x1, . . . , xn are coordinates on g∗ corresponding

to e1, . . . , en.

Example 3: In a particular case when the cocycle c is trivial, i.e. c(v, w) = a([v, w]) for some a ∈ g∗

we get a Poisson pencil {ηt}, ηt := (t1c
k
ijxk + t2c

k
ijak)

∂
∂xi
∧ ∂

∂xj
, here a1, . . . , an are coordinates of a

in the dual basis e1, . . . , en of g∗. In the corresponding Poisson pair (η1, η2) the first bivector is the
Lie-Poisson one, ηg, and the second one is ηg(a), the Lie-Poisson bivector ”frozen” at a.

Example 4: Let g : gl(n,R) and A ∈ g. Put [x, y]A := xAy − yAx. It is easy to see that [, ]A is
a Lie bracket on g for any A (Exercise: check this). In particular, for a fixed A ∈ g the bracket
[, ]t := t1[, ] + t2[, ]A = [, ]t1I+t2A is a Lie bracket for any t ∈ R2 (any family of Lie brackets linearly
spanned by two fixed brackets will be called a Lie pencil). Denote gt := (g, [, ]t). The Lie–Poisson
structures ηgt form a Poisson pencil on g∗.

We get a generalization of this example taking g := so(n,R) and A a symmetric n× n-matrix.

I mechanism of constructing functions in involution (the Magri–Lenard scheme): Let
(η1, η2) be a pair of Poisson structures (not necessarily compatible). Assume we can found a sequence
of functions H0, H1, . . . ∈ E(M) satisfying

η1(H0) = η2(H1)

η1(H1) = η2(H2)
... . (1)

Proposition. For any indices i, j the following equality holds:

{Hi, Hj}η1 = {Hi+1, Hj−1}η1 .

Proof η1(Hi)Hj = η2(Hi+1)Hj = −η2(Hj)Hi+1 = −η1(Hj−1)Hi+1 = η1(Hi+1)Hj−1 �

Now assume i < j. If j − i = 2k, we can apply the proposition k times and get {Hi, Hj}η1 =
{Hi+k, Hj−k}η1 = {Hi+k, Hi+k}η1 = 0. If j − i = 2k + 1, we get {Hi, Hj}η1 = {Hi+k, Hj−k}η1 =
{Hi+k, Hi+k+1}η1 = η1(Hi+k)Hi+k+1 = η2(Hi+k+1)Hi+k+1 = 0. Hence the sequence H0, H1, . . . is a
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family of first integrals in involution for any of vector fields vi := η1(Hi), i = 0, 1, . . . Note that all
these vector fields are ”bihamiltonian”, i.e. hamiltonian with respect to both the Poisson structures
η1, η2.

In general it is hard to find the sequences of functions H0, H1, . . . with the required proper-
ties. However, if we assume additionally that (η1, η2) is a Poisson pair, there are some cases, when
such sequences naturally appear. For instance, assume that all the bivectors ηt := t1η1 + t2η2 of
the corresponding Poisson pencil are degenerate. Let ηλ := λη1 + η2, λ := t1/t2, and let fλ be a
Casimir function of ηλ. It turns out that fλ depends smoothly, let fλ = f0 + λf1 + λ2f2 + · · ·
be the corresponding Tailor expansion. Then we deduce from the equality ηλ(fλ) = 0 that 0 =
η2(f0), η1(f0) + η2(f1), η1(f1) + η2(f2), . . . (coefficients of different powers of λ). Thus we can put
H0 := f0, H1 := −f1, H2 := f2, . . . Note that such a Magri–Lenard chain starts from a Casimir
function of η2. If gλ = g0 + λg1 + · · · is another Casimir function of ηλ, we get another sequence of
functions in involution. A question arises, is it true that {fi, gj}ηk

= 0? Another important question
concerns the completeness of the obtained family of functions.

II mechanism of constructing functions in involution (based on the Casimir functions of
a Poisson pencil): Let {ηt}t∈R2 be a Poisson pencil on M . Denote by Ct(M) the space of Casimir
functions of ηt.

Proposition. Let t′, t′′ ∈ R2 be linearly independent and let f ∈ Ct′(M), g ∈ Ct′′(M). Then

{f, g}ηt = 0

for any t ∈ R2.

Proof Indeed for any t ∈ R2 there exist c′, c′′ ∈ R such that t = c′t′+ c′′t′′. Then {f, g}ηt = ηt(f)g =
(c′ηt

′
+ c′′ηt

′′
)(f)g = c′′ηt

′′
(f)g = −c′′ηt′′(g)f = 0. �

It is not clear from this fact whether {f, g}ηt = 0 if f, g are Casimir functions of the same bivector
ηt
′
. We will discuss this question in the next lecture.

The Jordan–Kronecker decomposition of a pair of bivectors: A bivector b on a vector space
V is an element of

∧2 V . We will view a bivector b sometimes as a skew-symmetric map V ∗ → V
(then its value at x ∈ V ∗ will be denoted by b(x)) and sometimes as a skew-symmetric bilinear form
on V ∗ (then its value at x, y ∈ V ∗ will be denoted by b(x, y)). In particular, b(x, y) = 〈b(x), y〉.

Theorem. (Gelfand–Zakharevich, 1989) Given a finite-dimensional vector space V over C and a
pair of bivectors (b(1), b(2)), b(i) :

∧2 V ∗ → C, there exists a direct decomposition V ∗ = ⊕km=1V
∗
m such

that b(i)(V ∗l , V
∗
m) = 0 for i = 1, 2, l 6= m, and the triples (V ∗m, b

(1)
m , b

(2)
m ), where b

(i)
m := b(i)|V ∗m, are from

the following list:

1. [the Jordan block j2jm(λ)]: dimV ∗m = 2jm and in an appropriate basis of V ∗m the matrices of

b
(1)
m , b

(2)
m are equal to [

0 Ijm
−Ijm 0

]
,

[
0 Jjm(λ)

−Jjm(λ)T 0

]
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where Ijm is the unity jm × jm-matrix and

Jjm(λ) :=


λ 1 0 · · · 0
0 λ 1 · · · 0

· · ·
0 0 0 · · · 1
0 0 0 · · · λ


is the Jordan jm × jm-block with the eigenvalue λ;

2. [the Jordan block j2jm(∞)]: dimV ∗m = 2jm and in an appropriate basis of V ∗m the matrices of

b
(1)
m , b

(2)
m are equal to [

0 Jjm(0)
−Jjm(0)T 0

]
,

[
0 Ijm
−ITjm 0

]
;

3. [the Kronecker block k2km+1]: dimV ∗m = 2km+1 and in an appropriate basis of V ∗m the matrices

of b
(1)
m , b

(2)
m are equal to

K1,km :=

[
0 B1,km

−BT
1,km

0

]
, K2,km :=

[
0 B2,km

−BT
2,km

0

]
,

where

B1,km :=


1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .
0 0 0 . . . 1 0

 , B2,km :=


0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 1


(km × (km + 1)-matrices).

Kronecker Poisson pencils: Let {ηt}t∈R2 , ηt := t1η1 + t2η2, be a Poisson pencil on M . We say that
it is Kronecker at a point x ∈ M , if the Jordan–Kronecker decomposition of the pair of bivectors
η1|x, η2|x (regarded as elements of

∧2 TC
xM , here TC

xM is the complexified tangent space) does not
contain Jordan blocks.

Proposition. {ηt}t∈R2 is Kronecker at x if and only if

rank (t1η1|x + t2η2|x) = const, (t1, t2) ∈ C2 \ {0}.

Proof It is easy to see that any nontrivial linear combination of matrices K1,km , K2,km has constant
rank equal to 2km. So the rank can ”jump” at some t 6= 0 if and only if there are Jordan blocks in
the decomposition. �

We say that a Poisson pencil Θ on M is Kronecker if there exists an open dense set U ⊂M such
that Θ is Kronecker at any x ∈ U .

Involutivity of Casimir functions for Kronecker Poisson pencils: We have already proven
that, if t′, t′′ ∈ R2 are linearly independent, then {f, g}ηt = 0 for any f ∈ Ct′(M), g ∈ Ct′′(M), t ∈ R2.
In the same way one can prove that ηt|x(α, β) = 0 for any α ∈ ker ηt

′ |x, β ∈ ker ηt
′′ |x, t ∈ R2.
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Proposition. Let {ηt}t∈R2 be Kronecker and let t′ ∈ R2, t′ 6= 0. Then {f, g}ηt = 0 for any
f, g ∈ Ct′(M), t ∈ R2.

Proof Fix x ∈ U . Let t(n) ∈ R2 be such that t(n) is linearly independent with t′ and t(n)
n→∞−→ t′.

The kernel of the map ηt|x : T ∗xM → TxM continuously depend on t ∈ R2 \ {0} and is of constant
dimension. Consequently we can find a sequence of covectors αn ∈ ker ηt(n) |x such that αn

n→∞−→ dxg.
We get ηt|x(dxf, αn) = 0 and by continuity we conclude that ηt|x(dxf, dxg) = 0. In other words,
{f, g}ηt(x) = 0 for any x ∈ U . Since U is dense, using again the continuity argument we get the
proof. �

Summarizing, we get the following result.

Proposition. Let Θ = {ηt}t∈R2 be a Kronecker Poisson pencil and let

CΘ(M) := Span{
⋃

t∈R2\{0}

Ct(M)}.

Then CΘ(M) is a family of functions in involution with respect to any Poisson bivector ηt.

Remark: It can be shown that in the Kronecker case the family of functions in involution obtained
by the Magri-Lenard scheme starting from Casimir functions coincide with the family CΘ(M).

Completeness of Casimir functions for Kronecker Poisson pencils: Let (M, η) be a Poisson
structure. We say that an open set W ⊂ M is correct for η if the set W ′ := W \ (W ∩ Sing η)
is nonempty and the common level sets of the functions from Cη(W ′) coincide with the symplectic
foliation of η on the set W ′. In other words, the set W is correct if the Poisson structure does
not have regular symplectic leaves dense in W . Equivalent definition: W is correct if {dxf | f ∈
Cη(W )} = ker ηx for any x ∈ W ′. Note that in analytic category any sufficiently small open set is
correct.

Proposition. Let Θ = {ηt}t∈R2 be a Kronecker Poisson pencil. Assume W ⊂ M is an open set
that is correct for ηt for a countable set {t(1), t(2), . . .} of pairwise linearly independent values of the
parameter t and the set W ′ := W \

⋃∞
i=1 Sing ηt(i) is nonempty. Then the set of functions in involution

CΘ(W ′) is complete with respect to any ηt, t 6= 0.

Proof Fix x ∈ U ∩W ′. Let us first prove that the set Cx := {dxf | f ∈ CΘ(W ′)} ⊂ T ∗xM coincides
with the set Lx := Span{

⋃
t∈R2\{0} ker ηtx}. Indeed, the vector space Lx is finite-dimensional, hence

is generated by a finite number of kernels ker ηtx = {dxf | f ∈ Ct(W )}. Hence Lx ⊂ Cx. The same
considerations show that Cx ⊂ Lx.

It is easy to see that the set Lx is of dimension (1/2)rank ηtx + dimM − rank ηtx. Assume for a
moment that the Jordan–Kronecker decomposition of the pair η1|x, η2|x consists of one Kronecker
block k2km+1. The kernel of the matrix λK1,km +K2,km is 1-dimensional and is spanned by the vector
[0, . . . , 0, 1,−λ, . . . , (−λ)km ]. Taking km + 1 different values of λ we get km + 1 = (1/2)rank ηtx +
dimM − rank ηtx linearly independent vectors (recall the Vandermonde determinant) spanning the
set Lx. In the case of several Kronecker blocks you repeat these considerations for each block. �
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Remark: In fact it is sufficient to require that W is correct for a finite number of ηt. However, this
number depends on the number and dimension of the Kronecker blocks, so we make a bit stronger
assumption (which in practice is always satisfied).

Example (method of the argument translation): Let M := g∗, η1 := ηg, η2 := ηg(a), S :=
Sing ηg, where a ∈ g∗\S. Assume that codimS > 2 (if g is semisimple it is known that codimS > 3).
Note that S is an algebraic set, i.e. it is defined by a finite number of algebraic equations f1(x) =
0, . . . , fm(x) = 0 on g∗. Any algebraic set in a neighbourhood of its generic point is diffeomorphic to
a manifold, hence its dimension is correctly defined.

If e1, . . . , en is a basis of g and the corresponding structure constants are defined by [ei, ej] =
ckijek, the polynomials f1, . . . , fm are the r × r-minors of the matrix cij(x) = ckijxk, where r =
maxx rank [cij(x)]. Here x1 = e1, . . . , xn = en are the corresponding coordinates on g∗.

In order to check the condition of Kroneckerity we need to consider the complexification gC of the
initial Lie algebra. It can be regarded as a vector space SpanC{e1, . . . , en} ∼= Cn with the Lie bracket
defined by the same structure constants. The set SC := {(z1, . . . , zn) ∈ g∗C

∼= Cn | rank ckijzk <
maxz∈Cn rank ckijzk} is a complex algebraic set defined by the equations f1(z) = 0, . . . , fm(z) =
0, where f1, . . . , fm are the same polynomials as above. In particular, the set SC is of complex
codimension at least 2.

We know that t1η1|x + t2η2|x = ckij(t1xk + t2ak), t1, t2 ∈ C. Thus rank (t1η1|x + t2η2|x) is maximal

(over t) and independent of t ∈ C2 \ {0} if and only if t1x + t2a ∈ g∗C \ S if and only if x 6∈ a, SC,
where a, SC := {z ∈ g∗C | ∃(t1, t2) ∈ C2 \ {0}: t1z + t2a ∈ SC}.

Note that the set SC is homogeneous (stable under rescaling). Passing to the projectivization
the set a, SC becomes a cone in CPn−1 over the projectivization of S. This shows that the set a, SC
is also algebraic (by the standard arguments from algebraic geometry) and, moreover, dimC a, SC =
dimC SC + 1. In particular codimC a, SC > 1 and we can put U := g∗ \ (g∗ ∩ a, SC) = g∗ \ (a, S). Here
a, S := {x ∈ g∗ | ∃(t1, t2) ∈ R2 \ {0}: t1x+ t2a ∈ S} and codimR a, S > 1. The set U is an open dense
set in g∗ such that {ηt} is Kronecker at any x ∈ U .

Finally assume that g is semisimple. Then ηg has enough global Casimir functions and the whole
space g∗ is a correct set for ηg. In particular, the assumptions of the proposition above are satisfied
and we get a complete set CΘ(g∗) of functions in involution (with respect to any ηt). This set is
generated by the ”translations” f(x+ λa), λ ∈ R, of the Casimir functions f of ηg.

III mechanism of constructing functions in involution (based on eigenvalue functions of
a Poisson pencil):

Theorem. Let {ηt} be a Poisson pencil on M , w1(x), w2(x) two eigenvalues of Jordan blocks. Then

{w1, w2}ηt = 0 ∀ t ∈ R2.

Lemma. 1 If w(x) is an egenvalue of a Jordan block (in other words, rank (η1(x) − w(x)η2(x)) <
maxv 6=w(x) rank (η1(x)− vη2(x))), then dxw ∈ ker(η1 − v0η2)(x) for any x ∈Mv0 := {x | w(x) = v0}.

In particular, {w, f}(1,−v0)|Mv0
= 0 for any function f .

Proof Consider a Poisson structure η1 − v0η2 and a point x ∈ Mv0 . A symplectic leaf S, dimS <
dimM passes through x. The function w is constant on S. Indeed, if y ∈ S is close to x, then
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rank (η1(y) − v0η2(y)) < maxv 6=v0 rank (η1(y) − vη2(y)), i.e. v0 must be an eigenvalue of ”the same”
jordan block at a point y, hence w(y) = v0.

Proof of the theorem Let w1(x), w2(x) be functionally independent. Then there exists a local
coordinate system on M of the form w1, w2, x3, . . . , xm.

let v1 6= v2. Then there exist α(v1, v2), β(v1, v2) ∈ R such that ηλ := λ1η1 + λ2η2 = α(v1, v2)(η1 −
v1η2) + β(v1, v2)(η1 − v2η2). Thus

{w1, w2}λ|(v1,v2,x3,...,xm) = ((λ1η1 + λ2η2)(dw1)w2)|(v1,v2,x3,...,xm) =

α(v1, v2){w1, w2}(1,−v1)|(v1,v2,x3,...,xm) + β(v1, v2){w1, w2}(1,−v2)|(v1,v2,x3,...,xm)

= 0− β(v1, v2){w2, w1}(1,−v2)|(v1,v2,x3,...,xm) = 0.

By continuity we also have 0 for v1 = v2.
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