
Algebraic and geometric aspects of modern theory of
integrable systems

Andriy Panasyuk

Contents

1 Sketch of the (introductory part of the) course 3

2 Preliminaries on manifolds 6

3 Ordinary differential equations on manifolds 9

4 Submanifolds, foliations and distributions 9

5 Symplectic and nondegenerate Poisson manifolds 11

6 Poisson structures, their characteristic distributions, symplectic leaves and Casimir
functions 12

7 Lie–Poisson structures 15

8 Actions of Lie algebras and symplectic foliations of Lie–Poisson structures 16

9 Symplectic and Poisson reduction 19

10 Hamiltonian reduction and the Arnold-Liouville theorem 22

11 The ”action-angle” coordinates 25

12 Hamiltonian actions and moment maps 28

13 Right and left actions on T ∗G. Hamiltonian actions and completely integrable
systems 31

14 Poisson pencils and families of functions in involution 35

1



15 Linear algebra of pairs of bivectors and completeness of families of functions in
involution 37

16 Lie pencils and completely integrable systems 41

17 Introduction to the KdV equation and infinite-dimensional argument translation
method 44

2



1 Sketch of the (introductory part of the) course

1. Symplectic manifolds and hamiltonian equations.

Symplectic manifold: (M,ω), ω ∈ Γ (
∧2 T ∗M), locally ω = ωij(x)dxi ∧ dxj, ω nondegenerate (i.e.

the matrix ωij nondegenrate) and closed, dω = 0.

Prototype: the canonical symplectic form on T ∗Q, ω = dpi ∧ dqi, here qi local coordinates on Q, pi
the corresponding momenta.

Hamiltonian differential equation on (M,ω): a differential equation given by a ”hamiltonian”
vector field v(H) := ω−1

ij (x) ∂H
∂xi

, here H ∈ C∞(M), a hamiltonian function.

Prototype: the ”natural” mechanical system on M = T ∗Q, the hamiltonian function H(p) =
−(1/2m) ‖ p ‖2 −U(πM(p)) ∈ C∞(T ∗Q) is the Legendre transform of the lagrangian function
L = (m/2) ‖ w ‖2 −U(τM(w)) ∈ C∞(TQ), here ‖ · ‖ is a norm on tangent vectors generated by
some Riemannian metric on Q.

2. Completely integrable systems in the Arnold–Liouville sense.

First integral of differential equation given by a vector field v on M : a function f ∈ C∞(M)
such that vf ≡ 0.

First integrals in involution of a hamiltonian vector field v(H) on (M,ω): functions f1, f2, . . .
such that v(H)fi ≡ 0 and {fi, fj} ≡ 0, here {f, g} := v(f)g (the Poisson bracket of functions f, g).
In particular, {H, fi} ≡ 0.

The Arnold–Liouville theorem: Let (M,ω) be symplectic, dimM = 2n. Assume a hamiltonian
vector field v(H) admits n functionally independent integrals in involution. Then

1. if the common level sets of these integrals are compact and connected, they are (n-dimensional)
tori Tn = {(ϕ1, . . . , ϕn)mod2π};

2. the restriction of the initial hamiltonian equation to Tn gives an almost periodic motion on Tn,
i.e. in the ”angle coordinates” ϕ the equation has the form

d−→ϕ
dt

= −→a ,

here −→a = (a1, . . . , an) is a constant vector depending only on the level;

3. the initial equation can be integrated in ”quadratures”, i.e. the solutions can be obtained by
means of a finite number of algebraic operations and operations of taking integral.

Integrable contra chaotic systems: A trajectory of ”chaotic” system can be dense in a phase
space M , a trajectory of ”integrable” system lies on tori of dimension 6 (1/2) dimM .

3. Poisson manifolds and Lie algebras

Nondegenerate Poisson manifolds: (M, η), η ∈ Γ (
∧2 TM), locally η = ηkl ∂

∂xk
∧ ∂

∂xl
, such that

ηkl = ω−1
kl , here ω = ωij(x)dxi ∧ dxj a symplectic form. How to encode the condition dω = 0 in
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terms of η? One of possible answers: Jacobi identity for the Poisson bracket {f, g} := ηkl ∂f
∂xk

∂g
∂xl

,
{{f, g}, h}+ cyclic permutations = 0.

General Poisson manifolds: (M, η), η ∈ Γ (
∧2 TM) such that the Jacobi identity holds for the

corresponding Poisson bracket.

Symplectic leaves and Casimir functions of Poisson manifolds: Given a Poisson manifold
(M, η), there exist a splitting M =

⋃
t∈T Mt of the manifold M to submanifolds Mt such that η|Mt is

nondegenerate, i.e. inverse to some symplectic form. Casimir function is a function f ∈ C∞(M) such
that ηkl ∂f

∂xk
≡ 0, i.e. {f, g} = 0 for any g ∈ C∞(M). Another characterization of Casimir functions:

functions whose level sets coincide with the symplectic leaves Mt.

Lie algebras: A vector space g with a skew-symmetric binary operation [, ] : g × g → g satisfying
Jacobi identity.

Examples of Lie algebras:

1. g := gl(n,R), real n× n-matrices, [A,B] := AB −BA, commutator of matrices;

2. g := sl(n,R), real n× n-matrices with zero trace;

3. g := so(n,R), real skew-symmetric n× n-matrices.

Lie-Poisson structures as examples of Poisson manifolds: Given a Lie algebra g and a basis
e1, . . . , en, let ckij be the coresponding structure constants, i.e. [ei, ej] = ckijek. Put ηg := ckijxk

∂
∂xi
∧ ∂
∂xj

,

here xi = ei (elements of g regarded as linear functions on the dual space g∗). Then ηg is a Poisson
structure on g∗.

Symplectic leaves of the Lie-Poisson structures: They coincide with the so-called coadjoint
orbits on g∗. For instance, take one of the Lie algebras from the examples above. Then it has a scalar
product (A|B) := Tr(AB) by means of which we can identify g with g∗. After this identification
the symplectic leaves of ηg become {XYX−1 | X ∈ G}, here Y ∈ g is fixed, G is the set (the
group) of 1.) nondegenerate n×n-matrices; 2.) n×n-matrices with determinant one; 3.) orthogonal
n× n-matrices (i.e. XXT = I). The corresponding Casimir functions are Tr(X), T r(X2), . . ..

3. Poisson and manifolds and reductions

”The Noether principle”: If a vector field on Rn admits a one-parametric group of diffeomor-
phisms preserving this vector field, the problem of integrating of the corresponding differential equa-
tion is reduced to a problem of integrating of another differential equation on Rn−1.

Symplectic version of the Noether principle: If a hamiltonian function of a hamiltonian equa-
tion is invariant under some one-parametric group of transformations of the phase space M2n which
preserve also the symplectic form, then the equation can be reduced to another hamiltonian equation
on a phase space of dimension 2n − 2. Looking a little bit more globally one can say that we will
reduce our initial system to a hamiltonian system on some Poisson manifold of dimension 2n−1 (the
above mentioned phase space of dimension 2n− 2 is a symplectic leaf).

Example 1, rotation invariant natural mechanical system: Take Q = Rn, the euclidian metric
and a rotation invariant potential U . The group of rotations of Q can be extended to a group of
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diffeomorphisms of T ∗Q, preserving the canonical symplectic form (the hamiltonian H will be also
preserved by this group).

Example 2, the Euler top: The mechanical system of free rigid body: the configuration space
Q is SO(3) = {X ∈ gl(3,R) | XXT = I}; the potential is zero, the metric is a ”left-invariant” (i.e.
invariant with respect to left translations Y 7→ XY of SO(3)) metric on SO(3) depending of the
shape of the body. The Noether principle (using the whole 3-parametric group of symmetries of T ∗Q
and H obtained from extension of the left translations to T ∗Q) allows to reduce this system from
T ∗Q to so(3,R)∗ with the Lie–Poisson structure ηso(3,R). The problem of finding first integrals in
involution is now carried from a (bigger) symplectic manifold to a (smaller) Poisson manifold.

4. What will we do afterwards?

The main ideas which we will try to implement are

1. to find some mechanisms of building big families of functions in involution (with respect to ηg)
on Lie algebras g (on their duals g∗);

2. to recognize among these functions some ”physically reasonable” hamiltonians;

3. to prove that the remaining functions (interpreted as first integrals of the corresponding hamil-
tonian equation) form a ”complete” family, i.e. lead to a completely integrable system.
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2 Preliminaries on manifolds

A chart on a topological space M : A pair (U, ψ), here U ⊂ M is an open set, ψ : U → Rn is
a homeomorphism onto its image. Two charts (U1, ψ1), (U2, ψ2) are compatible if ψ1 ◦ ψ−1

2 |im(U1∩U2) :
im(U1 ∩ U2)→ Rn is smooth (analytical) mapping. The components of the vector ψ = (ψ1, . . . , ψn)
are called local coordinates on M .

An atlas on a topological space M : A collection of pairwise compatible chartsA := {(Uα, ψα)}α∈A
such that M =

⋃
α∈A Uα. Two atlases are equivalent or compatible if . . .

A manifold: A topological space endowed with a class of equivalent atlases.

Example: The sphere S2 with two stereographic projections (from the north and south poles).

A vector bundle E → M over a manifold M : A surjective map π : E → M , here E is a
topological space, such that here is a structure of a vector space on each fiber Ex := π−1(x), x ∈M ,
and there is an atlas A := {(Uα, ψα)}α∈A on M and homeomorphisms Ψα : π−1(Uα)→ Uα×Rm with
the properties:

1. the following diagram is commutative

π−1(Uα)
Ψα−→ Uα × Rm

↓ π ↓ π1

Uα = Uα

;

2. the map Ψ̃α,x := Ψα|Ex is a linear isomorphism of the vector spaces Ex and Rm;

3. the collection {(π−1(Uα),Ψα)}α∈A is an atlas on E, in particular Ψα ◦ Ψ−1
β (x, y) = (x, Ψ̃α,x ◦

Ψ̃−1
β,x(y)), x ∈ Uα ∩ Uβ, y ∈ Rm, and the functions Ψ̃αβ,x := Ψ̃α,x ◦ Ψ̃−1

β,x are linear isomorphisms
of Rm which smoothly depend on x ∈M .

The functions Ψ̃αβ,x are called transition functions of the vector bundle. Given the base M and the
collection of transition functions, one can reconstruct the initial vector bundle (up to an isomor-
phism).

A section of a vector bundle E → M : A mapping s : M → E such that π(s(x)) = x for any
x ∈M . The space of sections will be denoted by Γ (E).

Example 1, the tangent bundle TM
τM−→ M : Let M be a manifold with an atlas A :=

{(Uα, ψα)}α∈A. Put Ψ̃αβ,x :=
∂ψαβ(ϕβ(x))

∂ϕβ
, here ψαβ := ψα ◦ ψ−1

β : Rn → Rn. Below we give an

explicit description of TM .

A tangent vector at x to M : A curve in M is a mapping c : R→M . Two curves c1, c2 such that
c1(0) = c2(0) = x are equivalent at x if the derivatives of the functions f(c1(t)) and f(c2(t)) coincide
at 0 for any f ∈ E(M) (E(M) is C∞(M) or the space of analytic functions on M depending on the
category). Note that c1, c2 are equivalent at x if and only if d

dt
|t=0(ψi ◦ c1)(t) = d

dt
|t=0(ψi ◦ c2)(t), i =

1, . . . , n, for some (consequently for any) chart (U, ψ) with x ∈ U .
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A class v = [c]x of equivalence of curves at x is called a tangent vector at x. We say that
v is tangent to c (and to any other representative of the class) at x. A tangent vector in local
coordinates (ψ1, . . . , ψn) is represented by the n-tuple ( d

dt
|t=0(ψ1 ◦ c)(t), . . . , d

dt
|t=0(ψn ◦ c)(t)), here c

is any representative of the class. Since we can add such n-tuples and multiply them by scalars, the
set of tangent vectors inherits a structure of vector space (which is independent of the choice of local
coordinates). Given two local coordinate systems ψα, ψβ the corresponding n-tuples are related by

d

dt
|t=0(ψiα ◦ c)(t) =

∂ψiαβ(ϕβ(x))

∂ϕjβ

d

dt
|t=0(ψjβ ◦ c)(t).

Tangent vectors as differentiations: A differentiation of the ring E(M) at x is a linear mapping
l : E(M) → R such that l(fg) = l(f)g(x) + f(x)l(g), f, g ∈ E(M). Given a tangent vector v at x
which is represented by a curve c, we construct a differentiation ṽ by ṽ(f) := d

dt
|t=0(f ◦ c)(t). It does

not depend on the choice of representative.

Let ψ = (ψ1, . . . , ψn) : U → Rn be local coordinates on M such that ψ(x) = 0. Then c := ψ−1(Li),
where Li is the i-th coordinate line in Rn, gives (a local) curve with c(0) = x. The corresponding
vector is denoted ∂

∂ψi
. The vectors (differentiations) ∂

∂ψi
, i = 1, . . . , n, form a basis of the vector space

TxM .

A vector field on M : A section of the tangent bundle TM , i.e. a tangent vector v(x) ∈ TxM
(smoothly, analytically) depending on x ∈ M . In a local chart (U, ψ) can be expressed as v(x) =
vi(x) ∂

∂ψi
, here vi(x) are functions.

Any vector field v is a differentiation of the ring E(M), i.e. a linear endomorphism of E(M) such
that v(fg) = v(f)g + fv(g), f, g ∈ E(M). In local coordinates (vf)(x) = vi(x) ∂f

∂ψi
(x).

The space Γ (TM) of vector fields is a vector field over R and a module over the ring E(M).

The commutator of vector fields on M : Given two differentiations v1, v2 of the ring E(M),
the commutator [v1, v2] := v1v2 − v2v1 is again a differentiation: v1v2(fg) = v1((v2f)g + f(v2)g) =
(v1v2f)g + (v2f)(v1g) + (v1f)(v2g) + f(v1v2g), so [v1, v2](fg) = ([v1, v2]f)g − f([v1, v2]g). In local

coordinates [v1, v2]i(x) = vj1(x)
∂vi2(x)

∂ψj
− vj2(x)

∂vi1(x)

∂ψj
.

A bivector field on M : A section η of the second exterior power of the tangent bundle
∧2 TM .

Locally η = ηij(x) ∂
∂ψi
∧ ∂

∂ψj
.

Example 2, the cotangent bundle T ∗M
πM−→ M : The bundle dual to TM . The transition

functions: Ψ̃−1
αβ,x. We denote by dψ1, . . . , dψn the basis of T ∗xM dual to the basis ∂

∂ψ1 , . . . ,
∂
∂ψn

.

A covector field on M (differential 1-form): A section γ of the bundle T ∗M . Locally γ =
γi(x)dψi.

A differential 2-form on M : A section ω of the second exterior power of the cotangent bundle∧2 T ∗M . Locally ω = ωij(x)dψi ∧ dψj.

A morphism of vector bundles E1
π1−→ M,E2

π2−→ M over M : A map µ : E1 → E2 such that
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the following diagram is commutative

E1
µ−−−→ E2

π1

y yπ2

M M

and the induced mappings µx : E1,x → E2,x are linear for any x ∈M .

Differential k-forms as morphisms
⊗k TM → M × R: any differential k-form σ can be inter-

preted as such a morphism which is skew-symmetric. In other words, σ is a map form Γ (TM) ×
· · · × Γ (TM)→ E(M) which is multilinear over the ring E(M) and skew-symmetric.

The exterior derivative d : Γ (
∧k T ∗M)→ Γ (

∧k+1 T ∗M): The Cartan formula gives df(X) = Xf
for f ∈ E(M), (dγ)(X, Y ) = Xγ(Y ) − Y γ(X) − γ([X, Y ]), X, Y ∈ Γ (TM) for γ ∈ Γ (T ∗M) and
(dω)(X, Y, Z) =

∑
c.p.X,Y,Z Xω(Y, Z)− ω([X, Y ], Z) for ω ∈ Γ (

∧2 T ∗M).

Bivector fields and 2-forms as morphisms: Let η ∈ Γ (
∧2 TM) and γ ∈ Γ (T ∗M). The

contraction γy η =: η(γ) (in the first index) is a vector field defined by v = vj(x) ∂
∂ψj

, vj(x) :=

γi(x)ηij(x). Since this operation is pointwise it defines a morphism of bundles η] : T ∗M → TM .
Note that it is skew-symmetric, i.e. (η])∗ = −η]. Conversely, given such a morphism, we can
construct a bivector field.

Analogously, a differential 2-form ω defines a skew-symmetric morphism ω[ : TM → T ∗M .
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3 Ordinary differential equations on manifolds

References: [Arn75]

Ordinary differential equation:

dc

dt
(x) = v(x), (or ẋ = v(x) for short)

here v ∈ Γ (TM) is given, c is unknown. A solution of this equation (or a trajectory of v) with an
initial condition x0 ∈M is a curve c : R→M such that c(0) = x0 and the vector v(x) is tangent to
c at any x ∈ c(R).

A solution always exists locally and is unique: in local coordinates (ψ1, . . . , ψn) we have v =
vi(x) ∂

∂ψi
and the initial equation is equivalent to the system of ODE

dci(t)

dt
= vi(c1(t), . . . , cn(t)), i = 1, . . . , n

with the initial condition ci(0) = xi0, i = 1, . . . , n, and we can use the corresponding existence-
uniqueness theorem.

Globally, if supp v := {x ∈M | v(x) 6= 0} is compact (eg. M is compact itself) one can extend
any local solution to a global (in time and space) solution. 1

Example 1: ”nonextendability in time”: M :=]0, 1[, ẋ = 1.

Example 2: ”nonextendability in space”: M := R, ẋ = x2.

Example 3: ”Winding line on a torus”: M := T2 = R2/Z2, the vector field va,b := a ∂
∂x1 + b ∂

∂x2 ,
where a, b ∈]0,∞[ are fixed, can be projected onto the vector field ṽa,b on T2. Its trajectories are the
projections t→ P (x1 + at, x2 + bt) of the lines t→ (x1 + at, x2 + bt).

Rational case: b/a is a rational number, b = mλ, a = nλ for some λ ∈ R. Then for t := 1/λ we
have (x1 +at, x2 + bt) = (x1 +m,x2 +n) and P (x1 +at, x2 + bt) = P (x1, x2) (the trajectory is closed,
i.e. periodic).

Irrational case: b/a is an irrational number (any trajectory is dense in M).

4 Submanifolds, foliations and distributions

A submanifold S of M of codimension r: A subset N ⊂ M such that there exists an atlas
A := {(Uα, ψα)}α∈A on M with N ∩ Uα = {x ∈ Uα | ψ1(x) = 0, . . . ψr(x) = 0} for those α ∈ A for
which N ∩ Uα 6= ∅.

Smooth maps and submanifolds: A smooth map F : M1 → M2 is called an immersion if
TmF : TmM1 → TF (m)M2 is injective for any m ∈M1. The image of an injective immersion is called

1see V. I. Arnold, Rȯwnania rȯżniczkowe zwyczajne, PWN, 1975, Theorem 1,§35.
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an immersed submanifold. An injective immersion F is an embedding if F is a homeomorphism onto
F (M1), where F (M1) is endowed with the topology induced from M2.

Remarks: 1. The image N := F (M1) of an embedding is a submanifold in M2 and, vice versa,
given a submanifold N ⊂ M , the inclusion N ↪→ M is an embedding. 2. If N ⊂ M is an immersed
submanifold, then for any x ∈ N there exists an open neighbourhood U of x in M such that the
connected component of N ∩ U containing x is a submanifold in U . Vice versa, . . .

Example of an immersed submanifold, which is not a submanifold: ”The irrational torus
winding” R→ T2.

A foliation F of codimension r on M : A collection F = {Fβ}β∈B of path-connected sets on M
such that there exists an atlas A := {(Uα, ψα)}α∈A on M with the following properties:

1. M =
⋃
β∈B Fβ;

2. Fβ ∩ Fγ = ∅ for any β, γ, β 6= γ;

3. for any α ∈ A and any (c1, . . . , cr) ∈ ψα(Uα) the set {x ∈ Uα | ψ1(x) = c1, . . . ψ
r(x) = cr}

coincides with one of the path-connected components of the set Uα ∩ Fβ if it is nonempty.

By the remark above the sets Fβ are immersed submanifolds.

A distribution D on M of codimension r: A subbundle of the tangent bundle TM with the
r-codimensional fiber, or in other words a collection of subspaces Dx ⊂ TxM smoothly (analytically)
depending on x ∈ M . Such a distribution is locally spanned by n− r linearly independent (at each
point) vector fields.

Example: the distribution tangent to a foliation: D = TF := {v ∈ TM | v is tangent to F}.

Integrable distribution: A distribution which is tangent to some foliation.

Involutive distribution: A distribution D such that for any two vector fields X, Y ∈ Γ (TM)
which are tangent to D (i.e. X(x), Y (x) ∈ Dx for any x ∈ M) their commutator [X, Y ] is also
tangent to D (equivalently, locally there exist v1, . . . , vm, vi ∈ Γ (TM), and functions fkij such that
Span{v1, . . . , vm} = D and [vi, vj] = fkijvk; Exercise: prove the equivalence).

The Frobenius theorem: A distribution D is integrable if and only if it is involutive.

Example of nonintegrable distribution: X = ∂
∂x

+ y ∂
∂z
, Y = ∂

∂y
.

A generalized distribution D on M of codimension r: A collection of subspaces Dx ⊂ TxM
locally spanned by n− r vector fields linearly independent at least at one point (but not necessarily
linearly independent at other points).

A generalized foliation F on M : . . .

Example of a generalized foliation which is not a foliation: The trajectories of a vector field
x1 ∂

∂x1 + x2 ∂
∂x2 .
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The generalized Frobenius theorem (Nagano 1966): An analytic generalized distribution D
is integrable if and only if it is involutive, i.e. for any two vector fields X, Y ∈ Γ (TM) which are
tangent to D (i.e. X(x), Y (x) ∈ Dx for any x ∈M) their commutator [X, Y ] is also tangent to D.

An example of smooth involutive nonintegrable distribution: Let ϕ(x) be a smooth function
on R such that ϕ(x) ≡ 0 for x 6 0 and ϕ(x) > 0 for x > 0. Take X = ∂

∂x
, Y = ϕ ∂

∂y
on R2. Then

[X, Y ] := ∂ϕ
∂x

∂
∂y

can be expressed as a linear combination of X, Y . But it is nonintegrable: look at its
”leaves”.

5 Symplectic and nondegenerate Poisson manifolds

A symplectic form on M : A differential 2-form (2-form for short) ω on M such that

1. ω is nondegenerate, i.e. ω[ is an isomorphism of bundles, or, equivalently, ωij(x) is a nonde-
generate matrix for any x in some (consequently in any) local coordinate system;

2. dω = 0.

A nondegenerate Poisson structure on M : A bivector field (bivector for short) η such that
η] : T ∗M → TM is inverse to ω[ : TM → T ∗M for some symplectic form ω.

The Poisson bracket on E(M): Given a bivector field η : T ∗M → TM (not necessarily Poisson),
put {f, g} := η(df)g, f, g ∈ E(M). (From now on we will often skip ] and [ indices.) Then {, } is a
bilinear skew-symmetric operation on E(M). We say that η(f) := η(df) is a hamiltonian vector field
corresponding to the function f .

Proposition. Let η be a nondegenerate bivector. Then it is Poisson if and only if {, } satisfies the
Jacobi identity,

∑
c.p. f,g,h{{f, g}, h} = 0. �

Proof Put ω := η−1, i.e. ω(η(α), v) = α(v) for any vector field v and 1-form α. Then
η(f)ω(η(g), η(h)) = η(f)(dg(η(h))) = η(f)(η(h)g) = η(f){h, g} = {f, {h, g}} = −{f, {g, h}} and
ω([η(f), η(g)], η(h)) = −ω(η(h), [η(f), η(g)]) = −dh([η(f), η(g)]) = −[η(f), η(g)]h = −η(f)η(g)h +
η(g)η(f)h = −η(f){g, h} + η(g){f, h} = −{f, {g, h}} + {g, {f, h}}. Thus dω(η(f), η(g), η(h)) =∑

c.p. f,g,h η(f)ω(η(g), η(h)) − ω([η(f), η(g)], η(h)) = −
∑

c.p. f,g,h{g, {f, h}}. So, if dω = 0, then {, }
satisfies the Jacobi identity.

Conversely, if the JI holds, dω vanishes on all hamiltonian vector fields. To finish the proof it
remains to note that the hamiltonian vector fields span TxM at any x ∈M . Indeed, it is enough to
take η(xi), where (xi) are local coordinates.

Example: the canonical symplectic structure on the cotangent bundle T ∗Q: Let πQ :
T ∗Q → Q be a cotangent bundle to a manifold Q. There is a canonical differential 1-form λ ∈
Γ (T ∗M),M := T ∗Q determined uniquely by the following condition: for any α ∈ Γ (T ∗Q), the
following equality holds α∗λ = α, here α in the LHS is regarded as a map α : Q → T ∗Q. We
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call λ the Liouville 1-form. If (U, q1, . . . , qn) is a local chart on Q, the 1-forms dq1, . . . , dqn form a
basis of the vector space T ∗xQ, x ∈ U , and define the chart (π−1

Q (U), q1, . . . , qn, p1, . . . , pn). In these
coordinates λ = pidq

i. Indeed, α : (q1, . . . , qn) 7→ (q1, . . . , qn, α1(q), . . . , αn(q)), where α = αi(q)dq
i.

Thus α∗λ = αi(q)dq
i = α.

The canonical symplectic form ω on M is given by ω := dλ, or, locally, ω = dpi ∧ dqi.

Hamiltonian differential equation on a symplectic manifold (M,ω): The ODE related to a
hamiltonian vector field η(f), f ∈ E(M), here η = ω−1. In the context of the example above (in the
canonical coordinates (q, p)): η = − ∂

∂pi
∧ ∂

∂qi
, η(H) = ∂H

∂qi
∂
∂pi
− ∂H

∂pi

∂
∂qi

, the corresponding equations
read:

q̇i =
∂H(q, p)

∂qi
, ṗi = −∂H(q, p)

∂pi
.

6 Poisson structures, their characteristic distributions, sym-

plectic leaves and Casimir functions

References: [dSW99]

A Poisson structure on M : A bivector η : T ∗M → TM (not necessarily nondegenerate) such
that the corresponding bracket {, } on E(M) satisfies the Jacobi identity (JI for short).

Digression on Lie algebras: A Lie algebra is a vector space g endowed with a bilinear skew-
symmetric operation [, ] : g× g→ g satisfying the JI:

1. [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ V , or, equivalently,

2. adx[y, z] = [adxy, z] + [y, adxz] ∀x, y, z ∈ V , where adxy := [x, y], or, equivalently,

3. ad[x,y] = [adx, ady] ∀x, y ∈ V , where the bracket in the RHS denotes the commutator of the
operators.

The second condition means that adx is a differentiation of the bracket [, ]. The third one has the
following interpretation. A pair (V, [, ]), where V is a vector space and [, ] : V × V → V is a bilinear
operation, is called an algebra. Given algebras (V1, [, ]1) and (V2, [, ]2), we say that a linear map
L : V1 → V2 is a homomorphism of algebras, if L[x, y]1 = [Lx, Ly]2 ∀x, y ∈ V1.

So the third condition means that the map x 7→ adx : V → End(V ) a homomorphism of algebras
(V, [, ]) and (End(V ), [, ]). Note that the last algebra is in fact a Lie algebra. A homomorphism of
Lie algebras (g, [, ])→ (End(V ), [, ]) is called a representation of the Lie algebra (g, [, ]) in the vector
space V (so x 7→ adx is a representation of g in g).

Consider the Lie algebra (E(M), {, }) on a Poisson manifold. The corresponding adf -operator,
f ∈ E(M), coincides with η(f) : E(M)→ E(M).

The characteristic (generalized) distribution of a Poisson structure η : T ∗M → TM :
Dη := im η (locally generated by the hamiltonian vector fields η(x1), . . . , η(xn), where (x1, . . . , xn)
are some local coordinates).
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By the third condition above the map f 7→ η(f), (E(M), {, }) → (Γ (TM), [, ]) is a homo-
morphism of Lie algebras, here [, ] is the commutator of vector fields. This implies involutivity
of Dη: [η(xi), η(xj)] = η({xi, xj}) = η(ηij(x)), where η = ηij(x) ∂

∂xi
∧ ∂

∂xj
. On the other hand,

η(f) = ηij(x) ∂f
∂xi

∂
∂xj

= ∂f
∂xk

η(xk) for any f . In particular, [η(xi), η(xj)] is a linear combination (with
smooth coefficients) of η(x1), . . . , η(xn).

Theorem: The characteristic distribution Dη is integrable (we call the corresponding foliation char-
acteristic or symplectic).

Proof In analytic category this follows from the involutivity of D by the generalized Frobenius
theorem. In the smooth case this is also true, but the proof is more complicated, so we skip it. �

Digression on linear algebra of bivectors: Let V be a vector space and e a bivector on V . Then
e can be treated as: 1) an element e ∈

∧2 V ; 2) a linear skew-symmetric map e] : V ∗ → V ; 3) a
bilinear form ẽ on V ∗.

Proposition. Let W := im e] ⊂ V . Then there exists a correctly defined bivector e|W ∈
∧2W ,

called the restriction of e to W . Moreover, the restriction e|W is nondegenerate, i.e. e|]W : W ∗ → W
is an isomorphism.

Proof I. A theorem from linear algebra says that there exists a basis v1, . . . , vn of V such that
e = v1 ∧ v2 + · · · + v2k−1 ∧ v2k (the number 2k is equal to dimW and is called the rank of e). It is
easy to see that v1, . . . , v2k span W . �

Proof II. e is skew-symmetric, i.e. (e])∗ = −e]. This implies ker e] = (im e])⊥, where (·)⊥ stands for
the annihilator of (·). So the natural isomorphism ê : V ∗/ ker e] → im e] = W induced by e] can
regarded as a map from W ∗ ∼= V ∗/(W⊥) to W ⊂ V . The map ê being skew-symmetric induces the
element of

∧2W , which we denote by e|W . �

Proof III. Let ω be a skew-symmetric bilinear form on a vector space L. Put kerω := {x ∈ L |
ω(x, y) = 0 ∀y ∈ L}. The form is called nondegenerate if kerω = {0}.

Any ω induces a nondegenerate skew-symmetric bilinear form on the vector space L/ kerω.

Treating e as a skew-symmetric bilinear form ẽ on V ∗ we have ker ẽ = ker e]. The restriction e|W
treated as a skew-symmetric bilinear form on W ∗ ∼= V ∗/ ker ẽ is the above mentioned nondegenerate
form induced from ẽ. �

Symplectic leaves of a Poisson structure η on M : The leaves of the characteristic foliation
Dη. Since Dη,x = im η]x for any x ∈M , the bivector η admits a restriction η|S to any symplectic leaf
S ⊂ M , which is a nondegenerate bivector on S. Moreover, since any hamiltonian vector field η(f)
is tangent to S at points of S, the value {f, g}(x) = (η(f)g)(x), x ∈ S, depends only of g|S and by
the skew-symmetry the same is true with respect to f . In other words, {f |S, g|S}η|S = ({f, g}η)|S
for any f, g ∈ E(M) and the operation {, }η|S satisfies the JI, hence η|S is a nondegenerate Poisson
structure on S. This explains the term ”symplectic leaf” ((η|S)−1 is a symplectic form).

Example 1: Let M := R2, η = x1 ∂
∂x1 ∧ ∂

∂x2 . On the open set U := {x1 6= 0} the form (η|U)−1 =
−(1/x1)dx1 ∧ dx2 is symplectic. Thus the JI holds for {, }η on U and by continuity it holds also on
the whole M . The symplectic leaves are U and all the points on the line {x1 = 0}.
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Example 2: Let M := R3, η = ∂
∂x1 ∧ ∂

∂x2 . On each plane Pc := {x3 = c} the form (η|Pc)−1 =
−dx1 ∧ dx2 is symplectic. The JI holds for {, }η on Pc for any c ∈ R. Since Pc sweep the whole space
M as c runs through R, the JI holds for {, }η globally. The symplectic leaves are the planes Pc.

Example 3: Let M := R3, η = x1 ∂
∂x2 ∧ ∂

∂x3 + x2 ∂
∂x3 ∧ ∂

∂x1 + x3 ∂
∂x1 ∧ ∂

∂x2 (we will prove that this is a
Poisson bivector later). The symplectic leaves are . . .

Example 4: Let M = T2 × R, let y be a coordinate on the second component. Put η = ṽa,b ∧ ∂
∂y

,
where ṽa,b is the generator of winding line. η is Poisson because locally it looks like the bivector from
Example 2. If b/a is irrational, the symplectic leaves (which are two-dimensional) are dense in M .

Casimir functions of a Poisson structure η on M : Let U ⊂ M be an open set. We say
that f ∈ E(U) is a Casimir function if η(f) ≡ 0 on U . In particular, since {f, g} = η(f)g on U
the Casimir functions constitute the centre of the Lie algebra (E(U), {, }|U). The space of Casimir
functions over U will be denoted by Cη(U).

Proposition. The Casimir functions are constant on the leaves of the symplectic foliation.

Proof We have η(f)g = −η(g)f = 0 for any f ∈ Cη(U), g ∈ E(U). So, since η(g) span the
characteristic distribution, f is constant along its leaves. �

Example 1’: Cη(M) = R, the space of constant functions.

Example 2’: Cη(M) = Fun(x3), the space of functions functionally generated by x3.

Example 3’: Cη(M) = Fun((x1)2 + (x2)2 + (x3)2). Hence the symplectic leaves are the concentric
spheres and the point {(0, 0, 0)}.

Example 4’: If b/a is irrational Cη(M) = R. However, for sufficiently small U the space Cη(U) will
be functionally generated by one nonconstant function. So ”local Casimirs” are not obtained as the
restriction of the ”global Casimirs”.
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7 Lie–Poisson structures

References: [dSW99]

Definition I: Let (g, [, ]) be a finite-dimensional Lie algebra, g∗ its dual space (space of linear
functionals on g). Given f, g ∈ E(g∗) define {f, g}g(x) := 〈x, [df |x, dg|x]〉, x ∈ g∗. Here we identify
T ∗xg

∗ with g, 〈, 〉 stands for the canonical pairing between vectors and covectors.

Digression: Let M be a manifold, {, } : E(M) × E(M) → E(M) a bilinear operation being a
differentiation with respect to each argument: {fg, h} = f{g, h} + g{f, h}, {f, gh} = {f, g}h +
{f, h}g. Then it can be shown that there is a tensor η ∈ Γ (

⊗2 TM) such that {f, g} = η(df, dg).
Let us show this in the case when {, } is skew-symmetric.

Indeed, since {f, ·}, {g, ·} are differentiations they are vector fields, say Xf , Xg. Let f ∈ E(M)
be such that df |x = 0 for some x ∈ M . Then 〈Xf |x, dg|x〉 = (Xfg)(x) = {f, g}(x) = −{g, f}(x) =
−(Xgf)(x) = −〈Xg|x, df |x〉 = 0. Here g ∈ E(M) is arbitrary, hence Xf |x = 0. Thus the map
df |x → Xf |x depends only on the value of df at x, i.e. is given by a morphism T ∗M → TM .

Definition II: Let (g, [, ]) be a finite-dimensional Lie algebra, e1, . . . , en ∈ g its basis, x1 = e1, . . . , xn =
en these vectors regarded as linear functions on g∗ (in particular x1, . . . , xn are linear coordinates on
g∗). Let [ei, ej] = ckijek (ckij are called the structure constants corresponding to the basis e1, . . . , en).

Put ηg := ckijxk
∂
∂xi
∧ ∂

∂xj
.

Proposition. The bivector corresponding to the bracket {, }g coincides with ηg.

Proof Let η = ηij(x) ∂
∂xi
∧ ∂

∂xj
be the bivector corresponding to {, }g. Take f := xi, g := xj, then

{f, g}(x) = ηij(x). On the other hand, by Definition I, {f, g}(x) = 〈x, [xi, xj]〉 = ckijxk. �

Exercise: 1) Let η ∈ Γ (
∧2 TM), in local coordinates η = ηij(x) ∂

∂xi
∧ ∂

∂xj
. Show that the JI for

{, }, {f, g} = ηij(x) ∂f
∂xi

∂g
∂xj

holds if and only if the expression

[η, η]ijkS :=
∑

c.p. i,j,k

ηir(x)
∂

∂xr
ηjk(x)

vanishes for all i, j, k ∈ {1, . . . , n}. 2) Show that, given η, ζ ∈ Γ (
∧2 TM), η = ηij(x) ∂

∂xi
∧ ∂

∂xj
, ζ =

ζ ij(x) ∂
∂xi
∧ ∂

∂xj
, the expression

[η, ζ]ijkS :=
1

2

∑
c.p. i,j,k

ηir(x)
∂

∂xr
ζjk(x) + ζ ir(x)

∂

∂xr
ηjk(x)

is a local representation of a trivector on M (called the Schouten bracket of η and ζ). 3) If η =
v1 ∧ v2, ζ = w1 ∧ w2, vi, wi ∈ Γ (TM), then

[η, ζ]S ∼ [v1, w1] ∧ v2 ∧ w2 + v1 ∧ [v2, w1] ∧ w2 + v2 ∧ [v1, w2] ∧ w1 + v1 ∧ w1 ∧ [v2, w2].

Here ∼ means equality up to a constant.
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Proof of the Jacobi identity for the Lie–Poisson structure: [ηg, ηg]
ijk
S =

∑
c.p. i,j,k c

l
irxlc

r
jk.

The last expression vanishes for all i, j, k if and only if
∑

c.p. i,j,k c
l
irc

r
jk = 0 for all l, i, j, k, which is

equivalent to the JI for [, ]. �

8 Actions of Lie algebras and symplectic foliations of Lie–

Poisson structures

References: [dSW99]

An action of a Lie algebra g on a manifold: A homomorphism of Lie algebras ρ : (g, [, ]) →
(Γ (TM), [, ]) (in the target space [, ] stands for the commutator of vector fields) is called a (right)
action of g on M (a left action corresponds to an antihomomorphism, i.e. a map ρ : (g, [, ]) →
(Γ (TM), [, ]) such that ρ([v, w]) = −[ρ(v), ρ(w)], v, w ∈ g).

Orbits of an action ρ : (g, [, ])→ (Γ (TM), [, ]): Put Dx := {ρ(v)|x | v ∈ g}, x ∈M .

Proposition. Let g be finite-dimensional. Then the generalized distribution D := {Dx}x∈M is
integrable.

Proof The distribution D is involutive: [ρ(v), ρ(w)] = ρ([v, w]). Thus in the analytic category the
proof follows from the generalized Frobenius theorem. We skip the proof in the smooth case (roughly
it consists in integrating the action of the Lie algebra to a local action of the corresponding Lie group).
�

The leaves of the corresponding generalized foliation are called the orbits of the action ρ. If the
Lie algebra g is finite-dimensional, the action can be ”integrated” to a local action of a Lie group G
such that g is its Lie algebra. Then the orbits of the Lie algebra action and of the Lie group action
coincide.

Linear representations and actions: Let V be a vector space and A ∈ End(V ) a linear operator.
It induces a uniquely defined vector field Ã on V given by x 7→ (x,Ax) : V → V × V ∼= TV . If
e1, . . . , en is a basis of V , x1, . . . , xn the dual basis of V ∗ (i.e. the coordinates on V ) and Aei = Ajiej,
we have Ã = Ajix

i ∂
∂xj

.

Exercise: The map A 7→ Ã : End(V ) → Γ (TV ) is an antihomorphism of Lie algebras, i.e. a left
action of the Lie algebra End(V ) on V .

Let L : (g, [, ])→ (End(V ), [, ]) be a representation of a Lie algebra g in a vector space V . Then

the map L̃ : g → Γ (TM), L̃(x) := L̃(x) is a left action of g on the manifold V . Note, that the dual
representation L∗ : g→ End(V ∗) given by L∗(v) := (L(v))∗ is an antihomomorphism, hence the map

L̃∗ : g→ Γ (TM), L̃∗(v) := ˜(L(v))∗ is a right action of g on V .

The adjoint and coadjoint actions: Let (g, [, ]) be a Lie algebra. The homomorphism v 7→ adv :
g → End(g), where advw := [v, w], gives the adjoint representation (of g on g). The corresponding
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(left) action x 7→ ãdx : g→ Γ (Tg) is also called adjoint. The homomorphism v 7→ ad∗v : g→ End(g∗),

where ad∗v is the transposed operator to adv, and the corresponding (right) action x 7→ ãd∗v : g →
Γ (Tg∗) are called the coadjoint (anti)representation and action, respectively.

The symplectic leaves of the Lie-Poisson structure ηg on g∗ coincide with the orbits of the

coadjoint action : We claim that ãd∗v = ηg(v
′), where v′ denotes the linear function on g∗ defined

by an element v ∈ g. Indeed, let v = vjej, then v′ = vjxj. Here x1, . . . , xn are the elements e1, . . . , en

regarded as linear functions on g∗. Then advei = vjckjiek, ad∗vx
i = vjcijkx

k, hence ãd∗v = vjcijkxi
∂
∂xk

.

The last expression obviously coincides with ηg(v
′). �

An invariant symmetric bilinear form on (g, [, ]): A symmetric bilinear form (, ) : g × g → R
satisfying the equality (adxy, z) = −(y, adxz) for any x, y, z ∈ g.

Proposition. Let (, ) be a nondegenerate invariant symmetric bilinear form on g. Identify g with
g∗ by means of the map v 7→ (v, ·). Then the adjoint orbits become coadjoint ones under this
identification.

Proof Indeed, if A : g → g is a linear operator the transposed operator A∗ : g∗ → g∗ becomes the
adjoint one under this identification: (A∗y, z) = (y, Az) for any y, z ∈ g. Thus ad∗x becomes −adx.
�

Notations (for the Lie algebras): gl(n,R) := {n × n − matrices with real entries}, sl(n,R) :=
{x ∈ gl(n,R) | Tr(x) = 0}, so(n,R) := {x ∈ gl(n,R) | x = −xT}, sp(n,R) := {x ∈ gl(2n,R) |

xJ + JxT = 0}, here J =

[
0 In
−In 0

]
, In being the identity n × n-matrix. It is easy to see that

x ∈ sp(n,R) if and only if x =

[
a b
c −aT

]
, here a, b, c,∈ gl(n,R), b = bT , c = cT .

The sets above are Lie algebras with respect to the commutator of matrices.

Notations (for the Lie Groups): GL(n,R) := {X ∈ gl(n,R) | detX 6= 0}, SL(n,R) := {X ∈
gl(n,R) | detX = 1}, SO(n,R) := {X ∈ gl(n,R) | XXT = In}, SP (n,R) := {X ∈ gl(2n,R) |
XJXT = J}. All these sets are groups with respect to the matrix multiplication. It is easy to see
that if x ∈ g, where g is one of the Lie algebras above, then exp(x) ∈ G, where G is the corresponding
Lie group. Also g = TIG.

The Lie algebras from Examples 1-5, below, have an invariant nondegenerate symmetric form
(x, y) = Tr(xy) by means of which we can make an identification g ∼= g∗. The coadjoint orbits are
identified with the adjoint ones, which can be described as the orbits of the corresponding Lie group
with respect to the conjugation of matrices: {XxX−1 | X ∈ G}, x ∈ g.

Example 1: g := gl(n,R), Cηg(g) = Fun(Tr(x),Tr(x2), . . . ,Tr(xn)).

Example 2: g := sl(n,R), Cηg(g) = Fun(Tr(x2), . . . ,Tr(xn)). In particular, for n = 2 we have
a basis e1 := e11 − e22, e2 := e12, e2 := e21 and the commutation relations [e1, e2] = 2e2, [e1, e3] =
−2e3, [e2, e3] = e1. Hence ηg = x1

∂
∂x2
∧ ∂

∂x3
+ 2x2

∂
∂x1
∧ ∂

∂x2
− 2x3

∂
∂x1
∧ ∂

∂x3
. The Casimir function
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Tr(x2) reads as x2
1/2 + 2x2x3. The symplectic leaves are the 1-sheet hyperboloids, sheets of 2-sheet

hyperboloids, two sheets of the cone (without zero) and the point 0.

Example 3: g := so(2n,R), Cηg(g) = Fun(Tr(x2),Tr(x4) . . . ,Tr(x2n−2),Pf(x)).

Example 4: g := so(2n+ 1,R), Cηg(g) = Fun(Tr(x2),Tr(x4) . . . ,Tr(x2n)).

Example 5: g := sp(n,R), Cηg(g) = Fun(Tr(x2),Tr(x4) . . . ,Tr(x2n)).

Example 6 (the Heisenberg algebra): g := R3, [e1, e2] = e3, here e1, e2, e3 is the standard basis
of R3. We have ηg = x3

∂
∂x1
∧ ∂

∂x2
, Cηg(g∗) = Fun(x3), so the coadjoint orbits consist of the planes

{x3 = c}, c 6= 0 and of the points of the plane {x3 = 0}. The adjoint orbits are generated by the
vector fields ckijx

i ∂
∂xk

, where {xi} is the basis dual to {xi}, i. e. by x1 ∂
∂x3 , x

2 ∂
∂x3 , so they are the lines

parallel to the x3-axis and the points of this axis.
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9 Symplectic and Poisson reduction

References: [AG90]

Digression on linear algebra of skew-symmetric bilinear forms: Let V be a vector space,
ω ∈

∧2 V ∗,W ⊂ V a subspace. We put W⊥ω := {v ∈ V | ω(v,W ) = 0} and kerω := V ⊥ω =
{v ∈ V | ω(v, w) = 0 ∀w ∈ V }. We say that W is isotropic (coisotropic) if W ⊂ W⊥ω (respectively
W ⊃ W⊥ω). In case when ω is nondegenerate, or, in other words, symplectic, we call W lagrangian,
if it is maximal isotropic (i.e. W is isotropic and for any isotropic W ′ ⊃ W we have W ′ = W ).
Equivalently, W is lagrangian if it is minimal coisotropic.

Examples: Let e1, . . . , e2n be a basis of V , e1, . . . , e2n be the dual basis of V ∗, ω = e1∧en+1+· · · en∧e2n.
Then Wl := 〈e1, . . . , el〉 is isotropic for any l 6 n, W⊥ω

l = 〈e1, . . . en, en+l+1, . . . e2n〉 is coisotropic, Wn

is lagrangian.

A coisotropic submanifold of a symplectic manifold (M,ω): A submanifold N ⊂M such that
TxN is a coisotropic subspace of the sympectic vector space (TxM,ωx) for any x ∈M .

Proposition. Let f1, . . . , fk ∈ E(M) be such that N = {x ∈ M | f1(x) = 0, . . . fk(x) = 0}. Then
N is coisotropic if and only if {fi, fj}|N ≡ 0, i, j = 1, . . . , k.

Proof Let η := ω−1, then (TxN)⊥ωx = 〈η(f1)|x, . . . , η(fk)|x〉. Indeed, if w ∈ TxN , we have
ωx(w, η(fi)|x) = −ωx(η(fi)|x, w) = −dxfi(w) = 0. So the inclusion (TxN)⊥ωx ⊂ TxN is equivalent
to the equality dxfj(η(fi)|x) = 0, i, j = 1, . . . , k. On the other hand, dxfj(η(fi)|x) = (η(fi)fj)|x =
{fi, fj}|x. �

A coisotropic foliation of a symplectic manifold (M,ω): A foliation F on M such that each
leaf locally is a coisotropic submanifold.

Proposition. Let U ⊂ M be an open set such that F on U is given by {x ∈ U | f1(x) =
c1, . . . fk(x) = ck} for some f1, . . . , fk ∈ E(U). Then N is coisotropic if and only if {fi, fj} ≡ 0 on U
for any i, j = 1, . . . , k.

Linear version of symplectic reduction: Let (V, ω) be a symplectic vector space, W ⊂ V a
coisotropic subspace (i.e. W⊥ω ⊂ W ). Put W ′ := W/W⊥ω and let p : W → W ′ be the natural
projection. Then there exists a unique symplectic form ω′ on W ′ such that

p∗ω′ = ω|W ,

i.e. ω(v, w) = ω′(pv, pw) for any v, w ∈ W . To show this we observe that W⊥ω = kerω|W , so we can
put ω′(v +W⊥ω, w +W⊥ω) := ω(v, w).

Digression on factor manifolds: Let M be a manifold and K a foliation on M . The relation
”x ∼ y ⇔ (x and y belong to the same leaf)” is an equivalence relation on M and we shall denote
by M/K the topological quotient space M/ ∼. We say that M/K is good if the space M/K has a
structure of a smooth (analytic) manifold whose underlying topology is the quotient one such that
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the canonical projection M →M/K is a smooth (analytic) submersion (recall that a smooth map is
a submersion if the tangent map i s surjective at each point). If such a smooth (analytic) structure
exists it is unique.

Note that for any foliation K and small enough open sets U ⊂M the factor space U/K is good.

Symplectic reduction on a symplectic manifold (M,ω): Let N ⊂M be a coisotropic subman-
ifold. Put Dx := (TxN)⊥ωx ⊂ TxM .

Proposition. D := {Dx}x∈N is a integrable distribution on N .

Proof Let f1, . . . , fk ∈ E(U) be local functions defining N . Then Dx = 〈η(f1)|x, . . . , η(fk)|x〉 and
[η(fi), η(fj)]|x = ηx({fi, fj}|x) = 0. �

Put K for the foliation such that TK = D Assume that N ′ := N/K is good and put p : N → N ′

for the natural projection.

Proposition. There exists a unique symplectic form ω′ on N ′ such that

p∗ω′ = ω|N .

Proof Perform the linear symplectic reduction at each point. �

Example: Let M := T ∗R2 ∼= R4 and let ω = dp ∧ dq be the canonical form. Let N := {(q, p) |
H(q, p) = 1}, H(q, p) = q2

1 + q2
2 + (p1)2 + (p2)2. Then TK is generated by η(H) = 2(q1

∂
∂p1
− p1 ∂

∂q1
+

q2
∂
∂p2
−p2 ∂

∂q2
). This vector field has 3 first integrals: H, f1 := (q2

1 +(p1)2)−(q2
2 +(p2)2), f2 := 2(q1p

2−
q2p

1). Put f3 := 2(q1q2 + p1p2) and consider the map ϕ : R4 → R4 given by (q, p) 7→ (H, f1, f2, f3).
Restricting the map ϕ to the sphere N = S3, we get the map ψ : N → R3. In fact, because of the
relation f 2

2 + f 2
3 = H2 − f 2

1 the image of ψ lies in the 2-dimensional sphere N ′ := S2 in R3.

Exercise: 1) If f ′ := (f ′1, f
′
2, f

′
3) ∈ N ′, the preimage ψ−1(f) is a ”great circle” on N contained in the

plane

(1 + f ′1)q2 − f ′3q1 + f ′2p
1 = 0

(1 + f ′1)p2 − f ′2q1 − f ′3p1 = 0

for f 6= (0, 0,−1) and in the plane {q1 = 0, p1 = 0} for f = (0, 0,−1). 2) This plane is a complex
one dimensional subspace of the space C2 ∼= R4, where the complex coordinates are given by q1 +
ip1, q2 + ip2.

The fibration ψ : S3 → S2 is called the Hopf fibration. As a result of the symplectic reduction
we get a symplectic structure on S2 ∼= CP1. Analogous construction gives a symplectic structure on
CPn.

A particular case of Poisson reduction (informally): Let F be a coisotropic foliation on (M,ω)
and let D := {Dx}x∈M , Dx := (TxF)⊥ωx . Then D is an integrable distribution, put K for the foliation
such that TK = D. Assume that M ′ := M/K is good.

20



Now perform the symplectic reduction with respect to each leaf of F . As a result we will get
a foliation of M ′ by a symplectic (immersed) submanifolds. In fact this is a symplectic foliation of
some degenerate Poisson structure η′ on M ′.

Digression on projectability of tensor fields: Let p : M →M ′ be a surjective submersion. Put
p∗,x : TxM → Tp(x)M

′ for the tangent map. A vector field v ∈ Γ (TM) is said to be projectable with
respect to p if there exists a vector field v′ ∈ Γ (TM ′) such that v′p(x) = p∗,xvx for any x ∈M .

Let (x1, . . . , xk, y1, . . . , yl) be local coordinates on M such that (x1, . . . , xk) are local coordinates
on M ′ and p is given by p(x, y) = x. Then v is projectable if and only if v = ui(x) ∂

∂xi
+ wj(x, y) ∂

∂yj

(and if v is so, v′ = ui(x) ∂
∂xi

).

Analogously, one can define the projectability of bivector fields and show that η = ηij(x, y) ∂
∂xi
∧

∂
∂xj

+ζtu(x, y) ∂
∂xt
∧ ∂
∂yu

+ξrs(x, y) ∂
∂yr
∧ ∂
∂ys

is projectable if and only if ηij(x, y) = ηij(x) is independent
of y.

Poisson reduction formally: Let p : M → M ′ be a surjective submersion, K be the foliation of
the fibers of p. Let η ∈ Γ (

∧2 TM) be a nondegenerate Poisson structure and let ω := η−1.

Proposition. (Liebermann, Weinstein) The following conditions are equivalent: 1) η is projectable
with respect to p; 2) the distribution D,D := {Dx}x∈M , Dx := (TxK)⊥ωx , is integrable; 3) the set of
functions S := p∗(E(M ′)) constant along K is a Lie subalgebra with respect to {, }η.

Moreover, if η is projectable, η′ := p∗η is Poisson and the map p is Poisson, i.e. p∗ : (E(M ′), {, }η′)→
(E(M), {, }η) is a homomorphism of Lie algebras.

Proof Locally the leaves of K are given by {x1 = c1, . . . , x
k = ck} in the (x, y)-coordinates,

so Dx = 〈η(x1)|x, . . . , η(xk)|x〉 (we do not assume {xi, xj}η = 0). D is integrable if and only
if [η(xi), η(xj)] = η({xi, xj}) is a linear combination of η(x1), . . . , η(xk). Let us show that this
last condition is equivalent to condition 3). Indeed, put f(x, y) := {xi, xj}η and observe, that
η(f) = ∂f

∂xt
η(xt) + ∂f

∂yu
η(yu). Thus η(f) is a linear combination of η(x1), . . . , η(xk) if and only if the

function f does not depend on y, i.e. belongs to S. So we have proven 2)⇐⇒ 3).

Since ηij(x, y) = f(x, y) (see the previous subsection), we see that η is projectable if and only if
f does not depend on y, hence 1)⇐⇒ 3).

Finally, if η is projectable, the Poisson bracket corresponding to η′ is the restriction of {, }η to S,
hence satisfies the JI. �

Dual pairs of foliations (Poisson maps): Note that in the construction above we get a foliation
F such that TF = (TK)⊥ω. Since taking the skew-orthogonal complement of a subspace twice gives
the initial subspace, we also have TK = (TF)⊥ω. In such a situation we say that the foliations
K,F (and the natural projections M → M/K,M → M/F) form a dual pair. In the particular case
discussed in the context of symplectic reduction F was a coisotropic foliation and K an isotropic one
(since TK = (TF)⊥ω ⊂ TF).
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10 Hamiltonian reduction and the Arnold-Liouville theo-

rem

References: [Arn81]

Reduction of a hamiltonian system on (M,ω): Let v = η(H), η := ω−1, H ∈ E(M). Assume
that p : M → M ′ is surjective submersion such that η is projectable with respect to p and H is
constant along the fibers of p. Then v is also projectable with respect to p. Indeed, p∗v = η′(H ′),
where η′ := p∗η,H

′ ∈ E(M ′) is the unique function such that H = p∗H ′. The hamiltonian system
on (M ′, η′) given by the hamiltonian vector field v′ := p∗v is called the reduction of the initial
hamiltonian system with respect to p.

First integrals and reduction: Assume that g ∈ E(M) is a first integral of the hamiltonian vector
field v = η(H), i.e. vg = 0. The last can be rewritten as η(H)g = 0, or, equivalently, {H, g}η = 0.
Consider the foliation F := {g = const} of the level sets of the function g (we assume that dg 6= 0
everywhere) and the dual 1-dimensional foliation K generated by η(g). Then H is constant along
the leaves of K (because η(g)H = −η(H)g = 0) and the system can be reduced with respect to the
projection M →M/K (at least locally, since locally the factor space M/K is good).

Conclusion: any first integral allows to reduce a bihamiltonian system on (M,ω), dimM = 2n, to a
new hamiltonian system which is defined on a symplectic manifold of dimension 2n− 2.

More generally: k first integrals g1, . . . , gk in involution (i.e. such that {gi, gj} = 0) allow to reduce
the number of independent variables by 2k.

Even more generally: Assume there exists S ⊂ E(M), a Lie subalgebra with respect to {, }η consisting
of the first integrals of a hamiltonian system. Then it can be reduced to a hamiltonian system on a
smaller symplectic manifold. The last is a symplectic leaf of the reduced Poisson structure obtained
by the reduction of η with respect to the action of the Lie algebra η(S) ⊂ Γ (TM). The dimension
of this manifold depends on the structure of the Lie algebra (S, {, }η|S).

The Arnold–Liouville theorem: Let (M,ω) be symplectic, dimM = 2n. Assume a hamiltonian
vector field v(H) admits n functionally independent integrals g1 = H, g2, . . . , gn in involution. Then

1. if the common level sets Mc := {x ∈ M | gi = ci, i = 1, . . . , n} of these integrals are compact
and connected, they are diffeomorphic to (n-dimensional) tori Tn = {(ϕ1, . . . , ϕn)mod2π};

2. the restriction of the initial hamiltonian equation to Tn gives an almost periodic motion on Tn,
i.e. in the ”angle coordinates” ϕ the equation has the form

d−→ϕ
dt

= −→a ,

here −→a = (a1, . . . , an) is a constant vector depending only on the level;

3. the initial equation can be integrated in ”quadratures”, i.e. the solutions can be obtained by
means of a finite number of algebraic operations and operations of taking integral.
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Proof. The functional independence of g1, . . . , gn means linear independence of the differentials
dg1, . . . , dgn at each point of Mc. By the implicit function theorem Mc is a submanifold of M .

Lemma. 1 The vector fields η(g1), . . . , η(gn) are commuting, tangent to Mc and linearly independent
at each point of Mc.

Proof The linear independence follows from that of dg1, . . . , dgn and from nondegeneracy of η. The
vector fields are tangent to Mc because η(gi)gj = {gi, gj} = 0. The equality η({gi, gj}) = [η(gi), η(gj)]
shows the commuting property. �

Lemma. 2 Let N be a compact connected n-dimensional manifold which has n linearly independent
(at each point) commuting vector fields v1, . . . , vn. Then N is diffeomorphic to n-dimensional torus.

Sketch of proof Let Gti, i = 1, . . . , n, be the corresponding 1-parametric groups of diffeomorphisms of N . In
other words, d

dt |t=0G
t
ix = vi|x for any x ∈ N and Gt1+t2

i = Gt1i ◦ G
t2
i = Gt2i ◦ G

t1
i for any t1, t2 ∈ R (and

G0
i = Id, G−ti = (Gti)

−1). Note that Gti exist since by compactness of N the vector fields vi are complete.

Due to the commuting property of vector fields the diffeomorphisms also commute: Gti ◦Gt
′
j = Gt

′
j ◦Gti.

Thus the n-parametric family of diffeomorphisms Gt : N → N,Gt := Gt11 · · ·Gtnn , t := (t1, . . . , tn), has the
property Gt+t′ = Gt ◦Gt′ = Gt′ ◦Gt (and G0 = Id, G−t = (Gt)−1). In other words, we get an action of the
commutative group Rn on N .

Lemma. 3 This action is transitive, i.e. for any two points x0, x1 ∈ N there exists t such that Gtx0 = x1.

Proof Fix x0 and consider the map ψ : Rn → N,ψ(t) := Gtx0. This map is a local diffeomorphism: there
exists an open set U,0 ⊂ U ⊂ Rn such that ψ|U is a diffeomorphism onto V := ψ(U). Indeed, the derivative
ψ′(0) sends the standard basis {e1, . . . , en} of Rn to {v1|x0 , . . . , vn|x0}. The last vectors are independent,
hence ψ′(0) is nondegenerate and we can use the inverse function theorem.

Now connect x0 with x1 by a curve and cover this curve by a finite number of sets similar to V .
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Choose a point yi in each of the pairwise intersections of these sets and put y0 := x0, ym := x1. It is
clear that there exist ti such that Gtiyi = yi+1. Finally, put t := t0 + · · ·+ tm−1. �

Lemma. 4 The stabilizer Gx0 := {t ∈ Rn | Gtx0 = x0} ⊂ Rn of the point x0 ∈ N with respect to this action
is a discrete additive subgroup of Rn, independent of the choice of x0.

Proof Given any action of a group G on a set X, one proves immediately that the stabilizers are subgroups
and the stabilizers of points lying on one orbit are conjugate. Here N consists of one orbit and the group is
commutative. Thus Gx0 is a subgroup, the same for any point.

To prove that it is discrete, observe that the set U can not contain any point of Gx0 different from 0. �

Lemma. 5 For any discrete subgroup Λ ⊂ Rn there exist linearly independent vectors l1, . . . , lk ∈ Rn, k 6 n,
such that Λ = {

∑k
i=1 zili | zi ∈ Z}.

For the proof see the book: V. I. Arnold ”Metody matematyczne mechaniki klasycznej” (PWN, 1981),
Chapter 49.

Now we are ready to finish the proof of Lemma 2. Any orbit O of a (smooth) action of a Lie group G on
a manifold is diffeomorphic to the factor manifold G/Gx0 , where x0 ∈ O is any element. In our case O = N

is diffeomorphic Rn/Gx0 = Tk × Rn−k = {(ϕ1, . . . , ϕk; y1, . . . , yn−k)}, ϕimod2π. By compactness of N we
conclude that k = n and N ∼= Tn. �

So we have proven the first item of the A–L theorem. To show item 2 fix c and observe that the
diffeomorphism Tn → N := Mc can be included to the following commutative diagram:

Rn A−→ Rn

↓ p ↓ ψ
Tn −→ N

.

Here p is the natural projection and A is the linear isomorphism mapping the vectors 2πe1, . . . ,
2πen, where e1, . . . , en is the standard base in Rn, to l1, . . . , ln.

Obviously, η(H) = v1 = ψ∗(E1), where E1 is the constant vector field on Rn equal to e1 at 0.
Thus in the ϕ-coordinates on N the hamiltonian vector field η(H) has the form η(H) = (a1, . . . , an)
for some ai ∈ R. �

In order to prove item 3 of the A–L theorem we will build special coordinates on M , the ”action-
angle” coordinates.
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11 The ”action-angle” coordinates

References: [Arn81]

Digression: the Darboux theorem: Let ω be a symplectic form on M, dimM = 2n. Then in a
neighbourhood of any point there exist local coordinates (qi, pi) such that

ω = dpi ∧ dqi.

The coordinates (qi, pi) are called the Darboux coordinates (another name: the canonical coordinates)
for ω. Note that the Darboux coordinates are not unique. Given such coordinates (q, p), any
local symplectomorphism F , i.e. a local diffeomorphism preserving ω, will produce new Darboux
coordinates (F ∗q, F ∗p).

Description of the ”action-angle” coordinates: In the context of the Arnold–Liouville theorem,
we will build specific Darboux coordinates on M , the ”action-angle” coordinates. Let N := Mc be a
fixed common level set of the functions g1, . . . , gn.

The ”angles”: Note that, although we have defined the angles ϕ1, . . . , ϕn on a single level set, in fact
these functions are defined also on the neighbour levels and depend smoothly on the level. Indeed,
we can repeat the construction of the map ψ : Rn → N on neighbour levels. As a result we will get
a n-parameter family of maps ψc : Rn → Mc to which there corresponds a n-parameter family of
linear maps Ac : Rn → Rn such that the following diagram is commutative:

Rn Ac−→ Rn

↓ p ↓ ψc
Tn −→ Mc

.

The maps ψc and Ac smoothly depend on c, consequently so do the angles on Mc.

The (g, ϕ)-coordinates: We claim that in a neighbourhood of N the functions g1, . . . , gn together
with the angles ϕ1, . . . , ϕn form a system of local coordinates. Indeed, the functions g1, . . . , gn are
functionally independent by the assumption. They are also independent of the angles, because they
are constant on the vector fields η(g1), . . . , η(gn) which are linear combinations of ∂

∂ϕ1
, . . . , ∂

∂ϕn
.

The ”action-angle” coordinates (I, ϕ): These are coordinates such that: 1) the functions (I1, . . . , In)
depend only on g; 2) ω = dI i ∧ dϕi. In particular, (I, ϕ) are the Darboux coordinates on (M,ω).

The initial differential equation in different coordinate systems: Recall that in the ϕ-coordinates on
N the hamiltonian vector field η(H)|N has the form η(H) = (a1, . . . , an) for some ai ∈ R. The
corresponding differential equation is of the form:

d−→ϕ
dt

= −→a (c),

and its solutions are
−→ϕ (t) = −→ϕ (0) + t−→a (c).

Thus in the (g, ϕ)-coordinates the flow of η(H) is given by the equation

d−→g
dt

= 0,
d−→ϕ
dt

= −→a (g).
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Analogously, in the (I, ϕ)-coordinates the initial equation is of the form

d
−→
I

dt
= 0,

d−→ϕ
dt

= −→a (I).

However, due to the fact that (I, ϕ)-coordinates are canonical, we get −→a (I) = − ∂H

∂
−→
I
, ∂H
∂
−→ϕ = 0. Thus,

knowing the ”action-angle” coordinates, we can easily calculate the vector of ”frequences” −→a .

Finally the solutions of this equation are given by

−→
I = const,−→ϕ (t) = −→ϕ (0)− t ∂H

∂
−→
I
.

Construction of the ”action-angle” coordinates (a sketch): Geometrically we can explain
this construction as follows.

Let (M,ω), dimM = 2n, be a symplectic manifold and g : M → B a lagrangian fibration, i.e.
a surjective submersion all fibers of which are lagrangian submanifolds in M . Let c ∈ B. Let us
explain how the construction of the action of Rn on Mc := g−1(c) described in the previous section
can be done simultaneously for all points from some neighbourhood U of c.

Namely, let α ∈ T ∗c B and let f ∈ E(B) be such that dcf = α. It is easy to see that the
vector field η(g∗f), η := ω−1, is tangent to Mc (because η(g∗f)g∗h = 0 for any f, h ∈ E(B)) and its
restriction η(g∗f)|B is independent of the choice of f (if f ′ is another function with dcf

′ = α, we have
(g∗f − g∗f ′)|B ≡ 0 and η(g∗f − g∗f ′)|B ≡ 0). Thus we get a linear mapping α 7→ v(α) := η(g∗f)|B :
T ∗c B → Γ (TB), i.e. an action of the abelian (commutative) Lie algebra T ∗c B on Mc. Integrating
this action (i.e. passing from vector fields to their flows) we get an action of the abelian group T ∗c B
on Mc. Recall that fixing a point xc ∈ Mc we obtain a lattice Λxc ⊂ T ∗c B, the stabilizer of xc with
respect to this action.

Now allow c to move over U . Repeating this construction for all points in U , we will have to
choose xc ∈ Mc, i.e. a section of g. Let us do this smoothly. As a result our lattice Λxc will depend
smoothly on c and we will get n one-forms l1, . . . , ln ∈ Γ (T ∗B), the generators of this lattice.

It turns out that: 1) the section c 7→ xc can be so chosen that its image will be a lagrangian
submanifold in M ; 2) if it will be chosen in such a way, the corresponding one-forms l1, . . . , ln will
be closed, i.e. locally li = dIi for some functions Ii.

These last are the action coordinates we are looking for.

Analytically one can calculate the action coordinates as follows.

Proposition. If U ⊂ B is small enough the symplectic form ω is exact on g−1(U).

Proof We will use the De Rham theorem: Hk
DR(M,R) ∼= (Hk(M,R))∗. Here Hk

DR(M,R) stands for
the space of the k-th De Rham cohomology, i.e. the factor space of closed modulo exact smooth
k-forms. Hk(M,R) is the space of the so-called singular k-th homology. It is known that it is
isomorphic to its ”smooth variant”, which can be described as follows. Let Ck(M,R) denote the
space of finite formal linear combinations aifi, where ai ∈ R and fi are smooth k-simplices in
M , i.e. smooth maps from open neighbourhoods of k-dimensional simplices in Rk to M . The
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boundary operator ∂k : Ck(M,R) → Ck−1(M,R) satisfies the identity ∂k−1 ◦ ∂k = 0, so one can set
Hk(M,R) := ker ∂k/ im ∂k+1.

Given α ∈ Γ (
∧k T ∗M), aifi ∈ Ck(M,R), put 〈α, aifi〉 := ai

∫
im(fi)

α. The De Rham theorem says

that in fact this pairing 1) induces a pairing between Hk
DR(M,R) and Hk(M,R) (this follows from

the Stokes formula); 2) the induced pairing is nondegenerate.

In particular, it follows from the De Rham theorem that if the integral of a closed k-form over
all the smooth k-cycles (i.e. the elements of ker ∂k) is zero, then this form is exact.

Now any 2-cycle f in g−1(U) is homotopically equivalent to some cocycle f̃ in Mc, c ∈ U . Thus∫
im f

ω =
∫

im f̃
ω = 0. The last equality holds due to the fact that the restriction of ω to Mc is zero.

�

Let λ be the corresponding potential, dλ = ω. Let γ1,c, . . . , γn,c be the smooth closed curves on
Mc
∼= TN representing the basis of H1(Mc,R) ∼= Rn. Put

Ii(c) := (1/2π)

∫
γi,c

λ.

Proposition. 1. This does not depend on the choice of the representatives.

2. This does not depend on the choice of the potential.

Proof follows from the Stokes formula.

Example (harmonic oscillator I): Let M = R2, H = (1/2)(p2+q2), ω = dp∧dq. Then in the polar
coordinates q = r cosϕ, p = r sinϕ we have dp ∧ dq = − sinϕdr ∧ r sinϕdϕ + cosϕrdϕ ∧ cosϕdr =
−rdr ∧ dϕ = d(−r2/2) ∧ dϕ. Hence I = −H.

Example (harmonic oscillator II): Let M = R2, H = (1/2)(a2p2 + b2q2), ω = dp ∧ dq. The
hamiltonian vector field is η(H) = −a2p∂

∂q
+ b2q ∂

∂p
, here η = ω−1 = − ∂

∂p
∧ ∂

∂q
. The level sets

Mc = {(q, p) | H(q, p) = c} are ellipses {(q, p) | q2/(2c/b2) + q2/(2c/a2) = 1} with the semiaxes√
2c/b,

√
2c/a. Note that the standard parametrization of the ellipse, ϕ 7→ (

√
2c/b cosϕ,

√
2c/a sinϕ)

is not a trajectory of η(H)

The recipe gives I(c) = 1
2π

∫
Mc
pdq = 1

2π

∫
Mc

ω = − c
ab

, which up to − 1
2π

is the area of the figure

M c := {(q, p) | q2/(2c/b2) + q2/(2c/a2) 6 1} bounded by the ellipse. From this we conclude that
H = −abI and that the solution of the hamiltonian system

q̇ = −a2p, ṗ = b2q

is given by H = c, ϕ(t) = ϕ(0)− t∂H
∂I

= ϕ(0) + tab or, in other words, by

t 7→ ((
√

2c/b) cos(t0 + tab), (
√

2c/a) sin(t0 + tab)).
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12 Hamiltonian actions and moment maps

References: [dSW99]

A symplectic action of a Lie algebra g on (M,ω): An action ρ : g → Γ (TM) such that
Lρ(v)ω = 0 for any v ∈ g. Here L is the Lie derivative, the Cartan formula for it gives:

Lρ(v)ω = iρ(v)dω + diρ(v)ω = diρ(v)ω.

A weakly hamiltonian action of a Lie algebra g on (M,ω): An action ρ : g → Γ (TM) such
that there exists a linear map J : g→ E(M) and the following diagram is commutative:

g
J //

ρ

##HHHHHHHHHH E(M)

η(·)
��

Γ (TM) ,

i.e. ρ(v) = η(J (v)) for any v ∈ g.

Remark If J is finite-dimensional, we can weaken the requirement: the map J a priori need not
be linear (i.e. we only require that any vector field ρ(v) is hamiltonian). If J is any map with the
property ρ(·) = η(J (·)), we can make it linear: let e1, . . . , ek be a basis of g, put J ′(ei) := J (ei), i =
1, . . . , k, and extend this by linearity. The new map J ′ satisfies ρ(v) = η(J ′(v)) and is linear.

Any weakly hamiltonian action is symplectic: diη(f)ω = ddf = 0. Conversely, any symplectic
action is locally weakly hamiltonian: diρ(v)ω = 0 implies by the Poincaré lemma that iρ(v)ω = df for
some function f , hence ρ(v) = η(f).

A moment map of a weakly hamiltonian action ρ : g→ Γ (TM): the map J : M → g∗ ”dual
to J ”, i.e.

J (v)(x) = 〈v, J(x)〉, x ∈M, v ∈ g.

Let J ′ : g→ E(M) be another map with the property ρ(v) = η(J ′(v)). Then η((J ′−J )(v)) = 0,
hence C := J ′−J takes values in the space of Casimir functions of η (equal to R if M is connected,
which is assumed) and J ′ = J + C, where C : g → R is a linear map. The corresponding moment
map J ′ : M → g is given by

〈v, J ′(x)〉 = J ′(v)(x) = J (v)(x) + C(v),

i.e. differs from J by a constant addend C ∈ g∗.

Remark: The map J determines the moment map J by the formula above uniquely, but the converse
also is true. Thus any smooth map J : M → g∗ generates a linear map J : g → E(M) and,
consequently, a linear map ρ : g → Γ (TM) (ρ := η ◦ J ). In order that this map is an action, we
need to make some additional assumptions on J (see the end this lecture).

A hamiltonian action of a Lie algebra g on (M,ω): A weakly hamiltonian action ρ : g→ Γ (TM)
such that among linear maps J : g → E(M) with the property ρ(·) = η(J (·)) there exists a
homomorphism of Lie algebras (g, [, ]) and (E(M), {, }η).
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Remark Note that for any other map J ′ = J +C with ρ(·) = η(J ′(·)) we have: J ′[v, w] = J [v, w] +
C([v, w]) = {J v,Jw}η+C([v, w]) = {J v+C(v),Jw+C(w)}η+C([v, w]) = {J ′v,J ′w}η+C([v, w]).
thus J ′ is a homomorphism if an only if C vanishes on the commutant [g, g] = {[v, w] | v, w ∈ g}
of the Lie algebra g. If g is semisimple (as sl(n,R), so(n,R), sp(n,R)), we have g = [g, g], hence the
homomorphic J is defined uniquely.

Proposition. A map J : g→ E(M) is a homomorphism if and only if the corresponding moment
map J : M → g∗ is Poisson, here g∗ is endowed with the Lie-Poisson structure ηg.

Proof Let e1, . . . , en be a basis of g and let y1, . . . , yn be the the elements of this basis regarded as
linear functions on g∗. With these notation we have in view of f the definition of the moment map
the following equalities: J ei = J∗yi, i = 1, . . . , n.

Denote by ckij the corresponding structure constants: [ei, ej] = ckijek. Assume J is a homomor-
phism, i.e. {J ei,J ej}η = ckijJ ek. This can be rewritten as {J∗yi, J∗yj}η = ckijJ

∗yk = J∗{yi, yj}ηg ,
which means the Poisson property of the moment map. Inverting the considerations we get also
another implication. �

Remark: Similarly to the case of weakly hamiltonian actions any smooth Poisson map J : M → g∗

generates a hamiltonian action of g on M such that one of its moment maps coincide with J .

Hamiltonian actions and projectability: Let ρ : g→ Γ (TM) be a hamiltonian action such that
its orbits form a foliation F and the factor space M/F is good. Let p : M →M ′ := M/F be the nat-
ural projection. Then η := ω−1 is projectable with respect to p. Indeed, TF = 〈η(J e1), . . . , η(J en)〉
and the dual foliation is given by {J e1 = c1, . . . ,J en = cn}, i.e. coincides with the fibers of the
moment map. As a result we get a dual pair of Poisson maps

(M, η)
J

%%KKKKKKKKKK
p
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(M ′, p∗η) (g∗, ηg).

Example 1: Let H : M → R be any function with the nonvanishing differential. Then we have
ρ : R→ Γ (TM), 1 7→ η(H),J : R→ E(M), 1 7→ H, J = H,TF = 〈η(H)〉

(M, η)
H=J

''NNNNNNNNNNN
p

wwppppppppppp

(M/F , p∗η) (R = R∗, 0).

In particular, if M := T ∗R2 \ {0}, ω = dp ∧ dq,H(q, p) = q2
1 + q2

2 + (p1)2 + (p2)2, we get the Hopf
fibrations over the symplectic leaves of p∗η.

Example 2: Let M ⊂ g∗ be a coadjoint orbit endowed with the canonical symplectic form ω :=
(ηg|M)−1. Then the coadjoint action ρ : g → Γ (Tg∗), v 7→ ãd∗v is hamiltonian. Indeed, ãd∗v = ηg(v

′)
(see Lecture 8) where v′ denotes the linear function on g∗ defined by an element v ∈ g. Thus
J : g→ E(M) is given by v 7→ v′|M and J : M → g∗ coincides with the inclusion M ↪→ g∗.
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Example 3: Let ρ : g → Γ (TM) be a hamiltonian action with a moment map J : M → g∗ and
let h ⊂ g be a Lie subalgebra. Then ρ|h : h→ Γ (TM) is a hamiltonian action and its moment map
Jh : M → h∗ is given by i∗ ◦ J , where i∗ : g∗ → h∗ = g/h⊥ is the projection dual to the inclusion
i : h ↪→ g.

Remark about relations between weakly hamiltonian and hamiltonian actions: Let ρ :
g→ Γ (TM) be a weakly hamiltonian action. Let us examine obstructions for ρ to be a hamiltonian
action.

Let J : g → E(M) be map with the property ρ(·) = η(J (·)). Put c(v, w) := {J v,Jw}η −
J ([v, w]).

Proposition. 1. c(v, w) is a constant function for any v, w ∈ g;

2. c is a 2-cocycle on the Lie algebra g, i.e. it is a bilinear skew-symmetric function on g satisfying∑
c.p. v,w,u c([v, w], u) = 0 for any v, w, u ∈ g.

Proof Item 1. We have η(c(v, w)) = η({J v,Jw}η − J ([v, w])) = [η(J v), η(Jw)] − ρ([v, w]) =
[ρ(v), ρ(w)]− ρ([v, w]) = 0, hence c(v, w) is a Casimir function for η.

Item 2. We have {J [v, w],J u}η = η(J [v, w])J u = ρ([v, w])J u = [ρ(v), ρ(w)]J u = ρ(v)ρ(w)J u −
ρ(w)ρ(v)J u = ρ(v)η(Jw)J u − ρ(w)η(J v)J u = ρ(v){Jw,J u}η − ρ(w){J v,J u}e =
{J v, {Jw,J u}η}η − {Jw, {J v,J u}η}η.

Hence
∑

c.p. v,w,u c([v, w], u) =
∑

c.p. v,w,u{J [v, w],J u}η − J ([[v, w], u])) = 0 due to the Jacobi
identity for [, ] and {, }η. �

It is known that for a semisimple g any 2-cocycle c is cohomologically trivial, i.e. there exists
C ∈ g∗ such that c(v, w) = C([v, w]).

Proposition. If the cocycle c is trivial, the map J ′ := J + C : g→ E(M) is a homomorphism.

Proof J ′([v, w]) = J ([v, w]) + C([v, w]) = J ([v, w]) + {J v,Jw}η − J ([v, w]) = {J v,Jw}η =
{J ′v,J ′w}η. �

We conclude that for semisimple g any weakly hamiltonian action is hamiltonian.

In general, the cocycle c is nontrivial. Note that c is defined nonuniquely, since so is the map J .
Taking J ′ = J + C (see Remark above) we get the formula c′(v, w) = {J ′v,J ′w}η − J ′([v, w]) =
{J v,Jw}η−J ([v, w])−C([v, w]) = c(v, w)−C([v, w]), i.e. the nontriviality of c does not depend on
the choice of J . So there exist weakly hamiltonian actions not being hamiltonian. For such actions
the moment map is not Poisson, but one can modify the Poisson structure on g∗ (adding a cocycle
to ηg and obtaining a Poisson structure with affine coefficients) in such a way that the moment map
will be Poisson.
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13 Right and left actions on T ∗G. Hamiltonian actions and

completely integrable systems

The cotangent lift of a vector field: Put M := T ∗Q. Let ζ ∈ Γ (TQ) be a vector field. Then it can
be interpreted as a function Hζ : T ∗Q→ R, Hζ(α) := 〈α, ζ|x〉, α ∈ T ∗xQ. Put ζt := η(−Hζ), η := ω−1,
where ω is the canonical symplectic form on T ∗Q. We say that ζt is the cotangent lift of ζ.

In the (q, p)-local coordinates on T ∗Q we have Hζ(q, p) = piζ
i(q) for ζ = ζ i(q) ∂

∂qi
(because

Hζ(α) = αiζ
i(q) for α = αidq

i) and ζt =
∂Hζ
∂pi

∂
∂qi
− ∂Hζ

∂qi
∂
∂pi

= ζ i(q) ∂
∂qi
−pj ∂ζ

j

∂qi
∂
∂pi

. Note that Hζ = λ(ζ),
where λ = pdq is the canonical Liouville 1-form on M .

Proposition. The map ζ 7→ ζt : Γ (TQ)→ Γ (TM) is a homomorphism of Lie algebras.

Proof We will prove that the map ζ 7→ −Hζ : (Γ (TQ), [, ]) → (E(M), {, }η) is a homomorphism of

Lie algebras. Indeed, {−Hζ ,−Hξ}η = −∂Hζ
∂pi

∂Hξ
∂qi

+
∂Hξ
∂pi

∂Hζ
∂qi

= −ζ i(q)pj ∂ξ
j

∂qi
+ ξi(q)pj

∂ζj

∂qi
= −H[ζ,ξ]. �

Thus we get a (hamiltonian) right action ζ 7→ ζt of the Lie algebra Γ (TQ) on M .

The cotangent lift of a right action ρ : g→ Γ (TQ): this is a hamiltonian action ρt : g→ Γ (TM)
given by ρt(v) := (ρ(v))t. The corresponding map J : g → E(M) is given by v 7→ −Hρ(v) and
the corresponding moment map J : M → g∗ is given by 〈v, J(x)〉 = J (v)(x) = −Hρ(v)(x) =
−λ(ρ(v))(x), v ∈ g, x ∈M .

Left and right invariant vector fields on a Lie group G: Let G be a Lie group, g = TeG its
Lie algebra. Given g ∈ G put Lg : G→ G,Lgg

′ := gg′, Rg : G→ G,Rgg
′ := g′g. Given v ∈ g put

vl(g) := (Lg)∗v, vr(g) := (Rg)∗v.

The vector field vl is left invariant, i.e. for any g′ ∈ G we have (Lg′)∗vl(g) = vl(g
′g). Indeed,

(Lg′)∗vl(g) = (Lg′)∗(Lg)∗v = (Lg′g)∗v = vl(g
′g). Analogously vr is right invariant.

Proposition. 1. The maps v 7→ vl : g → Γ (TG), v 7→ vr : g → Γ (TG) are a homomorphism
and an antihomomorphism of Lie algebras, respectively.

2. [vl, wr] = 0 for any v, w ∈ g.

Remark: Item 2 is an infinitesimal emanation of the fact that Lg and Rg′ commute for any g, g′ ∈ G.

Example: Let G := GL(n,R) (nondegenerate n × n-matrices with real entries) g = gl(n,R) =
TIG (all n × n-matrices with real entries). Since G is an open set in a vector space, we have
TG = G × g and any vector field is of the form X 7→ (X, V (X)) i.e. is represented by a ma-

trix valued function V (X) =

 V11(X) . . . V1n(X)
. . .

Vn1(X) . . . Vnn(X)

. It is easy to see that if V ∈ g, then

Vl(X) = XV, Vr = V X. In other words, Vl = XijVjk∂ik, Vr = VijXjk∂ik. Thus we have [Vl,Wl] =
(XijVjk∂ikXi′j′Wj′k′)∂i′k′−. . . = (XijVjkδii′δkj′Wj′k′)∂i′k′−. . . = (XijVjkWkk′)∂ik′−(XijWjkVkk′)∂ik′ =
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Xij[V,W ]jk′∂ik′ = [V,W ]l and [Vl,Wr] = (XijVjk∂ikWi′j′Xj′k′)∂i′k′ − (WijXjk∂ikXi′j′Vj′k′)∂i′k′ =
(XijVjkWi′j′δij′δkk′)∂i′k′ − (WijXjkδii′δkj′Vj′k′)∂i′k′ = (XijVjkWi′i)∂i′k − (WijXjkVkk′)∂ik′ = 0.

Let us define a right action ρl : v 7→ vtl : g → Γ (TT ∗G) of g on T ∗G and a left action ρr : v 7→
vtr : g→ Γ (TT ∗G) of g on T ∗G. These actions are hamiltonian, the corresponding J -maps are given
by Jl : v 7→ −Hvl and Jr : V 7→ −Hvr and the corresponding moment maps Jl, Jr : T ∗G → g∗ are
〈Jl(x), v〉 = −Hvl(x), 〈Jr(x), v〉 = −Hvr(x), x ∈ T ∗G, v ∈ g.

Proposition. The orbits of the action ρl coincide with the fibers of the moment map Jr and vice
versa.

Proof We know that the fibers of the moment map Jr are skew-orthogonal with respect to ω to the
orbits of the action ρr. Let us prove that the orbits of ρl are also skew-orthogonal to that of ρr.

Indeed, ω(η(Hvl), η(Hvr)) = dHvl(η(Hvr)) = η(Hvr)Hvl = {Hvr , Hvl}η = −H[vr,vl] = 0. �

Summarizing, we get the following dual pair of Poisson maps:

(T ∗G, η)
Jl

&&MMMMMMMMMM
−Jr

xxrrrrrrrrrr

(g∗, ηg) (g∗, ηg).

Complete families of functions in involution: Let (M, η) be a Poisson structure. Let Sing η
denote the union of all symplectic leaves of η of nonmaximal dimension.

We say that a set I ⊂ E(M) is a family of functions in involution if {f, g}η = 0 for any f, g ∈ I.
We say that a family I of functions in involution is complete if there exists an open dense set U ⊂M
such that dim Span{dxf | f ∈ I} = (1/2)rank ηx + dimM − rank ηx = dimM − (1/2)rank ηx for any
x ∈ U \ (U ∩ Sing η) (in other words, the common level sets of functions from I form a lagrangian
foliation in any symplectic leaf of η on U \ (U ∩ Sing η)).

Example 1. Let η be nondegenerate. Then I is complete if and only if the common level sets form a
lagrangian foliation on an open dense subset in M .

Example 2. Let M be 3-dimensional and rank ηx = 2 on an open dense subset U ⊂ M . Assume f
is a Casimir function for η on U and g is any function whose differential is linearly independent of
that of f on U . Then f, g functionally generate a complete set of functions in involution.

For instance, let M = g = so(3,R) = R3, η = ηg. Then f = x2
1 + x2

2 + x2
3 and we can take any

independent g, say g = x1. The corresponding lagrangian foliation consists of the circles obtained by
the intersections of concentric spheres and parallel planes {x1 = const}. We can take U = R3 \{x2 =
0, x3 = 0}.

Let (M, η) be a nondegenerate Poisson structure and let p′ : M → M ′, p′′ : M → M ′′ be a dual
pair of surjective Poisson maps. Put η′ := p′∗η, η

′′ := p′′∗η.

(M, η)
p′′

&&LLLLLLLLLL
p′

yyssssssssss

(M ′, η′) (M ′′, η′′).
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Proposition. Assume I ′ ⊂ E(M ′), I ′′ ⊂ E(M ′′) are complete families of functions in involution
for η′, η′′ respectively. Put ((p′)∗I ′) = {((p′)∗f) | f ∈ I ′} and ((p′′)∗I ′′) = {((p′′)∗g) | g ∈ I ′′}. Then
the set I := ((p′)∗I ′) + ((p′′)∗I ′′) ⊂ E(M) is a complete family of functions in involution for η.

Proof Let us first prove that the functions from I are in involution. Indeed, the functions form (p′)∗I ′ are in
involution because so are the functions from I ′ and the map (p′)∗ is a homomorphism of Poisson brackets.
The same argument works for (p′′)∗I ′′. Finally, any function f ′ from (p′)∗I ′ commutes with any function f ′′

from (p′′)∗I ′′ due to the skew-orthogonality of the fibers of p′ and p′′ (recall that η(f ′), η(f ′′) are tangent to
the fibers of p′′, p′, respectively): {f, g}η = η(f)g = −ω(η(f), η(g)) = 0.

Now let us prove the completeness. Let F ′,F ′′ denote the foliations of fibers of p′, p′′ respectively. Notice
that D := TF ′+ TF ′′ is an integrable generalized distribution. Indeed, let (x, y) be local coordinates on M
such that the foliation F ′ is given by {x1 = c1, . . . , x

k = ck}. Then D = 〈 ∂
∂y1

, . . . , ∂
∂yn−k

, η(x1), . . . , η(xk)〉,
here n := dimM . Since η is projectable along F ′, the vector fields η(x1), . . . , η(xk) form an involutive
generalized distribution (see the Liebermann–Weinstein criterion of projectability). Since the coefficients of
these vector fields depend only on x they commute with ∂

∂y1
, . . . , ∂

∂yn−k
. Obviously the generalized foliation

F tangent to D is the pull-back (with respect to p′′) of the symplectic foliation of η′′ (whose characteristic
distribution is spanned by η(x1), . . . , η(xk)). Due to the symmetry of the objects with prime and double
prime we deduce that F is also the pull-back with respect to p′ of the symplectic foliation of η′. We conclude
that corank η′p′(z) = corank η′′p′′(z) for any z ∈M (here by definition the corank of a bivector η on a manifold
M at a point z ∈M is the difference dimM − rank ηz).

Let U ′, U ′′ stand for the corresponding open dense sets in M ′,M ′′ appearing in the definition of the
completeness of I ′, I ′′. Put V := (p′)−1(U ′ \ (U ′ ∩ Sing η′))∩ (p′′)−1(U ′′ \ (U ′′ ∩ Sing η′′)), V ′ := p′(V ), V ′′ :=
p′′(V ). The above considerations show that and that (p′)∗Cη′(V ′) = (p′′)∗Cη′′(V ′′) =: Z (recall that Cη(U)
denotes the space of the Casimir functions of a bivector η over an open set U).

Let us choose a functional basis {f1, . . . , fs′} of I ′ such that f1|V ′ , . . . , fr′ |V ′ is a functional basis of Cη′(V ′)
and any functional basis {g1, . . . , gs′′} of I ′′. Then the functions (p′)∗fr′+1, . . . , (p′)∗fs′ , (p′′)∗g1, . . . , (p′′)∗gs′′
are functionally independent on V since

{(p′)∗f |V | f ∈ E(V ′)} ∩ {(p′)∗g|V | g ∈ E(V ′′)} = Z.

Now, we have

s′ − r′ =
1
2

rank η′p′(z) =
1
2

(dimTzF ′′ − dimTzF ′′ ∩ TzF ′),

s′′ =
1
2

rank η′′p′′(z) + corank η′′p′′(z) =
1
2

(dimTzF ′ − dimTzF ′′ ∩ TzF ′) + dimTzF ′′ ∩ TzF ′,

and, finally

s′ − r′ + s′′ =
1
2

(dimTzF ′′ + dimTzF ′) =
1
2

dimM.

Here z is any point of V . �

Example: the Euler–Manakov top (n-dimensional free rigid body): Let G = SO(n,R),M =
T ∗G. Let b(v, w) be a positively defined scalar product on so(n,R)∗ ∼= so(n,R) =: g. Then there
exists an operator A : so(n,R) → so(n,R), which is symmetric with respect to the standard scalar
product (v, w) := −Tr(vw), i.e. (Av,w) = (v, Aw), such that b(v, w) = (Av,w), v, w ∈ g. Let
bl : T ∗G×G T ∗G→ R denote the left invariant extension of the scalar product b to a (contravariant)
metric on G and let B : T ∗G→ R denote the corresponding quadratic form.
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The Euler–Manakov top is the hamiltonian system with the hamiltonian function H := B : M →
R in case when the operator A is given by A := L−1, Lv := Dv + vD, where D := diag(λ1, . . . , λn),
a diagonal matrix with the eigenvalues λ1, . . . , λn. The eigenvalues λi coincide with the ”moments
of inertia”

∫
V
x2
iσ(x)dx, where V is the region in Rn occupied by the body and σ(x) is the density

function.

Consider the classical Euler case, n = 3. The hamiltonian function is left invariant. This means
that it belongs to the family (p′)∗I ′ in the notations of the fact above, where p′ = −Jr. Consider
the set I ′′ functionally generated by the Casimir function f on so∗(3,R) and any other independent
function g. The functions H, (p′′)∗f, (p′′)∗g, where p′′ := Jl are independent first integrals in involu-
tion. Thus we have proven the complete integrability of the Euler top (because the dimension of the
phase space M is 6).

In the general case (n > 3) we need more functions in involution for integrating the system.
In the next sections we will construct complete families of functions in involution on g∗ for any
semisimple g (these families will play a role of I ′′). We will also construct complete families of
functions in involution on so(n,R)∗ playing the role of I ′ and containing the reduced hamiltonian
b(v, v) = −Tr((Av)v) =

∑
i<j(λi + λj)

−1v2
ij.

34



14 Poisson pencils and families of functions in involution

References: [Mag78]

A Poisson pencil on M : Let a pair (η1, η2) of linearly independent bivectors on a manifold M be
given. Assume ηt := t1η1 + t2η2 is a Poisson structure for any t = (t1, t2) ∈ R2. We say that the
Poisson structures η1, η2 are compatible (or form a bihamiltonian structure or a Poisson pair) and
that the whole family Θ := {ηt}t∈R2 is a Poisson pencil.

Exercise: Show that the following conditions are equivalent:

1. ηt is Poisson, i.e. [ηt, ηt]S = 0, for any t ∈ R2 (here [, ]S is the Schouten bracket);

2. [ηt, ηt]S = 0 for any three pairwise nonproportional values of t ∈ R2;

3. [η1, η1]S = 0, [η1, η2]S = 0, [η2, η2]S = 0.

Example 1: Let η1, η2 be bivectors on Rn with constant coefficients. Then they form a Poisson pair
(recall that, given a bivector η = ηij(x) ∂

∂xi
∧ ∂

∂xj
, we have [η, η]ijkS :=

∑
c.p. i,j,k η

ir(x) ∂
∂xr
ηjk(x)).

Example 2: Let g be a Lie algebra and ηg the Lie–Poisson structure on g∗. Let c : g × g → R be
a 2-cocycle on g, i.e. c is skew-symmetric and

∑
c.p. v,w,u c([v, w], u) = 0 for any v, w, u ∈ g. Then

c ∈ (g ∧ g)∗ ∼= g∗ ∧ g∗ can be regarded as a bivector on g∗ with constant coefficients. It turns out
that (η1, η2), where η1 := ηg, η2 := c, is a Poisson pair.

Indeed, it is easy to see that the bracket [(v, α), (w, β)]′ := ([v, w], c(v, w)) defines a Lie algebra
structure on g′ := g × R (Exercise: check this). The R-component lies in the centre of g′, we say
that g′ is a central extension of g. The affine subspaces g∗x0

:= g∗ × x0 ⊂ (g′)∗ = g∗ × R are Poisson
submanifolds of the Poisson manifold ((g′)∗, ηg′). The restriction ηg′|g∗x0 coincides with η1 + x0η2, i.e.

the last bivector is Poisson at least for three different values of x0. We conclude that (η1, η2) is a
Poisson pair.

In coordinates this looks as follows. Let e1, . . . , en be a basis of g and [ei, ej] = ckijek, c(ei, ej) =
cij, i, j, k = 1, . . . , n, for some constants ckij, cij ∈ R. Put η′0 := (0, 1), η′i := (ηi, 0) ∈ g′, i = 1, . . . , n,
and let x′0, . . . , x

′
n denote the same elements regarded as coordinates on (g′)∗. Then ηg′ = (ckijx

′
k +

x′0cij)
∂
∂x′i
∧ ∂
∂x′j

and ηt = (t1c
k
ijxk + t2cij)

∂
∂xi
∧ ∂
∂xj

. Here x1, . . . , xn are coordinates on g∗ corresponding

to e1, . . . , en.

Example 3: In a particular case when the cocycle c is trivial, i.e. c(v, w) = a([v, w]) for some a ∈ g∗

we get a Poisson pencil {ηt}, ηt := (t1c
k
ijxk + t2c

k
ijak)

∂
∂xi
∧ ∂

∂xj
, here a1, . . . , an are coordinates of a

in the dual basis e1, . . . , en of g∗. In the corresponding Poisson pair (η1, η2) the first bivector is the
Lie-Poisson one, ηg, and the second one is ηg(a), the Lie-Poisson bivector ”frozen” at a.

Example 4: Let g : gl(n,R) and A ∈ g. Put [x, y]A := xAy − yAx. It is easy to see that [, ]A is
a Lie bracket on g for any A (Exercise: check this). In particular, for a fixed A ∈ g the bracket
[, ]t := t1[, ] + t2[, ]A = [, ]t1I+t2A is a Lie bracket for any t ∈ R2 (any family of Lie brackets linearly
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spanned by two fixed brackets will be called a Lie pencil). Denote gt := (g, [, ]t). The Lie–Poisson
structures ηgt form a Poisson pencil on g∗.

We get a generalization of this example taking g := so(n,R) and A a symmetric n× n-matrix.

I mechanism of constructing functions in involution (the Magri–Lenard scheme): Let
(η1, η2) be a pair of Poisson structures (not necessarily compatible). Assume we can found a sequence
of functions H0, H1, . . . ∈ E(M) satisfying

η1(H0) = η2(H1)

η1(H1) = η2(H2)
... . (1)

Proposition. For any indices i, j the following equality holds:

{Hi, Hj}η1 = {Hi+1, Hj−1}η1 .

Proof η1(Hi)Hj = η2(Hi+1)Hj = −η2(Hj)Hi+1 = −η1(Hj−1)Hi+1 = η1(Hi+1)Hj−1 �

Now assume i < j. If j − i = 2k, we can apply the proposition k times and get {Hi, Hj}η1 =
{Hi+k, Hj−k}η1 = {Hi+k, Hi+k}η1 = 0. If j − i = 2k + 1, we get {Hi, Hj}η1 = {Hi+k, Hj−k}η1 =
{Hi+k, Hi+k+1}η1 = η1(Hi+k)Hi+k+1 = η2(Hi+k+1)Hi+k+1 = 0. Hence the sequence H0, H1, . . . is a
family of first integrals in involution for any of vector fields vi := η1(Hi), i = 0, 1, . . . Note that all
these vector fields are ”bihamiltonian”, i.e. hamiltonian with respect to both the Poisson structures
η1, η2.

In general it is hard to find the sequences of functions H0, H1, . . . with the required proper-
ties. However, if we assume additionally that (η1, η2) is a Poisson pair, there are some cases, when
such sequences naturally appear. For instance, assume that all the bivectors ηt := t1η1 + t2η2 of
the corresponding Poisson pencil are degenerate. Let ηλ := λη1 + η2, λ := t1/t2, and let fλ be a
Casimir function of ηλ. It turns out that fλ depends smoothly, let fλ = f0 + λf1 + λ2f2 + · · ·
be the corresponding Tailor expansion. Then we deduce from the equality ηλ(fλ) = 0 that 0 =
η2(f0), η1(f0) + η2(f1), η1(f1) + η2(f2), . . . (coefficients of different powers of λ). Thus we can put
H0 := f0, H1 := −f1, H2 := f2, . . . Note that such a Magri–Lenard chain starts from a Casimir
function of η2. If gλ = g0 + λg1 + · · · is another Casimir function of ηλ, we get another sequence of
functions in involution. A question arises, is it true that {fi, gj}ηk = 0? Another important question
concerns the completeness of the obtained family of functions.

II mechanism of constructing functions in involution (based on the Casimir functions of
a Poisson pencil): Let {ηt}t∈R2 be a Poisson pencil on M . Denote by Ct(M) the space of Casimir
functions of ηt.

Proposition. Let t′, t′′ ∈ R2 be linearly independent and let f ∈ Ct′(M), g ∈ Ct′′(M). Then

{f, g}ηt = 0

for any t ∈ R2.
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Proof Indeed for any t ∈ R2 there exist c′, c′′ ∈ R such that t = c′t′+ c′′t′′. Then {f, g}ηt = ηt(f)g =
(c′ηt

′
+ c′′ηt

′′
)(f)g = c′′ηt

′′
(f)g = −c′′ηt′′(g)f = 0. �

It is not clear from this fact whether {f, g}ηt = 0 if f, g are Casimir functions of the same bivector
ηt
′
. We will discuss this question in the next lecture.

15 Linear algebra of pairs of bivectors and completeness of

families of functions in involution

References: [GZ89, Bol91]

The Jordan–Kronecker decomposition of a pair of bivectors: A bivector b on a vector space
V is an element of

∧2 V . We will view a bivector b sometimes as a skew-symmetric map V ∗ → V
(then its value at x ∈ V ∗ will be denoted by b(x)) and sometimes as a skew-symmetric bilinear form
on V ∗ (then its value at x, y ∈ V ∗ will be denoted by b(x, y)). In particular, b(x, y) = 〈b(x), y〉.

Theorem. (Gelfand–Zakharevich, 1989) Given a finite-dimensional vector space V over C and a
pair of bivectors (b(1), b(2)), b(i) :

∧2 V ∗ → C, there exists a direct decomposition V ∗ = ⊕km=1V
∗
m such

that b(i)(V ∗l , V
∗
m) = 0 for i = 1, 2, l 6= m, and the triples (V ∗m, b

(1)
m , b

(2)
m ), where b

(i)
m := b(i)|V ∗m, are from

the following list:

1. [the Jordan block j2jm(λ)]: dimV ∗m = 2jm and in an appropriate basis of V ∗m the matrices of

b
(1)
m , b

(2)
m are equal to [

0 Ijm
−Ijm 0

]
,

[
0 Jjm(λ)

−Jjm(λ)T 0

]
where Ijm is the unity jm × jm-matrix and

Jjm(λ) :=


λ 1 0 · · · 0
0 λ 1 · · · 0

· · ·
0 0 0 · · · 1
0 0 0 · · · λ


is the Jordan jm × jm-block with the eigenvalue λ;

2. [the Jordan block j2jm(∞)]: dimV ∗m = 2jm and in an appropriate basis of V ∗m the matrices of

b
(1)
m , b

(2)
m are equal to [

0 Jjm(0)
−Jjm(0)T 0

]
,

[
0 Ijm
−ITjm 0

]
;

3. [the Kronecker block k2km+1]: dimV ∗m = 2km+1 and in an appropriate basis of V ∗m the matrices

of b
(1)
m , b

(2)
m are equal to

K1,km :=

[
0 B1,km

−BT
1,km

0

]
, K2,km :=

[
0 B2,km

−BT
2,km

0

]
,
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where

B1,km :=


1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .
0 0 0 . . . 1 0

 , B2,km :=


0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 1


(km × (km + 1)-matrices).

Kronecker Poisson pencils: Let {ηt}t∈R2 , ηt := t1η1 + t2η2, be a Poisson pencil on M . We say that
it is Kronecker at a point x ∈ M , if the Jordan–Kronecker decomposition of the pair of bivectors
η1|x, η2|x (regarded as elements of

∧2 TC
xM , here TC

xM is the complexified tangent space) does not
contain Jordan blocks.

Proposition. {ηt}t∈R2 is Kronecker at x if and only if

rank (t1η1|x + t2η2|x) = const, (t1, t2) ∈ C2 \ {0}.

Proof It is easy to see that any nontrivial linear combination of matrices K1,km , K2,km has constant
rank equal to 2km. So the rank can ”jump” at some t 6= 0 if and only if there are Jordan blocks in
the decomposition. �

We say that a Poisson pencil Θ on M is Kronecker if there exists an open dense set U ⊂M such
that Θ is Kronecker at any x ∈ U .

Involutivity of Casimir functions for Kronecker Poisson pencils: We have already proven
that, if t′, t′′ ∈ R2 are linearly independent, then {f, g}ηt = 0 for any f ∈ Ct′(M), g ∈ Ct′′(M), t ∈ R2.
In the same way one can prove that ηt|x(α, β) = 0 for any α ∈ ker ηt

′ |x, β ∈ ker ηt
′′ |x, t ∈ R2.

Proposition. Let {ηt}t∈R2 be Kronecker and let t′ ∈ R2, t′ 6= 0. Then {f, g}ηt = 0 for any
f, g ∈ Ct′(M), t ∈ R2.

Proof Fix x ∈ U . Let t(n) ∈ R2 be such that t(n) is linearly independent with t′ and t(n)
n→∞−→ t′.

The kernel of the map ηt|x : T ∗xM → TxM continuously depend on t ∈ R2 \ {0} and is of constant
dimension. Consequently we can find a sequence of covectors αn ∈ ker ηt(n)|x such that αn

n→∞−→ dxg.
We get ηt|x(dxf, αn) = 0 and by continuity we conclude that ηt|x(dxf, dxg) = 0. In other words,
{f, g}ηt(x) = 0 for any x ∈ U . Since U is dense, using again the continuity argument we get the
proof. �

Summarizing, we get the following result.

Proposition. Let Θ = {ηt}t∈R2 be a Kronecker Poisson pencil and let

CΘ(M) := Span{
⋃

t∈R2\{0}

Ct(M)}.

Then CΘ(M) is a family of functions in involution with respect to any Poisson bivector ηt.
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Remark: It can be shown that in the Kronecker case the family of functions in involution obtained
by the Magri-Lenard scheme starting from Casimir functions coincide with the family CΘ(M).

Completeness of Casimir functions for Kronecker Poisson pencils: Let (M, η) be a Poisson
structure. We say that an open set W ⊂ M is correct for η if the set W ′ := W \ (W ∩ Sing η)
is nonempty and the common level sets of the functions from Cη(W ′) coincide with the symplectic
foliation of η on the set W ′. In other words, the set W is correct if the Poisson structure does
not have regular symplectic leaves dense in W . Equivalent definition: W is correct if {dxf | f ∈
Cη(W )} = ker ηx for any x ∈ W ′. Note that in analytic category any sufficiently small open set is
correct.

Proposition. Let Θ = {ηt}t∈R2 be a Kronecker Poisson pencil. Assume W ⊂ M is an open set
that is correct for ηt for a countable set {t(1), t(2), . . .} of pairwise linearly independent values of the
parameter t and the set W ′ := W \

⋃∞
i=1 Sing ηt(i) is nonempty. Then the set of functions in involution

CΘ(W ′) is complete with respect to any ηt, t 6= 0.

Proof Fix x ∈ U ∩W ′. Let us first prove that the set Cx := {dxf | f ∈ CΘ(W ′)} ⊂ T ∗xM coincides
with the set Lx := Span{

⋃
t∈R2\{0} ker ηtx}. Indeed, the vector space Lx is finite-dimensional, hence

is generated by a finite number of kernels ker ηtx = {dxf | f ∈ Ct(W )}. Hence Lx ⊂ Cx. The same
considerations show that Cx ⊂ Lx.

It is easy to see that the set Lx is of dimension (1/2)rank ηtx + dimM − rank ηtx. Assume for a
moment that the Jordan–Kronecker decomposition of the pair η1|x, η2|x consists of one Kronecker
block k2km+1. The kernel of the matrix λK1,km +K2,km is 1-dimensional and is spanned by the vector
[0, . . . , 0, 1,−λ, . . . , (−λ)km ]. Taking km + 1 different values of λ we get km + 1 = (1/2)rank ηtx +
dimM − rank ηtx linearly independent vectors (recall the Vandermonde determinant) spanning the
set Lx. In the case of several Kronecker blocks you repeat these considerations for each block. �

Remark: In fact it is sufficient to require that W is correct for a finite number of ηt. However, this
number depends on the number and dimension of the Kronecker blocks, so we make a bit stronger
assumption (which in practice is always satisfied).

Example (method of the argument translation): Let M := g∗, η1 := ηg, η2 := ηg(a), S :=
Sing ηg, where a ∈ g∗\S. Assume that codimS > 2 (if g is semisimple it is known that codimS > 3).
Note that S is an algebraic set, i.e. it is defined by a finite number of algebraic equations f1(x) =
0, . . . , fm(x) = 0 on g∗. Any algebraic set in a neighbourhood of its generic point is diffeomorphic to
a manifold, hence its dimension is correctly defined.

If e1, . . . , en is a basis of g and the corresponding structure constants are defined by [ei, ej] =
ckijek, the polynomials f1, . . . , fm are the r × r-minors of the matrix cij(x) = ckijxk, where r =
maxx rank [cij(x)]. Here x1 = e1, . . . , xn = en are the corresponding coordinates on g∗.

In order to check the condition of Kroneckerity we need to consider the complexification gC of the
initial Lie algebra. It can be regarded as a vector space SpanC{e1, . . . , en} ∼= Cn with the Lie bracket
defined by the same structure constants. The set SC := {(z1, . . . , zn) ∈ g∗C

∼= Cn | rank ckijzk <
maxz∈Cn rank ckijzk} is a complex algebraic set defined by the equations f1(z) = 0, . . . , fm(z) =
0, where f1, . . . , fm are the same polynomials as above. In particular, the set SC is of complex
codimension at least 2.
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We know that t1η1|x + t2η2|x = ckij(t1xk + t2ak), t1, t2 ∈ C. Thus rank (t1η1|x + t2η2|x) is maximal

(over t) and independent of t ∈ C2 \ {0} if and only if t1x + t2a ∈ g∗C \ S if and only if x 6∈ a, SC,
where a, SC := {z ∈ g∗C | ∃(t1, t2) ∈ C2 \ {0}: t1z + t2a ∈ SC}.

Note that the set SC is homogeneous (stable under rescaling). Passing to the projectivization
the set a, SC becomes a cone in CPn−1 over the projectivization of S. This shows that the set a, SC
is also algebraic (by the standard arguments from algebraic geometry) and, moreover, dimC a, SC =
dimC SC + 1. In particular codimC a, SC > 1 and we can put U := g∗ \ (g∗ ∩ a, SC) = g∗ \ (a, S). Here
a, S := {x ∈ g∗ | ∃(t1, t2) ∈ R2 \ {0}: t1x+ t2a ∈ S} and codimR a, S > 1. The set U is an open dense
set in g∗ such that {ηt} is Kronecker at any x ∈ U .

Finally assume that g is semisimple. Then ηg has enough global Casimir functions and the whole
space g∗ is a correct set for ηg. In particular, the assumptions of the proposition above are satisfied
and we get a complete set CΘ(g∗) of functions in involution (with respect to any ηt). This set is
generated by the ”translations” f(x+ λa), λ ∈ R, of the Casimir functions f of ηg.
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16 Lie pencils and completely integrable systems

References: [Räı78, Bol91]

Digression on semidirect products of Lie algebras: Let ρ : g → End(V ) be a representation
of a Lie algebra g on a vector space V .

Exercise: Prove that the formula [(x, v), (y, w)]′ = ([x, y], ρ(x)w− ρ(y)v) defines a Lie algebra struc-
ture on g′ := g× V .

We put g×ρ V := (g× V, [, ]′) and say that g×ρ V is a semidirect product of g and V .

Note that the subspaces g0 := g×{0} ⊂ g′, g1 := {0}×V ⊂ g′ satisfy the following commutation
relations: [g0, g0]′ ⊂ g0, [g0, g1]′ ⊂ g1, [g1, g1]′ = {0} (in particular g0 is an abelian ideal of g′). And it
is easy to see that, given any Lie algebra g′ = g0 ⊕ g1 with the commutation relations as above, we
can put ρ(x) := ad′x|g1 , x ∈ g0 (here ad′xv := [x, v]′), and get a representation of a Lie algebra g0 on
the vector space g1 and an isomorphism of g′ with g0 ×ρ g1 (Exercise: prove this).

Given a Lie algebra g, we call the codimension of a regular coadjoint orbit the index of g. In
particular, ind g = corank ηg|x := dim g− rank ηg|x for generic x ∈ g∗.

Theorem. (Räıs, 1978)
ind(g×ρ V ) = ind gv + codimOν .

Here ν ∈ V ∗ is a generic element, Oν is the orbit of this element with respect to the dual (anti)
representation ρ∗ : g→ End(V ∗), ρ∗(x) := (ρ(x))∗, and gν := {x ∈ g | ρ∗(x)ν = 0} is the stabilizer of
the element ν with respect to ρ∗.

Example: Let g := so(n,R) and ρ : g→ End(Rn) be the standard representation (the skew-symmetric
matrices act on vector-columns). Then e(n,R) := so(n,R)×ρ Rn is called the euclidean Lie algebra.

The standard euclidean scalar product (|) on Rn is invariant with respect to ρ, i.e. (ρ(x)v|w) =
−(v|ρ(x)w) = 0. In particular, we can identify the orbits of ρ and ρ∗. Thus the orbit of ρ∗ through
an element ν ∈ (Rn)∗ ∼= Rn is the sphere Sn−1

|ν| of radius |ν|. The stabilizer gν is the Lie algebra of

rotations ”around” ν (i.e. preserving ν) and is isomorphic to the Lie algebra so(n−1,R) (of rotations
”around” (1, 0, . . . , 0)). Finally, ind e(n,R) = ind so(n− 1,R) + 1.

Recall that the ring of Casimir functions of ηg is generated by Tr(x2),Tr(x4) . . . ,Tr(x2k) for
n = 2k + 1 and by Tr(x2),Tr(x4) . . . ,Tr(x2k−2),Pf(x) for n = 2k. Hence ind so(n,R) = [n/2]. In
particular, ind e(n− 1,R) = [(n− 2)/2] + 1 = [n/2] = ind so(n,R).

Digression on contractions of Lie algebras: Assume (g, [, ]) is a Lie algebra and that there
exists a family of Lie brackets [, ]λ on g continuously depending on the parameter λ ∈ U \ {λ0}, here
U ⊂ Rk is an open set, λ0 ∈ U is a fixed element. Assume that [, ] = [, ]λ for some λ ∈ U \ {λ0} and
that for any x, y ∈ g there exists limλ→λ0 [x, y]λ =: [x, y]0. Then by the continuity the bracket [, ]0
will be a Lie bracket on g. We will say that (g, [, ]0) is a contraction of a Lie algebra (g, [, ]).
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Example: Let (g, [, ]) be any Lie algebra and let [, ]λ := λ[, ], λ ∈ R\{0}. Then limλ→0[x, y]λ =: [x, y]0
exists and gives an abelian Lie bracket on g.

Lie pencils and complete families of functions in involution: Let g = so(n,R), gt :=
(g, [, ]t), where [, ]t := [, ]t1I+t2A, A = diag(a1, . . . , an) is a fixed diagonal matrix with a simple
spectrum. The linear map given by Lt : X 7→

√
t1I + t2AX

√
t1I + t2A is an isomorphism of the

Lie algebras g(1,0) and gt for t nonproportional to (a1,−1), . . . , (an,−1). Indeed, [LtX,LtY ] =√
t1I + t2AX(t1I + t2A)Y

√
t1I + t2A−

√
t1I + t2AY (t1I + t2A)X

√
t1I + t2A = Lt[X, Y ]t1I+t2A.

We claim that the Lie algebra (g, [, ]t) for t 6= (0, 0) proportional to one of the vectors (a1,−1), . . . ,
(an,−1) is isomorphic to e(n − 1,R) (hence e(n − 1,R) is a contraction of so(n,R)). For instance,
take t = (a1,−1). The map L′ : X 7→

√
A′X
√
A′, where A′ := diag(1, 1/

√
a1 − a2, . . . , 1/

√
a1 − an),

gives the isomorphism of [, ](a1,−1) with [, ]B, B := (0, 1, . . . , 1).

Let us prove, that (g, [, ]B) is isomorphic to e(n− 1,R). Put

g0 := {


0 0 0 · · · 0
0 0 y12 · · · y1,n−1

0 −y12 0 · · · y2,n−1

· · ·
0 −y1,n−1 −y2,n−1 · · · 0

 | yij ∈ R, i < j}, g1 := {


0 −y1 · · · −yn
y1 0 · · · 0

· · ·
yn 0 · · · 0

 | yi ∈ R}.

Then g = g0 ⊕ g1 and it is easy to see that [g0, g0] ⊂ g0, [g0, g1] ⊂ g1, [g1, g1] ⊂ g0. In particular,
g0 is a Lie subalgebra (isomorphic to so(n − 1,R)). On the other hand we obviously have: 1)
[g0, g0]B = [g0, g0]; 2) [g0, g1]B = [g0, g1]; 3) [g1, g1]B = {0}. So to finish the proof it remains to notice
that the representation ρ : g0 → End(g1), ρ(x) := adx|g1 is isomorphic to the standard representation
of so(n− 1,R) on Rn (Exercise: check this).

Now we are ready to prove the kroneckerity of the Poisson pencil Θ := {t1η1 + t2η2}(t1,t2)∈R2 on
g∗ associated to the Lie pencil {(g, [, ]t}t∈R2 . Here η1 := ηg is the canonical Lie–Poisson structure on
so(n,R) and η2 is the Lie–Poisson structure corresponding to the modified commutator [, ]A. We need
to prove that for a generic point x ∈ g∗ we have rank (t1η1|x + t2η2|x) = const for (t1, t2) ∈ C2 \ {0}.

Let e1, . . . , en be a basis of g and let the corresponding structure constants are defined by
[ei, ej] = ckijek, [ei, ej] = Ck

ijek. The condition above can be rewritten as rank (t1c
k
ijxk + t2C

k
ijxk) =

const, (t1, t2) ∈ C2 \ {0}. To prove it let us pass to the complexification gC = so(n,C) (skew-
symmetric matrices with complex entries). The same considerations as above show that the map
Lt : gC → gC, X 7→

√
t1I + t2AX

√
t1I + t2A, where (t1, t2) ∈ C2 is nonproportional to (a1,−1), . . . ,

(an,−1), is an isomorphism of the corresponding Lie algebras. In other words, t1c
k
ijxk + t2C

k
ijxk =

Ltii′L
t
jj′(L

t)−1
kk′c

k
i′j′xk, here the matrix Ltii′ is defined as Ltei = Ltii′ei′ and similarly (Lt)−1

kk′ . Thus we con-

clude that the rank of t1c
k
ijxk+ t2C

k
ijxk is constant as far as t belongs to T := C2 \ (SpanC{(a1,−1)}∪

· · · ∪ SpanC{(an,−1)}) and x belongs to V := gC \ (
⋃
t∈T (Lt)−1SC). Recall that S := Sing ηg is the

set {x ∈ g | rank (ckijxk) < maxx rank (ckijxk)} and SC is its complexification.

Finally we use the fact that ind e(n− 1,C) = ind so(n,C) (which can be proved in the same way
as in real case) to conclude that Θ is Kronecker at any point x ∈ U := g ∩ V \ (V1 ∪ · · · ∪ Vn). Here
Vi := Sing ηgi , gi := (g, [, ](ai,−1)), i = 1, . . . , n. The set U is dense because g∩V = g\ (

⋃
t∈T ′(L

t)−1S),
where T ′ := R2 \ (SpanR{(a1,−1)} ∪ · · · ∪ SpanR{(an,−1)}), and codim(

⋃
t∈T ′(L

t)−1S) > 2 due to
the condition codimR S > 3.
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The corresponding complete family CΘ(g∗) of functions in involution is generated by the functions
f((Lt)−1x), t ∈ R2, where f is a Casimir function of ηg.

One can show that the hamiltonian Tr((L−1x)x), Lx = Dx + xD, of the Euler–Manakov top is
contained in the family CΘ(g∗) (with A := D2), but this is a little bit technical question and we will
skip it.
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17 Introduction to the KdV equation and infinite-dimensional

argument translation method

References: [Ke03, Mag78]

The Gelfand–Fuchs cocycle: Let g := Γ (TS1) be the Lie algebra of vector fields on a circle.
Elements of g can be viewed as v(x)∂x, where v is a function on S1 and x is a coordinate. The
bracket will be expressed as [v(x)∂x, w(x)∂x] = (−vwx + wvx)(x)∂x.

Proposition. The expression c(v∂x, w∂x) :=
∫
S1 vwxxxdx is a cocycle on g.

Proof c([v∂x, w∂x], u∂x) =
∫
S1(−vwx+wvx)uxxxdx =

∫
S1(−vwx+wvx)duxx = [integration by parts] =

−
∫
S1 uxx(−vwx + wvx)xdx = −

∫
S1 uxx(−vxwx + wxvx − vxxw + wxxv)dx =

∫
S1 uxx(vxxw − wxxv)dx.

Summing the last expression over cyclic permutations of v, w, u gives zero. Exercise: Prove the
skew-symmetry. �

The Virasoro Lie algebra: The central extension g′ := g⊕R of g with respect to the Gelfand–Fuchs
cocycle: [(v(x)∂x, a), (w(x)∂x, b)]

′ := ((−vwx + wvx)(x)∂x, c(v∂x, w∂x)).

The ”H1
αβ-energy” on g′: The quadratic form

〈(v(x)∂x, a), (w(x)∂x, b)〉 :=

∫
S1

(αvw + βvxwx)dx+ ab.

If α = 1, β = 0 we get the L2 scalar product, if α = 1, β = 1, this is the Sobolev one.

The Virasoro group: This is a central extension G′ := G × R of the group G := Diff(S1) of
diffeomorphisms of a circle by means of the Bott cocycle

B(ψ, ϕ) :=

∫
S1

log((ψ ◦ ϕ)x)d log(ϕx).

The group operation on G′ is given by

(ψ(x), a) ◦ (ϕ(x), b) := ((ψ ◦ ϕ)(x), a+ b+B(ψ, ϕ)).

Remark: If α 6= 0 the H1
αβ-energy can be extended to a right-invariant metric on G.

The dual space g∗: It can be naturally identified with the space of quadratic differentials {u(x)(dx)2}
on the circle. The pairing is given by the formula:

〈u(x)(dx)2, v(x)∂x〉 :=

∫
S1

u(x)v(x)dx.

The coadjoint orbits coincide with the orbits of the action of diffeomorphisms on quadratic differen-
tials:

Ad∗ϕ : u(dx)2 7→ u(ϕ) · ϕ2
x(dx)2 = u(ϕ)(dϕ)2.

44



Remark: If u(x) > 0 for any x ∈ S1, the square root
√
u(x)(dx)2 transforms as a 1-form. In particular,

Φ(u(x)(dx)2) :=
∫
S1

√
u(x)dx is a Casimir function: the value of Φ is stable under the diffeomorphism

action. The corresponding orbit has codimension one: a diffeomorphism action sends the quadratic
differential u(x)(dx)2 to the constant quadratic differential C(dx)2, where C := (1/2π)

∫
S1

√
u(x)dx.

If u changes sign, the integral
∫ b
a

√
u(x)dx between two consecutive zeroes a, b of u is invariant.

Thus the codimension of the orbit is greater than 1 in this case.

The dual space (g′)∗: It can be naturally identified with the space of pairs {(u(x)(dx)2, a)} with
the natural pairing

〈(u(x)(dx)2, a), (v(x)∂x, b)〉 :=

∫
S1

u(x)v(x)dx+ ab.

Generic coadjoint orbits are of codimension 2 (they are contained in the hyperplanes a = const).

Digression on the Euler equations: Recall: Let g be a Lie algebra with a positively defined
scalar product b. Extend b to the right invariant contravariant metric br : T ∗G×G T ∗G→ R, denote
by B : TG → R the corresponding quadratic form. The hamiltonian equation on T ∗G with the
hamiltonian H := B is right invariant, hence can be reduced to a hamiltonian equation on g∗.

The last is called the Euler equation and is given by a vector field ηg(b(v, v)). Let A : g → g∗ be
defined by 〈v,A(w)〉 = b(v, w). Call A the inertia operator. It turns out (Exercise: prove this) that
this equation is of the form

dx

dt
= −ad∗A−1xx, x ∈ g∗.

The Euler equation related to the ”H1
αβ-energy”:

Theorem. (Khesin–Misio lek) The Euler equation on x := (v(x)(dx)2, a) corresponding to the
”H1

αβ”-scalar product with α 6= 0 has the form

α(vt + 3vvx)− β(vxxt + 2vxvxx + vvxxx)− bvxxx = 0, at = 0.

Remark: By choosing α = 1, β = 0 one obtains the Korteweg–de Vries equation. For α = β = 1 one
recovers the Camassa–Holm equation.

Proof Let us calculate the ad∗ operator. We have

〈ad∗(v∂x,b)(u(dx)2, a), (w∂x, c)〉 = 〈(u(dx)2, a), [(v∂x, b), (w∂x, c)]
′〉 =∫

S1

u(−vwx + wvx)dx+ a

∫
S1

vwxxxdx =

∫
S1

uwvxdx−
∫
S1

uvdw − a
∫
S1

wvxxxdx =∫
S1

uwvxdx+

∫
S1

w(uxv + uvx)dx− a
∫
S1

wvxxxdx =

∫
S1

w(2uvx + uxv − avxxx)dx.

Hence ad∗(v∂x,b)(u(dx)2, a) = ((2uvx + uxv − avxxx)(dx)2, 0).

Now let us look at the inertia operator A : g′ → (g′)∗ given by 〈(v∂x, b), A((w∂x, a))〉 =
∫
S1(αvw+

βvxwx)dx+ ba =
∫
S1 vΛwdx+ ba, where Λ : α− β∂2

x is a second order differential operator. We have
A((w∂x, a)) = ((Λw)(dx)2, a). This operator is nondegenerate for α 6= 0.
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The corresponding Euler equation is

d

dt
(u(dx)2, a) = −ad∗A−1(u(dx)2,a)(u(dx)2, a) = −ad∗((Λ−1u)(dx)2,a)(u(dx)2, a),

or, using the formula for ad∗

d

dt
(u(dx)2, a) = −((2uΛ−1ux + uxΛ

−1u− aΛ−1uxxx)(dx)2, 0).

Putting v := Λ−1u we get

d

dt
(Λv) = −2(Λv)vx − (Λvx)v + avxxx, at = 0.

Substituting Λ = α− β∂2
x we get the proof. �

Bihamiltonian property of the KdV and C–H equations:

Theorem. (Khesin–Misio lek) The Euler equation corresponding to the ”H1
αβ”-scalar product with

α 6= 0 is bihamiltonian: it is hamiltonian with respect to the Lie-Poisson structure ηg′ on (g′)∗ (this
is standard fact) and it is also hamiltonian with respect to the constant Poisson structure obtained
by ”freezing” of ηg′ at the point ((α/2)(dx)2, β).

Remark: We leave this theorem without proof. The last but not least remark: one can apply the
general Magri–Lenard scheme to obtain an infinite sequence of ”first integrals” of the (α, β)-Euler
equation (in fact Magri invented his scheme having in mind the KdV equation).
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