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Three examples

I Rubanovskii case in rigid body dynamics

I Mischenko-Fomenko systems on semisimple (compact) Lie algebras

I Euler-Manakov tops on so(n)



Rubanovskii case

Generalisation of the Steklov-Lyapunov case (rigid body in fluid)

Lax pair discovered by Yu. Fedorov:

dL(s)

dt
L(s) = [L(s),A(s)]

where L and A are 3× 3 skew-symmetric matrices:

Lαβ = εαβγ
(√

λ− bj (zγ + spγ) + gγ/
√
λ− bj

)
A(s) = εαβγ

1

s

√
(s − bα)(s − bβ)(bγzγ − gγ)

Here (z1, z2, z3, p1, p2, p3) are coordinates in the phase space R6.

The first integrals:
J = p2

1 + p2
2 + p2

3 ,

Fλ(z , p) =
3∑

i=1

(λ− bi )

(
zi + λpi +

gi

λ− bi

)2



Rubanovskii case

Proposition

The Rubanovskii system is Hamiltonian w.r.t. the pencil generated by the
following compatible Poisson brackets:

Π0 =


0 z3 − b3p3 −z2 + b2p2 0 p3 −p2

−z3 + b3p3 0 z1 − b1p1 −p3 0 p1

z2 − b2p2 −z1 + b1p1 0 p2 −p1 0
0 p3 −p2 0 0 0
−p3 0 p1 0 0 0

p2 −p1 0 0 0 0



Π1 =


0 b3z3 − g3 −b2z2 + g2 0 0 0

−b3z3 + g3 0 b1z1 − g1 0 0 0
b2z2 − g2 −b1z1 + g1 0 0 0 0

0 0 0 0 p3 −p2

0 0 0 −p3 0 p1

0 0 0 p2 −p1 0


z , p are coordinates in the phase space R6, b and g are geometric parameters.



Rubanovskii case

The algebraic structure of Π1 − λΠ0 becomes clear if we change variables:

z̃i = zi + λpi +
gi

λ− bi
, pi ’s remain the same

Then:

Π1 − λΠ0 =


0 (b3 − λ)z̃3 −(b2 − λ)z̃2

−(b3 − λ)z̃3 0 (b1 − λ)z̃1

(b2 − λ)z̃2 −(b1 − λ)z̃1 0
0 p3 −p2

−p3 0 p1

p2 −p1 0


Thus, Π1 − λΠ0 splits into the direct sum of two brackets, one of which is the
standard so(3)-bracket and the other is isomorphic to either to so(3), or to
sl(2) depending on the signs of bi − λ, i = 1, 2, 3.

Question: What are the critical points for the integrals?

Answer: Those points where the rank of Π1 − λΠ0 drops.



Rubanovskii case

Theorem (Basak, AB)

A point (z , p) is critical iff there is λ ∈ C \ {b1, b2, b3} such that

zi + λpi +
gi

λ− bi
= 0, i = 1, 2, 3.

Theorem (Basak, AB)

A point (z , p) is a common equilibrium iff rank

p1 z1−b1p1 g1−b1z1

p2 z2−b2p2 g2−b2z2

p3 z3−b3p3 g3−b3z3

=1.

Equivalently, this means that there are two different λ1, λ2 satisfying

zi + λpi +
gi

λ− bi
= 0, i = 1, 2, 3.



Rubanovskii case

How to apply the general non-degeneracy criterion?

Proposition

Consider a linear-constant Poisson pencil in R3 generated by

A =

 0 a3x3 −a2x2

−a3x3 0 a1x1

a2x2 −a1x1 0

 , C =

 0 b3 −b2

−b3 0 b1

b2 −b1 0


This pencil is non-degenerate iff

C = a1a2a3

∑
i

b2
i

ai
6= 0.

Moreover, the singularity is elliptic if C > 0, and hyperbolic if C < 0.



Rubanovskii case

Theorem (Basak, AB)

Let γ be a critical closed trajectory passing through (z , p) with parameter λ.
Then γ is non-degenerate iff

C = C(λ) = (λ− b1)(λ− b2)(λ− b3)
3∑

i=1

(
(λ− bi )pi −

gi

λ− bi

)2
1

λ− bi
6= 0

Moreover, if this expression C > 0 then γ is stable, and if C < 0 then γ is
unstable.

Theorem (Basak, AB)

Let (z , p) be an equilibrium points with parameters λ1, λ2. Then γ is
non-degenerate iff

Ck = C(λk) 6= 0

Moreover, for real λ1, λ2:

I (z , p) is of ell-ell type if both Ck > 0;

I (z , p) is of hyp-hyp type if both Ck < 0;

I (z , p) is of ell-hyp type if both Ck have different signs.

If λ1 and λ2 are complex conjugate then (z , p) is a focus.



Mishenko-Fomenko systems on semisimple Lie algebras

Let g be a finite-dimensional (real) Lie algebra and g∗ its dual space endowed
with the two LiePoisson bracket:

{f , g}(x) = x([df (x), dg(x)]) and {f , g}a(x) = a([df (x), dg(x)]),

where f , g : g∗ → R are arbitrary smooth functions, x , a ∈ g∗ and a is fixed.
The pencil { , }+ λ{ , }a leads to the family
Fa = {f (x + λa) | f ∈ IAd∗(g), λ ∈ R} of commuting Casimirs.

Our goal: Properties of Fa for semisimple (and even compact) Lie algebras. In
this case g ' g∗ and the family Fa possesses a natural basis consisting of
s = 1/2(dim g + ind g) homogeneous polynomials f1, . . . , fs . In other words, Fa

is freely generated by them.

We want to study the properties of the corresponding momentum mapping
Φa : g→ Rs , Φ(x) = (f1(x), . . . , fs(x)).

MF systems are those systems on g with quadratic Hamiltonians H which are
bi-Hamiltonian w.r.t. this pencil or, equivalently, H ∈ Fa.



Mishenko-Fomenko systems on semisimple Lie algebras

Theorem (Mischenko, Fomenko)

If g is semisimple and a ∈ g∗ is regular, then the collection of commuting
polynomials Fa is complete on g ' g∗. In other words, the basic shifts f1, . . . , fs
are functionally independent on g.

Proof: Codimension two principle + codimSing = 3 in the semisimple case

Theorem
An element x ∈ g is a critical point of the momentum mapping Φa) if and only
if there exists λ ∈ C such that x + λa is a singular element in gC. In other
words, the set of critical points Sa of Φa is the (real part of the) cylinder over
the set of singular elements Sing with the generating line parallel to a, that is:
Sa = (Sing + C · a) ∩ g.



Mishenko-Fomenko systems on semisimple Lie algebras

Recall that x ∈ g is said to be a common equilibrium point for Fa if for any
f ∈ Fa we have Xf (x) = [df (x), x ] = 0.

Theorem
A point x ∈ g is a common equilibrium point for Fa if and only if x ∈ ha, where
ha is the Cartan subalgebra generated by a ∈ g. The number of equilibrium
points on each regular orbit is the order of the Weyl group.

Let x be a common equilibrium point. We know that x ∈ ha. Is x
non-degenerate?

Theorem (Oshemkov, AB)

Let α1, . . . , αs be the positive roots associated with the complexification
hCa ⊂ gC, s = 1/2(dim g + ind g). Consider the collection of numbers

λi =
αi (x)

αi (a)

If all these numbers are distinct, then x ∈ g is a non-degenerate equilibrium
point. Moreover, if g is compact, then x is of pure elliptic type and, therefore,
is stable.



Mishenko-Fomenko systems on semisimple Lie algebras

What about codimension 1 singularities?

Theorem (Oshemkov, AB)

Let x ∈ g be a critical point of corank 1, and λ ∈ R the unique value of the
parameter such that x + λa is a singular element of g. Assume that x + λa is
semisimple and u is the semisimple part of the centralizer of x + λa. Consider
the natural orthogonal projection b = pru a of a onto u. If b is semisimple and
non-zero, then x is non-degenerate.
Moreover, if (b, b) > 0, then the singularity is hyperbolic, and if (b, b) < 0,
then the singularity is elliptic, where ( , ) is the Killing form on u.

In particular, in the case of a compact Lie algebra g , all corank 1 singularities
are non-degenerate and of elliptic type. In this case, there are no hyperbolic
singularities. It follow from this that the set of regular values of Φa in Rs is
connected and each non-trivial regular level Φ−1

a (y), y ∈ Rs , consists of one
Liouville torus.



Euler-Manakov tops on so(n)

Euler-Manakov top:
d

dt
X = [R(X ),X ], where R(X )ij =

bi − bj

ai − aj
Xij .

Bi-Hamiltonian structure for the E-M top:
Along with the standard commutator [X ,Y ] = XY − YX on the space of
skew-symmetric matrices, we introduce a new operation

[X ,Y ]A = XAY − YAX

where A is the diagonal matrix diag(a1, a1, . . . , an).
Observation: E-M top is Hamiltonian w.r.t to the corresponding pencil of
compatible Poisson brackets { , }A+λE on so(n) = so(n)∗ and, therefore, it
admits a large family of commuting integrals of the form

Tr
(

X (A + λE)−1
)k

which is equivalent to the standard Manakov integrals:

FA =
{

Tr(X + λA)k
}
.

This family admits a basis that consists of exactly s = 1
2

(
dim so(n) + ind so(n)

)
commuting polynomials.



Euler-Manakov tops on so(n)

Theorem (Mischenko, Fomenko)

If the eigenvalues of A are all distinct, then the family of Manakov’s integrals
FA is complete on so(n).

Proof. Almost all brackets in the family are semisimple, so the singular set of
each of them has codemention 3.

Theorem (Oshemkov, AB)

X ∈ so(n) is a critical point of FA if and only if there exists λ ∈ C such that X
is singular for the bracket { , }A+λE . Equivalently,

SA =
(
∪λ∈C̄(A + λE)1/2 Sing (A + λE)1/2

)
∩ so(n,R).

where Sing ⊂ so(n,C) is the set of singular points.



Euler-Manakov tops on so(n)

Theorem (L.Féher, I.Marshall)

The set of common equilibrium points of FA (with A diagonal) is the union of
those Cartan subalgebras h ⊂ so(n) which are common Cartan subalgebras for
all commutators [ , ]A+λE . One of these Cartan subalgebras is standard:

h0 =




0 x12

−x12 0
0 x34

−x34 0
. . .

 , xi,i+1 ∈ R


.

All the others are obtained from h0 by conjugation h0 7→ Ph0P−1 where P is a
permutation matrix.

Theorem (Oshemkov, AB)

Let X be a 2× 2 block-diagonal skew-symmetric matrix (as above). For each
pair xi,i+1, xj,j+1, consider the two roots λij , λ

′
ij of the equation

x2
i,i+1

x2
j,j+1

=
(ai + λ)(ai+1 + λ)

(aj + λ)(aj+1 + λ)
.

If λij , λ
′
ij (i 6= j , i , j = 1, 3, . . . , 2n − 1) are all distinct, then X is a

non-degenerate equilibrium point for FA.



Euler-Manakov tops on so(n)

For each pair of blocks

(
0 xi,i+1

−xi,i+1 0

)
=

(
0 ω
−ω 0

)
,

(
ai 0
0 ai+1

)
=

(
λ1 0
0 λ2

)
consider the function f (x) =

(x−λ2
1)(x−λ2

2)

ω2(λ1+λ2)2 . and let f (∞) = 1
ω2(λ1+λ2)2 .

By drawing the graphs of all these functions on the same plane R2, we obtain a
collection of parabolas called the parabolic diagram P. For simplicity we
assume that n is even.
We say that this diagram is generic if any two parabolas intersect exactly at
two points (including complex intersections and intersections at infinity)

Theorem (A. Izosimov)

I The equilibrium point is non-degenerate iff the parabolic diagram P is
generic:

I each intersection point in the upper half plane corresponds to an elliptic
component;

I each intersection point in the lower half plane corresponds to a hyperbolic
component;

I each complex intersection corresponds to a focus component.

I If P is generic, all intersections are real and located in the upper half
plane, then the equilibrium is stable.

I If there is either a complex intersection or an intersection point in the
lower half plane, then the equilibrium point is unstable.




