Singularities of bi-Hamiltonian Systems Lecture 4: How does it work? Examples and applications

Alexey Bolsinov Loughborough University

29 August - 2 September, 2011

Three examples

- Rubanovskii case in rigid body dynamics
- ▶ Mischenko-Fomenko systems on semisimple (compact) Lie algebras
- Euler-Manakov tops on so(n)

Generalisation of the Steklov-Lyapunov case (rigid body in fluid)

Lax pair discovered by Yu. Fedorov:

$$\frac{dL(s)}{dt}L(s)=[L(s),A(s)]$$

where L and A are 3×3 skew-symmetric matrices:

$$egin{aligned} L_{lphaeta} &= arepsilon_{lphaeta\gamma} \left(\sqrt{\lambda - b_j} \left(z_\gamma + s p_\gamma
ight) + g_\gamma/\sqrt{\lambda - b_j}
ight) \ A(s) &= arepsilon_{lphaeta\gamma} rac{1}{s} \sqrt{(s - b_lpha)(s - b_eta)} (b_\gamma z_\gamma - g_\gamma) \end{aligned}$$

Here $(z_1, z_2, z_3, p_1, p_2, p_3)$ are coordinates in the phase space \mathbb{R}^6 .

The first integrals:

$$J = p_1^2 + p_2^2 + p_3^2,$$

$$F_{\lambda}(z, p) = \sum_{i=1}^{3} (\lambda - b_i) \left(z_i + \lambda p_i + \frac{g_i}{\lambda - b_i} \right)^2$$

Proposition

The Rubanovskii system is Hamiltonian w.r.t. the pencil generated by the following compatible Poisson brackets:

$$\Pi_{0} = \begin{pmatrix} 0 & z_{3} - b_{3}p_{3} & -z_{2} + b_{2}p_{2} & 0 & p_{3} & -p_{2} \\ -z_{3} + b_{3}p_{3} & 0 & z_{1} - b_{1}p_{1} & -p_{3} & 0 & p_{1} \\ z_{2} - b_{2}p_{2} & -z_{1} + b_{1}p_{1} & 0 & p_{2} & -p_{1} & 0 \\ 0 & p_{3} & -p_{2} & 0 & 0 & 0 \\ -p_{3} & 0 & p_{1} & 0 & 0 & 0 \\ p_{2} & -p_{1} & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\Pi_{1} = \begin{pmatrix} 0 & b_{3}z_{3} - g_{3} & -b_{2}z_{2} + g_{2} & 0 & 0 & 0 \\ -b_{3}z_{3} + g_{3} & 0 & b_{1}z_{1} - g_{1} & 0 & 0 & 0 \\ b_{2}z_{2} - g_{2} & -b_{1}z_{1} + g_{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & p_{3} & -p_{2} \\ 0 & 0 & 0 & 0 & -p_{3} & 0 & p_{1} \\ 0 & 0 & 0 & 0 & p_{2} - p_{1} & 0 \end{pmatrix}$$

z, p are coordinates in the phase space \mathbb{R}^6 , b and g are geometric parameters.

The algebraic structure of $\Pi_1 - \lambda \Pi_0$ becomes clear if we change variables:

$$ilde{z}_i = z_i + \lambda p_i + rac{oldsymbol{g}_i}{\lambda - b_i}, \qquad p_i$$
's remain the same

Then:

$$\Pi_{1} - \lambda \Pi_{0} = \begin{pmatrix} 0 & (b_{3} - \lambda)\tilde{z}_{3} & -(b_{2} - \lambda)\tilde{z}_{2} \\ -(b_{3} - \lambda)\tilde{z}_{3} & 0 & (b_{1} - \lambda)\tilde{z}_{1} \\ (b_{2} - \lambda)\tilde{z}_{2} & -(b_{1} - \lambda)\tilde{z}_{1} & 0 \\ & & 0 & p_{3} & -p_{2} \\ & & -p_{3} & 0 & p_{1} \\ & & & p_{2} & -p_{1} & 0 \end{pmatrix}$$

Thus, $\Pi_1 - \lambda \Pi_0$ splits into the direct sum of two brackets, one of which is the standard so(3)-bracket and the other is isomorphic to either to so(3), or to sl(2) depending on the signs of $b_i - \lambda$, i = 1, 2, 3.

Question: What are the critical points for the integrals?

Answer: Those points where the rank of $\Pi_1 - \lambda \Pi_0$ drops.

Rubanovskii case

Theorem (Basak, AB)

A point (z,p) is critical iff there is $\lambda \in \mathbb{C} \setminus \{b_1,b_2,b_3\}$ such that

$$z_i + \lambda p_i + \frac{g_i}{\lambda - b_i} = 0, \qquad i = 1, 2, 3.$$

Theorem (Basak, AB)

A point
$$(z, p)$$
 is a common equilibrium iff $\operatorname{rank} \begin{pmatrix} p_1 & z_1 - b_1 p_1 & g_1 - b_1 z_1 \\ p_2 & z_2 - b_2 p_2 & g_2 - b_2 z_2 \\ p_3 & z_3 - b_3 p_3 & g_3 - b_3 z_3 \end{pmatrix} = 1.$

Equivalently, this means that there are two different λ_1 , λ_2 satisfying

$$z_i + \lambda p_i + \frac{g_i}{\lambda - b_i} = 0, \qquad i = 1, 2, 3.$$

How to apply the general non-degeneracy criterion?

Proposition

Consider a linear-constant Poisson pencil in \mathbb{R}^3 generated by

$$A = \begin{pmatrix} 0 & a_3x_3 & -a_2x_2 \\ -a_3x_3 & 0 & a_1x_1 \\ a_2x_2 & -a_1x_1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & b_3 & -b_2 \\ -b_3 & 0 & b_1 \\ b_2 & -b_1 & 0 \end{pmatrix}$$

This pencil is non-degenerate iff

$$C=a_1a_2a_3\sum_i\frac{b_i^2}{a_i}\neq 0.$$

Moreover, the singularity is elliptic if C > 0, and hyperbolic if C < 0.

Theorem (Basak, AB)

Let γ be a critical closed trajectory passing through (z,p) with parameter λ . Then γ is non-degenerate iff

$$C = C(\lambda) = (\lambda - b_1)(\lambda - b_2)(\lambda - b_3)\sum_{i=1}^{3} \left((\lambda - b_i)p_i - \frac{g_i}{\lambda - b_i}\right)^2 \frac{1}{\lambda - b_i} \neq 0$$

Moreover, if this expression C>0 then γ is stable, and if C<0 then γ is unstable.

Theorem (Basak, AB)

Let (z,p) be an equilibrium points with parameters λ_1,λ_2 . Then γ is non-degenerate iff

$$C_k = C(\lambda_k) \neq 0$$

Moreover, for real λ_1, λ_2 :

- (z, p) is of ell-ell type if both $C_k > 0$;
- (z, p) is of hyp-hyp type if both $C_k < 0$;
- \triangleright (z,p) is of ell-hyp type if both C_k have different signs.

If λ_1 and λ_2 are complex conjugate then (z, p) is a focus.

Let $\mathfrak g$ be a finite-dimensional (real) Lie algebra and g^* its dual space endowed with the two LiePoisson bracket:

$$\{f,g\}(x) = x([df(x),dg(x)])$$
 and $\{f,g\}_a(x) = a([df(x),dg(x)]),$

where $f,g:g^* \to \mathbb{R}$ are arbitrary smooth functions, $x,a \in \mathfrak{g}^*$ and a is fixed. The pencil $\{\ ,\ \} + \lambda \{\ ,\ \}_a$ leads to the family $\mathcal{F}_a = \{f(x+\lambda a) \mid f \in I_{\mathsf{Ad}^*}(\mathfrak{g}), \lambda \in \mathbb{R}\}$ of commuting Casimirs.

Our goal: Properties of \mathcal{F}_a for semisimple (and even compact) Lie algebras. In this case $g\simeq g^*$ and the family \mathcal{F}_a possesses a natural basis consisting of $s=1/2(\dim\mathfrak{g}+\inf\mathfrak{g})$ homogeneous polynomials f_1,\ldots,f_s . In other words, \mathcal{F}_a is freely generated by them.

We want to study the properties of the corresponding momentum mapping $\Phi_a: \mathfrak{g} \to \mathbb{R}^s$, $\Phi(x) = (f_1(x), \dots, f_s(x))$.

MF systems are those systems on $\mathfrak g$ with quadratic Hamiltonians H which are bi-Hamiltonian w.r.t. this pencil or, equivalently, $H \in \mathcal F_a$.

Theorem (Mischenko, Fomenko)

If g is semisimple and $a \in \mathfrak{g}^*$ is regular, then the collection of commuting polynomials \mathcal{F}_a is complete on $\mathfrak{g} \simeq \mathfrak{g}^*$. In other words, the basic shifts f_1, \ldots, f_s are functionally independent on \mathfrak{g} .

Proof: Codimension two principle + codim Sing = 3 in the semisimple case

Theorem

An element $x \in g$ is a critical point of the momentum mapping Φ_a) if and only if there exists $\lambda \in \mathbb{C}$ such that $x + \lambda a$ is a singular element in $\mathfrak{g}^\mathbb{C}$. In other words, the set of critical points S_a of Φ_a is the (real part of the) cylinder over the set of singular elements Sing with the generating line parallel to a, that is: $S_a = (Sing + \mathbb{C} \cdot a) \cap \mathfrak{g}$.

Recall that $x \in \mathfrak{g}$ is said to be a common equilibrium point for \mathcal{F}_a if for any $f \in \mathcal{F}_a$ we have $X_f(x) = [df(x), x] = 0$.

Theorem

A point $x \in \mathfrak{g}$ is a common equilibrium point for \mathcal{F}_a if and only if $x \in \mathfrak{h}_a$, where \mathfrak{h}_a is the Cartan subalgebra generated by $a \in \mathfrak{g}$. The number of equilibrium points on each regular orbit is the order of the Weyl group.

Let x be a common equilibrium point. We know that $x \in \mathfrak{h}_a$. Is x non-degenerate?

Theorem (Oshemkov, AB)

Let $\alpha_1, \ldots, \alpha_s$ be the positive roots associated with the complexification $\mathfrak{h}_a^\mathbb{C} \subset \mathfrak{g}^\mathbb{C}$, $s = 1/2(\dim g + \operatorname{ind} g)$. Consider the collection of numbers

$$\lambda_i = \frac{\alpha_i(x)}{\alpha_i(a)}$$

If all these numbers are distinct, then $x \in \mathfrak{g}$ is a non-degenerate equilibrium point. Moreover, if \mathfrak{g} is compact, then x is of pure elliptic type and, therefore, is stable.

What about codimension 1 singularities?

Theorem (Oshemkov, AB)

Let $x \in \mathfrak{g}$ be a critical point of corank 1, and $\lambda \in \mathbb{R}$ the unique value of the parameter such that $x + \lambda a$ is a singular element of \mathfrak{g} . Assume that $x + \lambda a$ is semisimple and \mathfrak{u} is the semisimple part of the centralizer of $x + \lambda a$. Consider the natural orthogonal projection $b = \operatorname{pr}_{\mathfrak{u}} a$ of a onto \mathfrak{u} . If b is semisimple and non-zero, then x is non-degenerate.

Moreover, if (b,b)>0, then the singularity is hyperbolic, and if (b,b)<0, then the singularity is elliptic, where $(\ ,\)$ is the Killing form on $\mathfrak u.$

In particular, in the case of a compact Lie algebra g, all corank 1 singularities are non-degenerate and of elliptic type. In this case, there are no hyperbolic singularities. It follow from this that the set of regular values of Φ_a in \mathbb{R}^s is connected and each non-trivial regular level $\Phi_a^{-1}(y)$, $y \in \mathbb{R}^s$, consists of one Liouville torus.

Euler-Manakov top: $\frac{d}{dt}X = [R(X), X]$, where $R(X)_{ij} = \frac{b_i - b_j}{a_i - a_j}X_{ij}$.

Bi-Hamiltonian structure for the E-M top:

Along with the standard commutator [X,Y]=XY-YX on the space of skew-symmetric matrices, we introduce a new operation

$$[X, Y]_A = XAY - YAX$$

where A is the diagonal matrix $diag(a_1, a_1, \dots, a_n)$.

Observation: E-M top is Hamiltonian w.r.t to the corresponding pencil of compatible Poisson brackets $\{\ ,\ \}_{A+\lambda E}$ on $so(n)=so(n)^*$ and, therefore, it admits a large family of commuting integrals of the form

$$\operatorname{Tr}\left(X(A+\lambda E)^{-1}\right)^k$$

which is equivalent to the standard Manakov integrals:

$$\mathcal{F}_A = \left\{ \operatorname{Tr}(X + \lambda A)^k \right\}.$$

This family admits a basis that consists of exactly $s = \frac{1}{2} (\dim so(n) + \operatorname{ind} so(n))$ commuting polynomials.

Theorem (Mischenko, Fomenko)

If the eigenvalues of A are all distinct, then the family of Manakov's integrals \mathcal{F}_A is complete on so(n).

Proof. Almost all brackets in the family are semisimple, so the singular set of each of them has codemention 3.

Theorem (Oshemkov, AB)

 $X \in so(n)$ is a critical point of \mathcal{F}_A if and only if there exists $\lambda \in \overline{\mathbb{C}}$ such that X is singular for the bracket $\{\ ,\ \}_{A+\lambda E}$. Equivalently,

$$S_A = \left(\cup_{\lambda \in \tilde{\mathbb{C}}} (A + \lambda E)^{1/2} \operatorname{Sing} (A + \lambda E)^{1/2} \right) \cap so(n, \mathbb{R}).$$

where $\operatorname{Sing} \subset so(n,\mathbb{C})$ is the set of singular points.

Theorem (L.Féher, I.Marshall)

The set of common equilibrium points of \mathcal{F}_A (with A diagonal) is the union of those Cartan subalgebras $\mathfrak{h} \subset \mathfrak{so}(n)$ which are common Cartan subalgebras for all commutators $[\ ,\]_{A+\lambda E}$. One of these Cartan subalgebras is standard:

$$\mathfrak{h}_0 = \left\{ \begin{pmatrix} 0 & x_{12} & & & & \\ -x_{12} & 0 & & & & \\ & & 0 & x_{34} & & \\ & & -x_{34} & 0 & & \\ & & & \ddots \end{pmatrix}, \quad x_{i,i+1} \in \mathbb{R} \right\}.$$

All the others are obtained from \mathfrak{h}_0 by conjugation $\mathfrak{h}_0 \mapsto P\mathfrak{h}_0 P^{-1}$ where P is a permutation matrix.

Theorem (Oshemkov, AB)

Let X be a 2×2 block-diagonal skew-symmetric matrix (as above). For each pair $x_{i,i+1}$, $x_{j,j+1}$, consider the two roots $\lambda_{ij},\lambda'_{ij}$ of the equation

$$\frac{x_{i,i+1}^2}{x_{j,j+1}^2} = \frac{(a_i + \lambda)(a_{i+1} + \lambda)}{(a_j + \lambda)(a_{j+1} + \lambda)}.$$
If λ_{ij} , λ'_{ij} ($i \neq j$, $i,j = 1,3,\ldots,2n-1$) are all distinct, then X is a non-degenerate equilibrium point for \mathcal{F}_A .

For each pair of blocks
$$\begin{pmatrix} 0 & x_{i,i+1} \\ -x_{i,i+1} & 0 \end{pmatrix} = \begin{pmatrix} 0 & \omega \\ -\omega & 0 \end{pmatrix}$$
, $\begin{pmatrix} a_i & 0 \\ 0 & a_{i+1} \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$

consider the function $f(x) = \frac{(x-\lambda_1^2)(x-\lambda_2^2)}{\omega^2(\lambda_1+\lambda_2)^2}$. and let $f(\infty) = \frac{1}{\omega^2(\lambda_1+\lambda_2)^2}$.

By drawing the graphs of all these functions on the same plane \mathbb{R}^2 , we obtain a collection of parabolas called the *parabolic diagram* \mathcal{P} . For simplicity we assume that n is even.

We say that this diagram is generic if any two parabolas intersect exactly at two points (including complex intersections and intersections at infinity)

Theorem (A. Izosimov)

- lacktriangle The equilibrium point is non-degenerate iff the parabolic diagram ${\mathcal P}$ is generic:
 - each intersection point in the upper half plane corresponds to an elliptic component;
 - each intersection point in the lower half plane corresponds to a hyperbolic component;
 - each complex intersection corresponds to a focus component.
- If P is generic, all intersections are real and located in the upper half plane, then the equilibrium is stable.
- ▶ If there is either a complex intersection or an intersection point in the lower half plane, then the equilibrium point is unstable.

