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Lecture 3: main ingredients

I Linearisation of a Poisson structure at a singular point

I Linearisation of a Poisson pencil

I Non-degenerate linear-constant Poisson pencils

I Classification of non-degenerate linear-constant Poisson pencils
(A. Izosimov)

I General non-degeneracy criterion
(A. Izosimov)



Linearisation of a Poisson structure

According to the splitting theorem (A.Weinstein), locally each Poisson
structure A splits into direct product of a non-degenerate Poisson structure
Asympl and the transversal structure Atransv which vanishes at the given point:

A = Asympl × Atransv

The transversal Poisson structure Atransv is well defined and we can consider its
linearisation just by taking the linear terms in the Taylor expansion

Atransv(x) =
∑

ck
ij xk + . . .

Definition
From the algebraic viewpoint, the linearisation of A at a point x ∈ M is
a Lie algebra gA defined on Ker A(x) as follows. Let ξ, η ∈ Ker A(x) and f , g
be smooth functions such that df (x) = ξ, dg(x) = η. Then, by definition,

[ξ, η] = d{f , g}(x) ∈ Ker A(x)

Remark. If x ∈ M is a regular point, then gA is obviously trivial.



Linearisation of a Poisson pencil

J = {Aλ = A + λB} is a pencil of compatible Poisson brackets and x ∈ M.
Let us take x ∈ M, fix λ ∈ C and consider the kernel Ker Aλ(x).

On Ker Aλ we can introduce two natural structures:

I the Lie algebra gλ = gAλ , the lineraisation of Aλ at the point x ,

I the restriction of B onto Ker Aλ.

We can think of them as two Poisson structures on g∗λ:

I the first on is linear, i.e., the standard Lie-Poisson structure related to gλ,

I the second one is constant B|gλ .

Proposition

These two Poisson structures are compatible, i.e. generate, a Poisson pencil
Π = Π(λ, x).

Definition
This Poisson pencil Π is called the λ-linearisation of the pencil J at x ∈ M.



How to find the λ-linearisation in practice?

For simplicity λ = 0.
Choose a coordinate system x1, . . . , xk , xk+1, . . . xn such that

A(x) =

(
A1(x) A2(x)
−A>2 (x) A3(x)

)
, B(x) =

(
B1(x) B2(x)
−B>2 (x) B3(x)

)
where A1(0) = 0, A2(0) = 0 and A3(0) is non-degenerate (in other words, the
first coordinates x1, . . . , xk “generates” the kernel of A at x = 0).

Then the linear terms of A1(x) do not depend on xk+1, . . . xn and form a linear
Poisson bracket. The constant bracket is simply B1(0).

Thus, the linearisation of this pencil at x = 0 is defined by the linear part of A1

and the constant part of B1.

In practice (see next lecture), such a coordinate system often can be found
explicitly.



Example: Argument shift method

Consider the standard “shift argument” pencil { , }+ λ{ , }a corresponding to
a Lie algebra g and a ∈ g∗.

Let codim S ≥ 2 so that the argument shift method gives a complete family Fa

of commuting polynomials.

Let x ∈ g∗ be a singular point for Fa. This means that x + λa is a singular
element of g∗.

Question. What is the λ-linearization Π = Π(λ, x) of this pencil at this point?

Answer is very natural:
gλ is the ad∗-stationary subalgebra of x + λa ∈ g∗:

gλ = ann(x + λa) = {ξ ∈ g | ad∗ξ(x + λa) = 0}

and the constant bracket on g∗λ is { , }pr(a) where pr(a) is the natural projection
of a from g∗ to ann(x + λa)∗ induced by the inclusion ann(x + λa) ⊂ g.



Linear-constant pencils and generalised “shift of argument”

Consider two compatible Poisson brackets on a vector space V :
linear A + constant B.

What are “compatibility conditions” for this kind of brackets?

Standard situation is “shift of argument” construction:

The brackets {f , g}(x) =
∑

ck
ij xk

∂f

∂xi

∂g

∂xj
, {f , g}a(x) =

∑
ck
ij ak

∂f

∂xi

∂g

∂xj
are

compatible for each a = (ai ) ∈ V .
Situation can be different:

For {f , g}A(x) =
∑

ck
ij xk

∂f

∂xi

∂g

∂xj
there may exist constant compatible brackets

{f , g}B(x) =
∑

Bij
∂f

∂xi

∂g

∂xj

which are not of the above type. The compatibility condition can be written as

B([ξ, η], ζ) + B([η, ζ], ξ) + B([ζ, ξ], η) = 0.

This identity has a natural cohomological interpretation.

Remark 1. If the corresponding Lie algebra is semisimple, then the constant
bracket must have the above form { , }a for some a ∈ V .

Remark 2. Ker B is a subalgebra of g.



Non-degenerate linear-constant pencils

Consider two compatible Poisson brackets on a vector space V :
linear A + constant B

and the corresponding linear-Poisson pencil Π = {A + λB}.

For this pencil Π = {A + λB} we can construct the family of commuting
Casimirs FΠ and ask the question about the structures of singular points.
We will say that Π is complete, if FΠ is complete.

It is easy to see that 0 ∈ V is a singular point of FΠ and, moreover, it is a
common equilibrium.

Definition
We say that a complete linear-constant pencil Π = {A + λB} is
non-degenerate, if 0 ∈ V is a non-degenerate singular point for the family FΠ.



Examples: semisimple case so(3)

Example

If A ' so(3) and B is arbitrary, then Π = {A + λB} is non-degenerate.

A =

 0 z −y
−z 0 x
y −x 0

 and B =

 0 c −b
−c 0 a
b −a 0


Casimir functions: F1 = x2 + y 2 + z2, F2 = ax + by + cz



Examples: semisimple case sl(2,R)

Example

sl(2,R)–bracket A and constant bracket B defined by an element
ξ ∈ sl(2,R) ' sl(2,R)∗:

A =

 0 y −z
−y 0 2x
z −2x 0

 and B =

 0 c −b
−c 0 a
b −a 0


Casimir functions: F1 = x2 + yz , F2 = ax + by + cz

Is this pencil non-degenerate?

The answer depends on ξ: see next slide



Examples: semisimple case sl(2,R)



Examples: semisimple case sl(2,R)

Question.
Why are there 3 different cases? How to distinguish them?

Answer.
There are non-trivial elements ξ ∈ sl(2,R) of three types:

I elliptic (eigenvalues are pure imaginary iλ,−iλ) ;

I hyperbolic (eigenvalues are real λ,−λ);

I nilpotent (both eigenvalues are zero).

We can distinguish them by using the Killing form:

I elliptic: (ξ, ξ) < 0;

I hyperbolic: (ξ, ξ) > 0;

I nilpotent: (ξ, ξ) = 0.

Equivalently, one may use the sign of Tr ξ2 = −2 det ξ in the standard 2× 2
representation.

Conclusion.
Non-degeneracy ⇔ ξ is semisimple ⇔ Ker Bξ is a Cartan subalgebra



Examples: non-semisimple case

Example

Consider the Lie algebra e(2) = so(2) +φ R2 =


0 α β

0 0 −θ
0 θ 0


The corresponding Lie-Poisson bracket: A =

 0 x −y
−x y 0
y 0 0


where x , y , z are dual coordinates to α, β, θ.

Constant bracket: B =

 0 c −b
−c 0 a
b −a 0


Linear-constant pencil Π = {A + λB}

Casimir functions on e(2)∗: FA = x2 + y 2, FB = ax + by + cz .

These functions give a non-degenerate singularity iff z 6= 0.

The algebraic reformulation:
Non-degeneracy ⇔ Ker B is a Cartan subalgebra of e(2).



Classification of non-degenerate pencils

Problem.
Describe all “good” Lie algebras g (equivalently, Lie-Poisson brackets A) which
may produce non-degenerate linear-constant pencils and then for these Lie
algebras find necessary and sufficient condition for a constant bracket B to give
indeed a non-degenerate pencil Π = Π(g,B) = {A + λB}.

Such Lie algebras are called non-degenerate too.

Theorem (A. Izosimov)

A linear-constant pencil Π = Π(g ,B) is non-degenerate (in the complex case)
if and only if the Lie algebra g associated with the linear bracket A is
isomorphic to (⊕

so(3,C)
)
⊕
((⊕

D
)
/h0

)
⊕
(⊕

C
)

where D is the diamond Lie algebra, h0 is a commutative ideal which belongs
to the center of (

⊕
D), and Ker B is a Cartan subalgebra of g.



What is the diamond Lie algebra D?

D is a four dimensional Lie algebra generated by x , y , z , u with the following
relations

[z , x ] = y , [z , y ] = −x and [x , y ] = u, [u,D] = 0. (1)

In other words, D (as a complex Lie algebra) is the non-trivial central extension
of e(2,C).
Matrix representation:

αx + βy + θz + γu 7→


0 α β 2γ
0 0 −θ β
0 θ 0 −α
0 0 0 0


Casimir functions: F1 = x2 + y 2 + 2zu, F2 = u.

The complex diamond Lie algebra D has 2 different real forms

I gell defined by (1) and

I ghyp defined by [z , x ] = x , [z , y ] = −y , and [x , y ] = u.



Classification of non-degenerate pencils. Real case.

Theorem (A. Izosimov)

A real Lie algebra g is non-degenerate iff

g '
(⊕

so(3,R)
)
⊕
(⊕

sl(2,R)
)
⊕
(⊕

so(3,C)
)
⊕(((⊕

gell
)
⊕
(⊕

ghyper
)
⊕
(⊕

gfoc
))

/h0

)
⊕
(⊕

R
)

where

I gell and ghyp are the non-trivial central extensions of e(2) and e(1, 1)
(equivalently, they are real forms of D),

I gfoc = D treated as real Lie algebra,

I h0 is a commutative ideal which belongs to the center.

A linear-constant pencil Π(g,B) is non-degenerate if g is non-degenerate and
Ker B is a Cartan subalgebra of g.
The type of the singularity is naturally defined by the “number” of elliptic,
hyperbolic and focus components in the above decomposition.



General criterion

Now let J = {A + λB} be an arbitrary pencil of compatible Poisson brackets.
We consider the commutative family of functions FJ and a singular point
x ∈ SJ .
This means, that at this point there are non-trivial characteristic numbers λi

for the pencil J(x) = {A(x) + λB(x)}.
For each of them we can consider the λi -linearisation.
Is x non-degenerate?

Theorem (A. Izosimov)

Let J = {A + λB} be a pencil of compatible Poisson brackets, FJ be the
corresponding family of commuting Casimirs and x ∈ M singular point for FJ .
This point is non-degenerate if and only if for every characteristic number λi ,

1. the λi -linearisation of J at x is non-degenerate;

2. the pencil J(x) = {A + λB} is diagonalisable (i.e. all the Jordan blocks
are 2× 2).




