Singularities of bi-Hamiltonian Systems Lecture 3: Linearisation of Poisson pencils and a criterion of non-degeneracy

Alexey Bolsinov Loughborough University

29 August - 2 September, 2011

Lecture 3: main ingredients

- ▶ Linearisation of a Poisson structure at a singular point
- Linearisation of a Poisson pencil
- ▶ Non-degenerate linear-constant Poisson pencils
- Classification of non-degenerate linear-constant Poisson pencils (A. Izosimov)
- General non-degeneracy criterion (A. Izosimov)

Linearisation of a Poisson structure

According to the splitting theorem (A.Weinstein), locally each Poisson structure A splits into direct product of a non-degenerate Poisson structure $A_{\rm sympl}$ and the transversal structure $A_{\rm transv}$ which vanishes at the given point:

$$\textit{A} = \textit{A}_{\mathrm{sympl}} \times \textit{A}_{\mathrm{transv}}$$

The transversal Poisson structure $A_{\rm transv}$ is well defined and we can consider its linearisation just by taking the linear terms in the Taylor expansion

$$A_{\mathrm{transv}}(x) = \sum c_{ij}^k x_k + \dots$$

Definition

From the algebraic viewpoint, the linearisation of A at a point $x \in M$ is a Lie algebra \mathfrak{g}_A defined on $\operatorname{Ker} A(x)$ as follows. Let $\xi, \eta \in \operatorname{Ker} A(x)$ and f, g be smooth functions such that $df(x) = \xi, dg(x) = \eta$. Then, by definition,

$$[\xi,\eta]=d\{f,g\}(x)\in\operatorname{Ker} A(x)$$

Remark. If $x \in M$ is a regular point, then \mathfrak{g}_A is obviously trivial.

Linearisation of a Poisson pencil

 $\mathcal{J} = \{A_{\lambda} = A + \lambda B\}$ is a pencil of compatible Poisson brackets and $x \in M$. Let us take $x \in M$, fix $\lambda \in \mathbb{C}$ and consider the kernel Ker $A_{\lambda}(x)$.

On Ker A_{λ} we can introduce two natural structures:

- ▶ the Lie algebra $\mathfrak{g}_{\lambda} = \mathfrak{g}_{A_{\lambda}}$, the lineraisation of A_{λ} at the point x,
- the restriction of B onto Ker A_{λ} .

We can think of them as two Poisson structures on \mathfrak{g}_{λ}^* :

- ▶ the first on is linear, i.e., the standard Lie-Poisson structure related to \mathfrak{g}_{λ} ,
- ▶ the second one is constant $B|_{\mathfrak{g}_{\lambda}}$.

Proposition

These two Poisson structures are compatible, i.e. generate, a Poisson pencil $\Pi = \Pi(\lambda, x)$.

Definition

This Poisson pencil Π is called the λ -linearisation of the pencil \mathcal{J} at $x \in M$.

How to find the λ -linearisation in practice?

For simplicity $\lambda = 0$.

Choose a coordinate system $x_1, \ldots, x_k, x_{k+1}, \ldots x_n$ such that

$$A(x) = \begin{pmatrix} A_1(x) & A_2(x) \\ -A_2^{\top}(x) & A_3(x) \end{pmatrix}, \qquad B(x) = \begin{pmatrix} B_1(x) & B_2(x) \\ -B_2^{\top}(x) & B_3(x) \end{pmatrix}$$

where $A_1(0) = 0$, $A_2(0) = 0$ and $A_3(0)$ is non-degenerate (in other words, the first coordinates x_1, \ldots, x_k "generates" the kernel of A at x = 0).

Then the linear terms of $A_1(x)$ do not depend on $x_{k+1}, \dots x_n$ and form a linear Poisson bracket. The constant bracket is simply $B_1(0)$.

Thus, the linearisation of this pencil at x = 0 is defined by the linear part of A_1 and the constant part of B_1 .

In practice (see next lecture), such a coordinate system often can be found explicitly.

Example: Argument shift method

Consider the standard "shift argument" pencil $\{\ ,\ \}+\lambda\{\ ,\ \}_a$ corresponding to a Lie algebra $\mathfrak g$ and $a\in\mathfrak g^*$.

Let codim $S \ge 2$ so that the argument shift method gives a complete family \mathcal{F}_a of commuting polynomials.

Let $x \in \mathfrak{g}^*$ be a singular point for \mathcal{F}_a . This means that $x + \lambda a$ is a singular element of \mathfrak{g}^* .

Question. What is the λ -linearization $\Pi = \Pi(\lambda, x)$ of this pencil at this point?

Answer is very natural:

 \mathfrak{g}_{λ} is the ad*-stationary subalgebra of $x + \lambda a \in \mathfrak{g}^*$:

$$\mathfrak{g}_{\lambda} = \operatorname{ann}(x + \lambda a) = \{ \xi \in \mathfrak{g} \mid \operatorname{ad}_{\xi}^*(x + \lambda a) = 0 \}$$

and the constant bracket on \mathfrak{g}_{λ}^* is $\{\ ,\ \}_{\operatorname{pr}(a)}$ where $\operatorname{pr}(a)$ is the natural projection of a from \mathfrak{g}^* to $\operatorname{ann}(x+\lambda a)^*$ induced by the inclusion $\operatorname{ann}(x+\lambda a)\subset \mathfrak{g}$.

Linear-constant pencils and generalised "shift of argument"

Consider two compatible Poisson brackets on a vector space V:

linear A + constant B.

What are "compatibility conditions" for this kind of brackets?

Standard situation is "shift of argument" construction:

The brackets $\{f,g\}(x) = \sum c_{ij}^k x_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$, $\{f,g\}_a(x) = \sum c_{ij}^k a_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$ are compatible for each $a = (a_i) \in V$.

Situation can be different:

For $\{f,g\}_A(x) = \sum c_{ij}^k x_k \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_i}$ there may exist constant compatible brackets

$$\{f,g\}_B(x) = \sum B_{ij} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j}$$

which are not of the above type. The compatibility condition can be written as

$$B([\xi,\eta],\zeta) + B([\eta,\zeta],\xi) + B([\zeta,\xi],\eta) = 0.$$

This identity has a natural cohomological interpretation.

Remark 1. If the corresponding Lie algebra is semisimple, then the constant bracket must have the above form $\{\ ,\ \}_a$ for some $a\in V$.

Remark 2. Ker B is a subalgebra of g.

Non-degenerate linear-constant pencils

Consider two compatible Poisson brackets on a vector space V:

linear A + constant B

and the corresponding linear-Poisson pencil $\Pi = \{A + \lambda B\}$.

For this pencil $\Pi = \{A + \lambda B\}$ we can construct the family of commuting Casimirs \mathcal{F}_Π and ask the question about the structures of singular points. We will say that Π is complete, if \mathcal{F}_Π is complete.

It is easy to see that $0 \in V$ is a singular point of \mathcal{F}_Π and, moreover, it is a common equilibrium.

Definition

We say that a complete linear-constant pencil $\Pi = \{A + \lambda B\}$ is non-degenerate, if $0 \in V$ is a non-degenerate singular point for the family \mathcal{F}_{Π} .

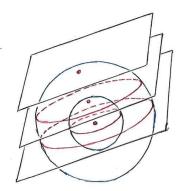
Examples: semisimple case so(3)

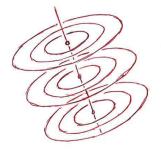
Example

If $A \simeq so(3)$ and B is arbitrary, then $\Pi = \{A + \lambda B\}$ is non-degenerate.

$$A = \begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$$

Casimir functions: $F_1 = x^2 + y^2 + z^2$, $F_2 = ax + by + cz$





Examples: semisimple case $sl(2,\mathbb{R})$

Example

 $sI(2,\mathbb{R})$ -bracket A and constant bracket B defined by an element $\xi \in sI(2,\mathbb{R}) \simeq sI(2,\mathbb{R})^*$:

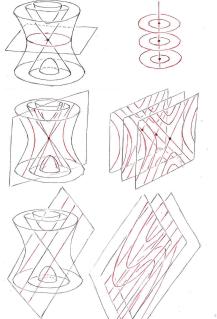
$$A = \begin{pmatrix} 0 & y & -z \\ -y & 0 & 2x \\ z & -2x & 0 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$$

Casimir functions: $F_1 = x^2 + yz$, $F_2 = ax + by + cz$

Is this pencil non-degenerate?

The answer depends on ξ : see next slide

Examples: semisimple case $sl(2,\mathbb{R})$



Examples: semisimple case $sl(2,\mathbb{R})$

Question.

Why are there 3 different cases? How to distinguish them?

Answer.

There are non-trivial elements $\xi \in sl(2,\mathbb{R})$ of three types:

- elliptic (eigenvalues are pure imaginary $i\lambda, -i\lambda$);
- ▶ hyperbolic (eigenvalues are real λ , $-\lambda$);
- nilpotent (both eigenvalues are zero).

We can distinguish them by using the Killing form:

- elliptic: $(\xi, \xi) < 0$;
- hyperbolic: $(\xi, \xi) > 0$;
- nilpotent: $(\xi, \xi) = 0$.

Equivalently, one may use the sign of ${\rm Tr}\,\xi^2=-2\,{\rm det}\,\xi$ in the standard 2×2 representation.

Conclusion.

Non-degeneracy \Leftrightarrow ξ is semisimple \Leftrightarrow Ker B_{ξ} is a Cartan subalgebra

Examples: non-semisimple case

Example

Consider the Lie algebra
$$e(2) = so(2) +_{\phi} \mathbb{R}^2 = \left\{ \begin{pmatrix} 0 & \alpha & \beta \\ 0 & 0 & -\theta \\ 0 & \theta & 0 \end{pmatrix} \right\}$$

The corresponding Lie-Poisson bracket:
$$A = \begin{pmatrix} 0 & x & -y \\ -x & y & 0 \\ y & 0 & 0 \end{pmatrix}$$

where x, y, z are dual coordinates to α, β, θ .

Constant bracket:
$$B = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}$$

Linear-constant pencil $\Pi = \{A + \lambda B\}$

Casimir functions on $e(2)^*$: $F_A = x^2 + y^2$, $F_B = ax + by + cz$.

These functions give a non-degenerate singularity iff $z \neq 0$.

The algebraic reformulation:

Non-degeneracy \Leftrightarrow Ker B is a Cartan subalgebra of e(2).

Classification of non-degenerate pencils

Problem.

Describe all "good" Lie algebras $\mathfrak g$ (equivalently, Lie-Poisson brackets A) which may produce non-degenerate linear-constant pencils and then for these Lie algebras find necessary and sufficient condition for a constant bracket B to give indeed a non-degenerate pencil $\Pi = \Pi(\mathfrak g, B) = \{A + \lambda B\}$.

Such Lie algebras are called non-degenerate too.

Theorem (A. Izosimov)

A linear-constant pencil $\Pi = \Pi(g,B)$ is non-degenerate (in the complex case) if and only if the Lie algebra $\mathfrak g$ associated with the linear bracket A is isomorphic to

$$\left(\bigoplus \mathsf{so}(3,\mathbb{C})\right) \oplus \left(\left(\bigoplus \mathfrak{D}\right)/\mathfrak{h}_0\right) \oplus \left(\bigoplus \mathbb{C}\right)$$

where $\mathfrak D$ is the diamond Lie algebra, $\mathfrak h_0$ is a commutative ideal which belongs to the center of $(\bigoplus \mathfrak D)$, and Ker B is a Cartan subalgebra of $\mathfrak g$.

What is the diamond Lie algebra \mathfrak{D} ?

 $\mathfrak D$ is a four dimensional Lie algebra generated by x,y,z,u with the following relations

$$[z,x] = y, \quad [z,y] = -x \quad \text{and} \quad [x,y] = u, \quad [u,\mathfrak{D}] = 0.$$
 (1)

In other words, $\mathfrak D$ (as a complex Lie algebra) is the non-trivial central extension of $e(2,\mathbb C)$.

Matrix representation:

$$\alpha x + \beta y + \theta z + \gamma u \quad \mapsto \quad \begin{pmatrix} 0 & \alpha & \beta & 2\gamma \\ 0 & 0 & -\theta & \beta \\ 0 & \theta & 0 & -\alpha \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Casimir functions:
$$F_1 = x^2 + y^2 + 2zu$$
, $F_2 = u$.

The complex diamond Lie algebra $\mathfrak D$ has 2 different real forms

- ▶ gell defined by (1) and
- \mathfrak{g}_{hyp} defined by [z,x]=x, [z,y]=-y, and [x,y]=u.

Classification of non-degenerate pencils. Real case.

Theorem (A. Izosimov)

A real Lie algebra g is non-degenerate iff

$$\begin{split} \mathfrak{g} &\simeq \left(\bigoplus so(3,\mathbb{R}) \right) \oplus \left(\bigoplus sl(2,\mathbb{R}) \right) \oplus \left(\bigoplus so(3,\mathbb{C}) \right) \oplus \\ & \left(\left(\left(\bigoplus \mathfrak{g}_{\textit{ell}} \right) \oplus \left(\bigoplus \mathfrak{g}_{\textit{hyper}} \right) \oplus \left(\bigoplus \mathfrak{g}_{\textit{foc}} \right) \right) / \mathfrak{h}_0 \right) \oplus \left(\bigoplus \mathbb{R} \right) \end{split}$$

where

- g_{ell} and g_{hyp} are the non-trivial central extensions of e(2) and e(1,1) (equivalently, they are real forms of \mathfrak{D}),
- $\mathfrak{g}_{foc} = \mathfrak{D}$ treated as real Lie algebra,
- \blacktriangleright \mathfrak{h}_0 is a commutative ideal which belongs to the center.

A linear-constant pencil $\Pi(\mathfrak{g},B)$ is non-degenerate if \mathfrak{g} is non-degenerate and Ker B is a Cartan subalgebra of \mathfrak{g} .

The type of the singularity is naturally defined by the "number" of elliptic, hyperbolic and focus components in the above decomposition.

General criterion

Now let $J = \{A + \lambda B\}$ be an arbitrary pencil of compatible Poisson brackets. We consider the commutative family of functions \mathcal{F}_J and a singular point $x \in S_J$.

This means, that at this point there are non-trivial characteristic numbers λ_i for the pencil $J(x) = \{A(x) + \lambda B(x)\}.$

For each of them we can consider the λ_i -linearisation.

Is x non-degenerate?

Theorem (A. Izosimov)

Let $J = \{A + \lambda B\}$ be a pencil of compatible Poisson brackets, \mathcal{F}_J be the corresponding family of commuting Casimirs and $x \in M$ singular point for \mathcal{F}_J . This point is non-degenerate if and only if for every characteristic number λ_i ,

- 1. the λ_i -linearisation of J at x is non-degenerate;
- 2. the pencil $J(x) = \{A + \lambda B\}$ is diagonalisable (i.e. all the Jordan blocks are 2 × 2).