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Lecture 3: main ingredients

> Linearisation of a Poisson structure at a singular point
> Linearisation of a Poisson pencil
> Non-degenerate linear-constant Poisson pencils

> Classification of non-degenerate linear-constant Poisson pencils
(A. Izosimov)

» General non-degeneracy criterion
(A. 1zosimov)



Linearisation of a Poisson structure

According to the splitting theorem (A.Weinstein), locally each Poisson
structure A splits into direct product of a non-degenerate Poisson structure
Asympl and the transversal structure A¢ransy Which vanishes at the given point:

A= Asympl X Atransv

The transversal Poisson structure Atransy is well defined and we can consider its
linearisation just by taking the linear terms in the Taylor expansion

Atransv(x) - Z ngk + ...

Definition

From the algebraic viewpoint, the linearisation of A at a point x € M is

a Lie algebra ga defined on Ker A(x) as follows. Let &, 1 € Ker A(x) and f, g
be smooth functions such that df(x) = &, dg(x) = 7. Then, by definition,

[€,m] = d{f, g}(x) € Ker A(x)

Remark. If x € M is a regular point, then ga is obviously trivial.



Linearisation of a Poisson pencil

J = {Ax = A+ AB} is a pencil of compatible Poisson brackets and x € M.
Let us take x € M, fix A € C and consider the kernel Ker A (x).
On Ker Ax we can introduce two natural structures:

> the Lie algebra gx = ga, . the lineraisation of Ay at the point x,

> the restriction of B onto Ker Aj.

We can think of them as two Poisson structures on g3:
> the first on is linear, i.e., the standard Lie-Poisson structure related to g,

> the second one is constant Blg, .

Proposition

These two Poisson structures are compatible, i.e. generate, a Poisson pencil
n=n(x, x).

Definition
This Poisson pencil I is called the \-linearisation of the pencil J at x € M.



How to find the A-linearisation in practice?

For simplicity A = 0.
Choose a coordinate system xi, ..., Xk, Xk+1, - - - Xo such that

A(x):(jf(())() ﬁ\‘jgf{%) BV)Z(%}?@ gjgg)

where A;(0) = 0, A2(0) = 0 and A3(0) is non-degenerate (in other words, the
first coordinates xi,...,xx "generates” the kernel of A at x = 0).

Then the linear terms of A;(x) do not depend on x+1, ... X, and form a linear
Poisson bracket. The constant bracket is simply Bi(0).

Thus, the linearisation of this pencil at x = 0 is defined by the linear part of A;
and the constant part of B;.

In practice (see next lecture), such a coordinate system often can be found
explicitly.



Example: Argument shift method

Consider the standard “shift argument” pencil { , } + A\{ , }, corresponding to
a Lie algebra g and a € g~.

Let codim S > 2 so that the argument shift method gives a complete family F,
of commuting polynomials.

Let x € g* be a singular point for F,. This means that x 4+ \a is a singular
element of g*.

Question. What is the A-linearization M = (A, x) of this pencil at this point?

Answer is very natural:
g is the ad™-stationary subalgebra of x + \a € g™:

gx = ann(x + Aa) = {£ € g | adi(x + Xa) = 0}

and the constant bracket on g3 is { , },/(;) where pr(a) is the natural projection
of a from g* to ann(x + Aa)* induced by the inclusion ann(x + Aa) C g.



Linear-constant pencils and generalised “shift of argument”

Consider two compatible Poisson brackets on a vector space V:
linear A 4 constant B.
What are “compatibility conditions” for this kind of brackets?

Standard situation is “shift of argument” construction:
of ag f og
The brackets {f, g}(x) = Zcu o {f gha(x) = ZC,J k i O are

compatible for each a = (a;) € V.
Situation can be different:

For {f,g}a(x) =3 cfx KB 8g there may exist constant compatible brackets

_ of dg
{ffg}B(X) - ZBU@X 8XJ

which are not of the above type. The compatibility condition can be written as

B([¢; ], ¢) + B([n, ¢, €) + B([¢, €],m) = 0.

This identity has a natural cohomological interpretation.

Remark 1. If the corresponding Lie algebra is semisimple, then the constant
bracket must have the above form { , }, for some a € V.

Remark 2. Ker B is a subalgebra of g.



Non-degenerate linear-constant pencils

Consider two compatible Poisson brackets on a vector space V:
linear A 4 constant B
and the corresponding linear-Poisson pencil 1M = {A + AB}.

For this pencil M = {A + AB} we can construct the family of commuting
Casimirs Fn and ask the question about the structures of singular points.
We will say that N is complete, if F is complete.

It is easy to see that 0 € V is a singular point of Fn and, moreover, it is a
common equilibrium.

Definition
We say that a complete linear-constant pencil M= {A+ AB} is
non-degenerate, if 0 € V is a non-degenerate singular point for the family Fn.



Examples: semisimple case so(3)

Example
If A~ so(3) and B is arbitrary, then 1 = {A + AB} is non-degenerate.

0 z -y 0 c -—b
A=|-z O X and B=|—-c O a
y —x 0 b —-a 0

Casimir functions: Fr =x>+y?> 4+ 2%, Fy=ax+ by + cz




Examples: semisimple case s/(2,R)

Example
sl(2,R)-bracket A and constant bracket B defined by an element
£ e€sl(2,R) ~sl(2,R)":

0 y -z 0 c —b
A= |-y 0 2x and B=|—-c 0 a
z =2x 0 b —-a 0

Casimir functions: F; =x*+yz, Fo=ax+ by + cz

Is this pencil non-degenerate?

The answer depends on &: see next slide



Examples: semisimple case s/(2,R)




Examples: semisimple case s/(2,R)

Question.
Why are there 3 different cases? How to distinguish them?

Answer.

There are non-trivial elements £ € s/(2,R) of three types:
» elliptic (eigenvalues are pure imaginary iA, —i\) ;
> hyperbolic (eigenvalues are real A, —\);

> nilpotent (both eigenvalues are zero).

We can distinguish them by using the Killing form:
» elliptic: (&,€) <0;
> hyperbolic:  (&,£) > 0;
» nilpotent: (&,¢6)=0.

Equivalently, one may use the sign of Tr&? = —2det € in the standard 2 x 2
representation.

Conclusion.
Non-degeneracy <& £ is semisimple & Ker B; is a Cartan subalgebra



Examples: non-semisimple case

Example
0 a p
Consider the Lie algebra e(2) = so(2) +4R*=¢ [0 0 -0
0 6 O
0 x -y
The corresponding Lie-Poisson bracket: A= |—-x y 0
y 0 0
where x, y, z are dual coordinates to «, 3, 0.
0 c -—b
Constant bracket: B=|—-c 0 a
b —-a 0

Linear-constant pencil M = {A+ AB}
Casimir functions on e(2)*: Fa = x> +y%  Fp=ax+by+cz.
These functions give a non-degenerate singularity iff z # 0.

The algebraic reformulation:
Non-degeneracy <  Ker B is a Cartan subalgebra of e(2).



Classification of non-degenerate pencils

Problem.

Describe all “good” Lie algebras g (equivalently, Lie-Poisson brackets A) which
may produce non-degenerate linear-constant pencils and then for these Lie
algebras find necessary and sufficient condition for a constant bracket B to give
indeed a non-degenerate pencil N =TM(g, B) = {A+ A\B}.

Such Lie algebras are called non-degenerate too.

Theorem (A. Izosimov)

A linear-constant pencil Tl = (g, B) is non-degenerate (in the complex case)
if and only if the Lie algebra g associated with the linear bracket A is
isomorphic to

(B=6.0)o ((B2)/m)e (D)

where © is the diamond Lie algebra, o is a commutative ideal which belongs
to the center of (D D), and Ker B is a Cartan subalgebra of g.



What is the diamond Lie algebra ©7?

® is a four dimensional Lie algebra generated by x, y, z, u with the following
relations

[z,x] =y, [z,y]=-x and [x,y]=u, [u,D]=0. (1)

In other words, © (as a complex Lie algebra) is the non-trivial central extension
of e(2,C).
Matrix representation:

0 a B8 2y
0 0 -0 p
ax+ By +0z+~vyu 06 0 -a
0 0 O 0
Casimir functions: F=x"4+y*+2zu, F=u.

The complex diamond Lie algebra © has 2 different real forms
> gey defined by (1) and
> ghyp defined by [z,x] = x, [z,y] = —y, and [x,y] = u.



Classification of non-degenerate pencils. Real case.

Theorem (A. lzosimov)

A real Lie algebra g is non-degenerate iff

0= (Psoi.Rr) @ (Psl2.r) & (Pso3,0)) @
(((@ Qe//) @ (@ ghyper) & (@ gfoc)> /ho) @ (@ R)

where
> gen and gpy, are the non-trivial central extensions of e(2) and e(1,1)
(equivalently, they are real forms of D),
> grc = D treated as real Lie algebra,
> ho is a commutative ideal which belongs to the center.

A linear-constant pencil T(g, B) is non-degenerate if g is non-degenerate and
Ker B is a Cartan subalgebra of g.

The type of the singularity is naturally defined by the “number” of elliptic,
hyperbolic and focus components in the above decomposition.



General criterion

Now let J = {A+ AB} be an arbitrary pencil of compatible Poisson brackets.
We consider the commutative family of functions F, and a singular point

X €S,

This means, that at this point there are non-trivial characteristic numbers \;
for the pencil J(x) = {A(x) + AB(x)}.

For each of them we can consider the Aj-linearisation.

Is x non-degenerate?

Theorem (A. Izosimov)

Let J = {A+ AB} be a pencil of compatible Poisson brackets, F; be the

corresponding family of commuting Casimirs and x € M singular point for F .

This point is non-degenerate if and only if for every characteristic number ;,
1. the Aj-linearisation of J at x is non-degenerate;

2. the pencil J(x) = {A+ AB} is diagonalisable (i.e. all the Jordan blocks
are2x2).





