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Lecture 2. Main ingredients

I Singular set of a Poisson bracket

I Jordan-Kronecker decomposition theorem

I From Linear Algebra to bi-Poisson Geometry

I Compatible Poisson structures and the family F of commuting Casimirs

I Completeness criterion and codimension two principle

I From singularities of Poisson brackets to singularities of Lagrangian
fibrations



Some basic notions and notation

Poisson manifold (M,A), Poisson structure A = (Aij) and Poisson bracket

{f , g}A = Aij(x)
∂f

∂x i

∂g

∂x j
.

We set rank A = maxx∈M rank A(x).

If rank A < dim M then, as a rule, there exist Casimir functions f ∈ C∞(M)
such that

{f , g}A = 0 for any g ∈ C∞(M)

Property: f is Casimir ⇔ df (x) ∈ Ker A(x) for all x ∈ M; moreover, for
regular x ∈ M, the differentials df (x) of (local) Casimirs generates Ker A(x).

M is foliated into symplectic leaves and the Casimir functions can be
characterized by the property of being constant on each symplectic leaf.

To each A we can assign its singular set

SA = {x ∈ M | rank A(x) < rank A}

(equivalently, SA is the union of all symplectic leaves of non-maximal
dimension).



Example 1

so(3)–bracket: A =

 0 z −y
−z 0 x
y −x 0


Casimir function: F = x2 + y 2 + z2

Symplectic leaves are spheres centered at the origin + one singular leaf {0}

Singular set is SA = {rank A < 2} = {0}, codim SA = 3



Example 2

sl(2,R)–bracket: A =

 0 y −z
−y 0 2x
z −2x 0


Casimir function: F = x2 + yz

Symplectic leaves: hyperboloids, two halves of the cone + one singular leaf {0}

Singular set is SA = {rank A < 2} = {0}, codim SA = 3



Example 3

Heisenberg–Lie bracket: A =

 0 z 0
−z 0 0
0 0 0


Casimir function: F = z

Symplectic leaves: planes {z = const 6= 0} + points on {z = 0}

Singular set is SA = {rank A < 2} = {z = 0}, codim SA = 1



Jordan–Kronecker decomposition

Theorem
Let A and B be two skew-symmetric bilinear forms. Then by an appropriate
choice of a basis, their matrices can be simultaneously reduced to the following
canonical block-diagonal form:

A 7→


A1

A2

. . .

Ak

 B 7→


B1

B2

. . .

Bk


where the pairs of the corresponding blocks Ai and Bi can be of the following
three types (see next slide)



Types of blocks

A B

Jordan block
(λ ∈ R)

 J(λ)

−J>(λ)

  Id

−Id


Jordan block
(λ =∞)

 Id

−Id

  J(0)

−J>(0)



Kronecker
block



1 0
. . .

. . .

1 0

−1

0
. . .

. . . −1
0





0 1
. . .

. . .

0 1

0

−1
. . .

. . . 0
−1





Observation

Kronecker block case:

A− λB =



1 −λ
. . .

. . .

1 −λ

−1

λ
. . .

. . . −1
λ


The kernel of A− λB is generated by (0, . . . , 0, λk , λk−1, . . . , λ, 1).

Proposition

Let L = Span{Ker(A− λB)}λ∈R. Then

I L is isotropic w.r.t. every form A− λB;

I L is maximal (!) isotropic.



More generally:

Theorem
Let A− λB be a pencil of skew symmetric forms,
L = Span{Ker(A− λB)}λ generic

I L is isotropic w.r.t. every form A− λB;

I L is maximal isotropic if and only if (the normal form of) the pencil
A− λB has no Jordan blocks.

Terminology: λ ∈ C is called generic if rank(A− λB) is maximal in the pencil,
otherwise λ is called a characteristic number of the pencil.

Relationship with Hamiltonian mechanics:

skew-symmetric form −→ Poisson structure
pencil of skew-symmetric forms −→ compatible Poisson structures
kernel of a skew-symmetric form −→ Casimir functions

maximal isotropic subspace −→ integrable system



Translation: Linear Algebra → bi-Poisson Geometry

Two Poisson structures A and B are compatible if µA + λB is again a Poisson
structure.
Let M be a manifold endowed with a linear family J = {Aλ = A + λB} of
compatible Poisson brackets. Assume that all Aλ ∈ J are degenerate so that
each of them possesses non-trivial Casimir functions.
We say that µ ∈ R is generic if rank Aµ is maximal in J .

Proposition

Let ẋ = v(x) be a dynamical system which is Hamiltonian w.r.t. each generic
Aµ ∈ J , then
1) the family of functions

FJ = {all Casimir functions of all brackets Aµ}

consists of its first integrals;
2) these integrals commute.

Natural questions to discuss: PROPERTIES of FJ
I Completeness
I Set of critical points
I Equilibrium points
I Non-degeneracy conditions, types
I Codimension one singularities



Argument shift method

On the dual space g∗ of an arbitrary Lie algebra g there are two natural
compatible Poisson brackets:

{f , g}(x) =
∑

ck
ij xk

∂f

∂xi

∂g

∂xj
and {f , g}a(x) =

∑
ck
ij ak

∂f

∂xi

∂g

∂xj

where a = (ai ) ∈ g∗ is a fixed element.

Proposition

For each λ ∈ R, the bracket { , }λ = { , }+ λ{ , }a is isomorphic to { , } (by
means of translation x → x + λa). In particular,

I the Casimir functions of { , }λ are of the form f (x + λa), where f is a
coadjoint invariant of g;

I the singular set of { , }λ is Sing + λa, where Sing is the set of singular
coadjoint orbits of g;

I the Kernel of { , }λ at the point x ∈ g∗ is the ad ∗-stationary subalgebra
of x + λa, i.e., ann(x + λa) = {ξ ∈ g | ad ∗ξ(x + λa) = 0}.

For this special kind of a Poisson pencil { , }λ on g∗ we can construct the
family of commuting functions Fa = {f (x + λa) | λ ∈ R, f ∈ IAd∗(g∗)} and
ask all the above questions.



Completeness

Consider a pencil of compatible Poisson brackets J = {A + λB} on M and the
family of commuting Casimirs FJ as above.
Question. Is FJ complete, i.e., sufficient to guarantee complete integrability?
How many commuting integrals do we need?

s =
1

2
(dim M + corankJ )

Instead of computing the number of independent integrals in FJ it is much
better to use the following definition: FJ is complete if at a generic point
x ∈ M the differentials df (x), f ∈ FJ , generate a maximal isotropic subspace.

Theorem
The family FJ is complete if and only if at a generic point x ∈ M the following
condition holds:

rank Aλ(x) = rankJ for all λ ∈ C.

Codimension two principle. Let all the brackets Aλ, λ ∈ C have the same rank
and codim Sλ ≥ 2 for almost all λ ∈ C. Then FJ is complete.

Theorem
The family of shifts Fa is complete on g∗ iff a ∈ g∗ is regular and
codim Sing > 2.



Set of critical points

Suppose that the family of commuting Casimirs FJ related to a pencil
J = {A + λB} is complete on M. However, there are still some singular points
x ∈ M where the commuting functions from FJ become dependent:

SJ = {x ∈ M | dim DFJ (x) <
1

2
(dim M + corankJ )}

where DFJ (x) ⊂ T ∗x M is the subspace spanned by the differentials of f ∈ FJ .

SJ is, by definition, the set of critical points of FJ (or, equivalently the
singular set of the corresponding Lagrangian fibration (see Lecture 1)).

On the other hand, for λ ∈ C̄, we can define the set of “singular points” of Aλ

in M:
Sλ = {x ∈ M | rank(Aλ(x)) < rankJ }.

Theorem
A point x is critical for FJ iff there is λ ∈ C̄ such that x ∈ Sλ.
In other words, the set of critical points SJ of the family FJ is the union of
”singular sets” Sλ over all λ ∈ C:

SJ = ∪λ∈CSλ



Common equilibria

Let F be a family of commuting functions of a Poisson manifold M. We say
that x ∈ M is a common equilibrium point for F if Xf (x) = 0 for all f ∈ F .

Theorem
x ∈ M is a common equilibrium point for FJ if and only if the kernels of all
generic brackets at this point coincide: Ker Aλ(x) = Ker Aµ(x), for all Aλ(x)
and Aµ(x) generic.

Remark 1. These general results (completeness, set of critical points and
common equilibria) are local in the sense that we always assume that the
Casimir functions exist and their differentials at a generic point generate the
kernel of the bracket.

Remark 2. All these results are of “zero order” in the sense that they require
the forms A(x) and B(x) at a fixed point x ∈ M only, but not their derivatives!
Thus, so far this is Linear Algebra but not Differential Geometry.
From Differential Geometry we only need one simple thing: at a generic point
x ∈ M the differential of Casimir functions generate the kernel of the bracket.
After this, everything is just a simple corollary of Jordan-Kronecker theorem.

Question to the audience: The compatibiliity condition is of the “first order”.
Why do we need it then?



References

I Alexey V. Bolsinov, Andrey A. Oshemkov
“Bi-Hamiltonian structures and singularities of integrable Hamiltonian
systems” Regular and Chaotic Dynamics, 14(2009), 431–454.

I Robert C. Thompson
“Pencils of Complex and Real Symmetric and Skew Matrices”
Linear Algebra and its Applications, 147(1991), 323–371.

I A. S. Mischenko and A. T. Fomenko
“Euler equation on finite-dimensional Lie groups”, Izv. Akad. Nauk SSSR
Ser. Mat. 42 (1978), no. 2, 396–415.

I A. V. Bolsinov
“Compatible Poisson brackets on Lie algebras and the completeness of
families of functions in involution”, Izv. Akad. Nauk SSSR Ser. Mat. 55
(1991), no. 1, 68–92.

I Israel M. Gelfand and Ilya Zakharevich
“Spectral theory for a pair of skew-symmetrical operators on S1”
Func. Anal. Appl. 23 (1989), no. 1, 85–93.

I Israel M. Gelfand and Ilya Zakharevich
“Webs, Veronese curves, and bihamiltonian systems”,
J. of Func. Anal. 99 (1991), 150–178.




