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0 Introduction

The index of a Lie algebra is defined as the dimension of the stabilizer of a
generic element with respect to the coadjoint representation, or equivalently,
the codimension of a generic coadjoint orbit. The index is an important
characteristic of a Lie algebra, which is used in different applications. The
aim of this note is to give a generalization of the so-called Räıs formula for
the index of a semidirect product of a Lie algebra and an abelian ideal.

It is well known that the index of a semisimple Lie algebra coincides with
its rank. For the nonsemisimple case, one of the most popular in applications
related result is the above mentioned Räıs formula calculating the index of
a semidirect product s = g ×ρ V of a Lie algebra g and a vector space V ,
by means of the representation ρ∗ : g → gl(V ∗) dual to the representation ρ
([Rai78], see also Corollary 1.8). More precisely, the index of s is equal to the
sum of the codimension of a generic orbit of ρ∗ and the index of the stabilizer
with respect to ρ∗ of a generic element in V ∗.

The Räıs formula, first proved by purely algebraic methods, can be also
deduced from Poisson geometric results on semidirect products. Namely, the
following theorem could be found in [RSTS94, Section 5]. If s = g ×ρ V is a
semidirect product and Vν := g∗ ×Oν , where Oν ⊂ V ∗ is the G-orbit of any
element ν ∈ V ∗, then: 1) Vν is a Poisson submanifold in (g ×ρ V )∗; 2) Vν is
Poisson diffeomorphic to T ∗G/Gν (here G ⊃ Gν are the Lie groups corre-
sponding to the Lie algebras g, gν, where gν is the stabilizer of ν, T ∗G/Gν is
endowed with the Poisson structure being the reduction of the canonical one).
Since the action of Gν on T ∗G is free, by the so called bifurcation lemma
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(cf. [OR04, Section 4.5]) the momentum map of this action is a submersion
and, consequently, the generic (in Vν) orbits have codimension in Vν equal to
ind gν , the index of gν . On the other hand, codim(g×ρV )∗ Vν = codimV ∗ Oν .
From this one deduces the following result.

Theorem 0.1 The subset Vν is a Poisson submanifold in (s∗, ηs), where ηs

is the canonical Lie-Poisson structure on s∗, and, moreover,

1. codims∗ Vν = codimV ∗ Oν ;
2. corankηs|Vν

= ind gν (here corank of a Poisson structure is defined as in
Definition 1.3).

Taking a generic ν we get the Räıs formula: ind s = codimV ∗ Oν + ind gν .
In this paper we present a version of this result in the situation when

instead of s we have any Lie algebra m with an ideal n such that the cor-
responding to n subgroup N of the connected simply-connected Lie group
M corresponding to m is closed (Theorem 1.5). As a consequence we get a
formula for the index generalizing the Räıs formula (Theorem 1.7). Our con-
siderations are very much inspired by the so-called ”symplectic reduction by
stages” [MMPR98,Per99,OR04]. The last is related to the case when a Lie
groupM possessing a normal subgroupN is acting on a symplectic manifold.
The reduction by N is performed firstly and then that by M/N . In fact we
follow this scheme concentrating rather on codimension of symplectic leaves
on each of the ”stages” than on their intrinsic geometry as was done in the
cited papers.

The situation of a general Lie algebra extension is much more involved in
comparison to that of semidirect products. The main difference is that weak
hamiltonian actions replace hamiltonian ones on the ”second stage” of the
reduction mentioned, which results in appearance of an additional 2-cocycle
in our formulations. Thus we need some extra preparations to formulate our
results and postpone this to Section 1. Here we mention only that, given a
Lie algebra m with an ideal n, the ad-representation of m on itself restricts to
the representation ρ of m on n. Theorem 1.7 relates the index of m with the
dual representation ρ∗ in the same spirit as the classical Räıs formula does.

The paper is organized as follows. In Section 1 we introduce appropriate
notions and formulate the main result. The Räıs formula is obtained as a
corollary of it. Then we illustrate our result by two elementary examples of
nonsplit extension and split extension with the nonabelian ideal. In Section
2 we describe the scheme of the reduction by stages and weak hamiltonian
actions which appear on the ”second stage”. Section 3 continues the consid-
erations of the preceding section and is devoted to calculating the coranks
of the reduced Poisson bivectors. In Section 4 we use the results of previous
sections to prove the main result. In Appendix we briefly recall main notions
related to weak hamiltonian actions.

We conclude this introduction by mentioning that another generalization
of the Räıs formula was obtained by D. Panyushev in [Pan05]. It consists in
relating the index of N-graded Lie algebras with three terms with that of the
semidirect product of two of them. This result is applied to calculation of the
index of the so-called seaweed subalgebras of simple Lie algebras. Different
results related to these subalgebras and to the general problem of calculating
the index can be found in [Ela82,DK00,Pan01,Pan03,Dvo03,TY04a,TY04b].
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1 Extensions of Lie algebras. Formulation of the main results

All Lie algebras will be finite-dimensional and defined over a field K equal
to R or C. Depending on the case we shall use the categories of real- or
complex-analytic manifolds and denote by E(P ) the corresponding space of
functions (real valued analytic or holomorphic) on a manifold P . If a capital
Latin letter denotes a Lie group, then the corresponding small Gothic letter
sands for the related Lie algebra and vice versa.

Consider an exact sequence of homomorphisms of Lie algebras

0 → n → m → g → 0. (1.1)

Since n is an ideal we can consider the representation ρ : m → gl(n), ρm(n) :=
adm(n), n ∈ n,m ∈ m. Fix ν ∈ n∗ and write mν for {x ∈ m | 〈ν, [x, y]〉 =
0 ∀y ∈ n}, the stabilizer Lie algebra with respect to the dual representation
ρ∗ of the element ν. Put also nν := mν ∩ n and gν := mν/nν. Note that nν is
an ideal in mν , so gν is a Lie algebra.

1.1. Lemma Introduce a map Γ̄ :
∧2

mν → K, Γ̄ (x, y) := ν̄([x, y]), where
ν̄ ∈ m∗

ν is some extension of ν|nν
∈ n∗

ν . Then

1. for any x, y ∈ mν , z ∈ nν one has Γ̄ (x + z, y) = Γ̄ (x, y), i.e. the map Γ̄

factorizes to a map γ̄ :
∧2

gν → K;
2. the map γ̄ is a cocycle on gν ;
3. if ν̃ ∈ m∗

ν is another extension of ν|nν
∈ n∗

ν and γ̃ the corresponding
cocycle, the difference γ̄ − γ̃ is a coboundary.

Thus we get a correctly defined element γν := [γ̄] ∈ H2(gν).

Proof Note that [z, y] ∈ nν , hence Γ̄ (x+z, y) = Γ̄ (x, y)+〈ν, [z, y]〉 = Γ̄ (x, y)−
〈ad∗

yν, z〉. But since y ∈ mν , the last term is zero and item (1) is proven.

The second item is obvious, since Γ̄ is a cohomologically trivial cocycle
on mν . (Note however, that the induced cocycle γ̄ is nontrivial in general.)

Now let ν̄, ν̃ be two extensions of ν|nν
. Then t := ν̄ − ν̃ ∈ n⊥

ν , where
n⊥

ν ⊂ m∗
ν is the annihilator of nν ⊂ mν and γ̄(x, y)−γ̃(x, y) = (ν̄−ν̃)([x, y]) =

t([x, y]), x, y ∈ gν , where we understand t as an element of g∗ν ≃ n⊥
ν . Thus

γ̄ − γ̃ = ∂t. ⊓⊔

Remark 1.1 The cocycle Γ̄ allows another description that may be useful in

calculations. Given the extension 0 → nν → mν
pν
→ gν → 0, assume that

sν : gν → mν is a section of pν , i.e. pν ◦ sν = Idgν
. Then we have a direct

decomposition mν = nν ⊕ sν(gν) and two projections πsν

1 : mν → mν,1 :=
nν , π

sν

2 : mν → mν,2 := sν(gν). We also have [x, y] = [x1 + x2, y1 + y2] =
[x1, y1]1 + [x1, y2]1 + [x2, y1]1 + [x2, y2]1 + [x2, y2]2 for x, y ∈ mν , where the
indices refer to the corresponding components of the decomposition mν =
mν,1 ⊕ mν,2. Any such section sν determines the extension ν̄ ∈ m∗

ν of ν|nν

by ν̄ := ν ◦ πsν

1 . Thus we get the formula Γ̄ (x, y) = ν([x1, y1]1 + [x1, y2]1 +
[x2, y1]1 + [x2, y2]1) for the corresponding cocycle which by Lemma 1.1. 1.
reads as Γ̄ (x, y) = ν([x2, y2]1).
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Definition 1.2 Given a Poisson manifold (P, η) in the real analytic or com-
plex analytic category, we define corank η as the codimension of its generic
symplectic leaf.

Given a Lie algebra g and a 2-cocycle γ ∈ C2(g), we can consider the
affine (in particular analytic) Poisson structure ηγ := ηg + γ̂ on g∗, where ηg

is the canonical Lie–Poisson structure on g∗ and γ̂ stands for the constant
Poisson structure on g∗ defined by 〈γ̂, ϕ ∧ ψ〉 := γ(ϕ, ψ), ϕ, ψ ∈ (g∗)∗ ≃ g.
Note that adding a coboundary ∂a, a ∈ g∗, to γ results in shifting of ηγ by
a, hence does not change corank of ηγ . This justifies the following definition.

Definition 1.3 Given a Lie algebra g and an element [γ] ∈ H2(g), γ ∈
C2(g), we define the index ind(g, [γ]) of the pair (g, [γ]) as the corank of the
Poisson bivector ηγ = ηg + γ̂.

Now we are able to formulate our first main result.

Theorem 1.4 Assume a Lie algebra extension (1.1) is given with an ad-
ditional condition that the corresponding to n subgroup N of the connected
simply-connected Lie group M corresponding to m is closed. Let ν ∈ n∗, the
representation ρ : m → gl(n), the Lie algebra gν and the cohomology class
γν ∈ H2(gν) be as defined above. Write m · ν for the orbit of the element
ν ∈ n∗ under the action ρ∗ and put Vν := π−1(m · ν), where π : m∗ → n∗ is
the canonical projection onto n∗ ≃ m∗/n⊥, n⊥ being the annihilator of n ⊂ m.
Then

1. Vν is a Poisson submanifold in m∗;
2. corankηm|Vν

= ind(gν , γν), where ηm is the canonical Lie–Poisson struc-
ture on m∗.

Proof The proof of item 1. is easy. Since N is normal, π is M -equivariant,
where the action of M on n∗ is equal to the integration of the infinitesimal
action ρ∗ defined above. Thus Vν = π−1(M · ν) is M -invariant, i.e. is a
union of M -orbits in m∗. In other words Vν is a union of symplectic leaves of
(m∗, ηm), hence is Poisson.

The second item of the theorem will be proven in Section 4. The following
definition is needed for the formulation of our second main result, the Räıs-
type formula for the index of a Lie algebra being an extension.

Definition 1.5 ([Pan01]) Let g be a Lie algebra and ρ : g → gl(V ) its
representation. The index ind ρ of the representation ρ is defined as the codi-
mension of a generic orbit of the dual representation ρ∗.

Theorem 1.6 We retain the notations and assumptions of Theorem 1.5.
Then

indm = ind ρ+ ind(gν , γν),

where ν ∈ n∗ is a generic element.
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Proof Take ν ∈ n∗ to be generic. Then ind ρ is equal to codimm ·ν, and since
the map π : m∗ → n∗ is a surjective submersion, to codimVν . Thus we have
indm = codimVν +corank η|Vν

= ind ρ+corankη|Vν
, where the last term by

Theorem 1.5 is equal to ind(gν , γν). ⊓⊔

Corollary 1.7 (The Räıs formula.) Assume an extension

0 → n → m
p
→ g → 0

satisfies the following two conditions: 1) it is split, i.e. there exists a homo-
morphic section s : g → m of p; 2) the Lie algebra n is abelian. Write ρs

for the representation ρ ◦ s : g → gl(n) and gs
ν for the stabilizer of a generic

element ν ∈ n∗ with respect to the dual representation (ρs)∗ : g → gl(n∗).
Then

indm = ind ρs + ind gs
ν .

Proof We first notice that ind ρs = ind ρ. Indeed, since n is abelian, We have
the formula

ad∗

(x1+x2)ν = ad∗

x2
ν,

where x = x1 + x2 ∈ m and the indices refer to the components of the direct
decomposition m = m1 ⊕ m2,m1 := n,m2 := s(g). Thus the tangent spaces
at ν to the orbits of the representations (ρs)∗ and ρ∗ coincide.

Secondly, the formula above shows also that mν = n ⊕ s(gs
ν), hence gν ≃

gs
ν . Now it remains to show that the corresponding cocycle γν is trivial. To

prove this, note that the subalgebra p(mν) ⊂ g is naturally isomorphic to
gν and that s|p(mν) : p(mν) ≃ gν → m is in fact a section of the canonical
projection pν : mν → gν . By the homomorphicity of s, [x2, y2]1 = 0 and
Γ̄ (x, y) = 0 (see Remark 1.2). ⊓⊔

Example 1.8 (A nonsplit extension.) The Heisenberg Lie algebra is the Lie
algebra of triangular matrices





0 u w
0 0 v
0 0 0



 , u, v, w ∈ K

with the standard commutator. The induced Lie bracket on m = K3 is
[(u, v, w), (u′, v′, w′)] = (0, 0, uv′ − vu′). Consider the ideal n = {(0, 0, w) |
w ∈ K} ⊂ m. The representation ρ of m on n is trivial, hence so is ρ∗.
Thus the stabilizer mν of any ν ∈ n∗ coincides with the whole m and the
factor algebra gν = m/n is the abelian two-dimensional algebra. The cocycle
Γ̄ corresponding to the section (u, v) 7→ (u, v, 0) (see Remark 1.2) is given
by Γ̄ ((u, v, w), (u′, v′, w′)) = ν(uv′ − vu′). Thus the induced cocycle γ̄ on
m/n is nontrivial and ind(gν , γν) = 0 as soon as ν 6= 0. Theorem 1.7 gives
indm = ind ρ = 1.
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Example 1.9 (A split extension with a nonabelian ideal.) Let m ⊂ gl(3,K)
be the Borel Lie algebra of the upper triangular matrices, n ⊂ m be the
upper nilpotent Lie algebra of the strict upper triangular matrices. Using
the trace form one obtains a natural identification n∗ ≃ gl(3,K)/m which
is M -equivariant, where M stands for the Lie group of the nondegenerate
upper triangular matrices. The extension 0 → n → m → m/n → 0 is split,
since the Lie subalgebra of diagonal matrices in m is complement to n.

The stabilizer mν of an element

ν :=





0 0 0
a 0 0
c b 0



 + m ∈ gl(3,K)/m, c 6= 0,

is equal to the 3-dimensional abelian Lie algebra of the matrices of the form





x b(x− y)/c z
0 y a(x− y)/c
0 0 x



 , x, y, z ∈ K.

Thus the generic orbits of the m-action on n∗ are of codimension 0. The
intersection mν ∩ n corresponds to the matrices above with x = y = 0, i.e.
is 1-dimensional, hence gν is the abelian 2-dimensional Lie algebra. Since all
the Lie algebras in the extension 0 → nν → mν → gν → 0 are abelian, it is
split and the arguments of Remark 1.2 show that the corresponding cocycle
γν is trivial. Finally, indm = ind gν = 2.

The first of these examples show that the cocycles γν in general can be
nontrivial. The second example and the proof of the corollary above suggest
that in the case of split extensions one would expect triviality of cocycles γν .
Unfortunately, the author knows neither a proof of this, nor an example of a
nontrivial cocycle γν in the split case.

2 Reduction by stages: preliminary results

We start from the following result, which in reference [MMPR98] is called
”easy Poisson reduction by stages”.

Lemma 2.1 Let M be a connected Lie group with a connected normal closed
subgroup N . Assume M is acting on a connected Poisson manifold (P, η),
this action is free and proper and preserves the Poisson structure. Let η′ :=
p′
∗
(η), η′′ := p′′

∗
(η) be the reduced Poisson structures on P ′ := P/N,P ′′ :=

P/M correspondingly, with respect to the canonical projections p′ : P →
P ′, p′′ : P → P ′′. Then

1. there is a natural action of the Lie group G := M/N on P ′, which is free
and proper and preserves the Poisson structure η′;

2. the reduced (with respect to this action) Poisson manifold (P ′′′, η′′′), where
P ′′′ := P ′/G, η′′′ := p′′′∗ (η′) and p′′′ : P ′ → P ′′′ is the canonical projection,
is naturally Poisson diffeomorphic with (P ′′, η′′).
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Proof Since, due to the normality of N , m(Nx) = N(mx),m ∈ M,x ∈
P , this formula defines an action of M on the set of N -orbits. This action
obviously induces an action of G = M/N . An easy exercise shows that the
last is free and proper. It preserves η′ since the action of M preserves η.

Now, the formula G(Nx) 7→ Mx, x ∈ P , defines a diffeomorphism ϕ :
P ′′′ → P ′′. To show that it is Poisson we shall use the fact that so are
p′, p′′, p′′′ and that p′′ = ϕ ◦ p′′′ ◦ p′. Indeed, since p′′′ ◦ p′ is surjective, the
equality ϕ∗{f, g}η′′ = {ϕ∗f, ϕ∗g}η′′′ , is valid for any f, g ∈ E(P ′′′), if and
only if (p′′′ ◦ p′)∗(ϕ∗{f, g}η′′) = (p′′′ ◦ p′)∗({ϕ∗f, ϕ∗g}η′′′). But the left hand
side of the last equality is (p′′)∗{f, g}η′′ = {(p′′)∗f, (p′′)∗g}η. The right hand
side, in turn, is {(p′′′ ◦ p′)∗ ◦ ϕ∗f, (p′′′ ◦ p′)∗ ◦ ϕ∗g}η = {(p′′)∗f, (p′′)∗g}η. ⊓⊔

Now assume that the action of M on (P, η) is hamiltonian, i.e. there exists
a Lie algebra homomorphism JM : (m, [, ]) → (E(P ), {, }) ({, } being the
Poisson brackets) with the property η(JM (x)) = ξx, x ∈ m, where ξx is the
fundamental vector field on P corresponding to x. Then the map JM : P →
m∗ defined by 〈JM (q), x〉 = (JM (x))(q), q ∈ P , which is called the momentum
map, is M -equivariant, the action of M on m∗ being the coadjoint one. Recall
that if we omit the condition of homomorphicity of JM that is equivalent
to equivariance of JM (and also to the Poisson property of JM ), we get the
so-called weak hamiltonian action (see Appendix). It is well-known that if
the action of M on P is hamiltonian, the action of the subgroup N is also
hamiltonian and the corresponding momentum map JN : P → n∗ is given by
JN = π ◦ JM , where π : m∗ → n∗ is the canonical projection (cf. Section 1).

The natural question arises: is the induced action of G on (P ′ = P/N, η′)
also hamiltonian? In general this action is not even weakly hamiltonian since
its fundamental vector fields are not tangent to the leaves of η′. But if we re-
strict ourselves to the subgroup of G which preserves a particular symplectic
leaf of (P ′, η′), then the corresponding action will be weak hamiltonian and
our next aim is to prove this.

Let us fix a symplectic leaf S ⊂ P ′ of η′. It corresponds to the unique
coadjoint orbit O = n · ν of some element ν ∈ n∗ and the correspondence is
given by (p′)−1(S) = J−1

N (O). Let GS := {g ∈ G | gS = S} be the stabilizer
of S under the G-action on P ′. We claim that GS is naturally isomorphic to
Mν/Nν , where Mν is the stabilizer of ν with respect to the M -action and
Nν := Mν ∩N .

To prove this notice first that the stabilizer MS of S under the M -action
on P ′ coincides with the stabilizerMO ofO under theM -action on n∗. Indeed,
MS is equal to the stabilizer of (p′)−1(S) with respect to the M -action on P
which in turn is equal to MO by the M -equivariance of JN .

On the other hand, for m ∈ M we have mNν = Nν if and only if
Nmν = Nν (by the normality of N) if and only if m ∈ NMν , i.e. MO =
NMν = MνN . Since GS = MS/N , we have GS = MO/N ≃Mν/Nν .

Note also that MνN = Mν′N for any other element ν′ = n−1ν ∈ O,
n ∈ N : NMν′ = NnMνn

−1 = NMνn
−1 = MνNn

−1 = MνN .

Lemma 2.2 The action of GS ≃Mν/Nν =: Gν on (S, η′|S) is weakly hamil-
tonian, i.e. has a momentum map JGS

: S → g∗ν which may be nonequivari-
ant. The corresponding nonequivariance 2-cocycle (cf. Appendix) γ ∈ C2(gν)
coincides with the cocycle −γν, where γν is the cocycle from Section 1.
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Proof We want to show that the action ofGν := Mν/Nν on (S, η′|S) is weakly
hamiltonian, i.e. has a momentum map which may be nonequivariant. This
already has been done in [MMPR98, Section 5.2]. More precisely, it is shown
there that Gν acts naturally on the reduced space Pν := J−1

N (ν)/Nν and this
action is weakly hamiltonian. On the other hand it is known [OR04] that
the symplectic manifolds J−1

N (ν)/Nν and S = J−1
N (O)/N are canonically

symplectically diffeomorphic. So all we need is to show that under this dif-
feomorphism the action from [MMPR98] transforms to the described above
Gν -action on S. Indeed, let lν : J−1

N (ν) → J−1
N (O) be the inclusion map

and p′ν : J−1
N (ν) → J−1

N (ν)/Nν = Pν , p
′

O : J−1
N (O) → J−1

N (O)/N = S be
the canonical projections. Then [OR04, Section 6.4] the map Lν : Pν → S
defined by the commutative diagram

J−1
N (ν)

lν−−−−→ J−1
N (O)

p′

ν





y





y
p′

O

Pν
Lν−−−−→ S

is a symplectic diffeomorphism. The action of Gν on Pν is induced by the
action of Mν on J−1

N (ν) [MMPR98, Section 5.2]. On the other hand, the
action of GS = Gν on S is induced by the action of M . Thus by definition
Lν commutes with the actions of Gν on Pν and on S.

Now we recall some facts from [MMPR98]. The action of Gν on Pν (in-
duced by the action of Mν on J−1

N (ν)) has a momentum map Jν : Pν → g∗ν ,
which in general is not equivariant. The corresponding g∗ν-valued nonequiv-
ariance one-cocycle ̟ on Gν is determined by r∗ν(̟([m]) = Ad∗

m−1 ν̄ − ν̄,
where m ∈Mν , [m] is the class of m in Mν/Nν , r∗ν : g∗ν → m∗

ν is dual to the
canonical projection rν : mν → gν and ν̄ ∈ m∗

ν is any extension of ν|nν
∈ n∗

ν .
It is clear that the corresponding two-cocycle γ on gν is in turn given

by γ(x, y) = 〈−ad∗

xν̄, y〉 in which one recognizes the cocycle −γ̄, where γ̄
is defined in Section 1. Note that the freedom in defining the cocycle γ̄ (it
is defined up to a coboundary, cf. Section 1) agrees with that in defining
nonequivariance cocycle of a momentum map (cf. Appendix). ⊓⊔

Corollary 2.3 The map JGS
: S → (g∗ν , ηgν

− γ̂ν), where ηgν
is the canon-

ical Lie-Poisson structure on g∗ν and γ̂ν is the constant Poisson structure
corresponding to the cocycle γν (see Section 1), is Poisson.

Proof See Appendix. ⊓⊔

3 Reduction by stages: calculating the coranks

Retaining the notations and assumptions of the previous section let ν ∈ n∗,
let m · ν stand for the m-orbit of ν and let Vν := J−1

N (m · ν).

Lemma 3.1 Assume that the set Wν := p′(J−1
M (Vν)) is a submanifold in P ′

and the set Uν := p′′′(Wν) is a submanifold in P ′′′. Then
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1. Wν is a G-invariant regular Poisson submanifold in (P ′, η′);
2. the group G is acting transitively on the space of symplectic leaves of Wν ;
3. Uν is a Poisson submanifold of (P ′′′, η′′′) and corankUν

η′′′|Uν
= ind(gν , γν)

Proof Since the Poisson maps JN and p′ form a dual pair [Wei83] and m · ν
is the union of symplectic leaves of n∗, the set Wν = p′(J−1

N (m · ν)) is the
union of symplectic leaves of η′. The G-invariance of Wν follows from the
M -equivariance of JN and the transitivity of G on these symplectic leaves
follows from the fact that M acts transitively on the space of symplectic
leaves of the Poisson manifold m · ν. This in turn implies that all the leaves
of Wν have the same dimension. Thus we have proven items 1. and 2.

Since Wν is a Poisson submanifold of (P ′, η′) the set Uν is the union of
symplectic leaves of η′′′ = p′′′

∗
(η′), hence is Poisson. To prove the equality

on corank we notice that by item 2. the Poisson manifold (Uν , η
′′′|Uν

) is in
fact the reduction of a single symplectic leaf S ⊂ Wν of η′ with respect
to its stabilizer GS ⊂ G. Thus we can use Lemma 2.2, Corollary 2.3 and
the fact that the Poisson maps p′′′|S : (S, η′|S) → (Uν , η

′′′|Uν
) and JGS

:
(S, η′|S) → (g∗ν , ηgν

− γ̂ν) form a dual pair. Taking into account that the
action of GS is free we conclude that JGS

is a submersion (by the so-called
bifurcation lemma, cf. [OR04, Section 4.5]). Finally, using the fact that the
Poisson manifolds which are submersive images of a dual pair have the same
coranks we obtain the needed equality. ⊓⊔

4 Proof of the main result

In this section we shall use the results of the previous two sections to prove
item 2 of Theorem 1.5.

Let N,M,G be the connected simply-connected Lie groups corresponding
to the Lie algebras from extension (1.1). We shall perform the described
above reduction in the situation when P = T ∗M (with the canonical Poisson
structure η of the cotangent bundle) and the action of M is the cotangent
lift of the action of M by the left translations on itself. The action of M on
P can be considered as the restriction to a closed subgroup of the action of
P , regarded as a Lie group, on itself. By [CB97, Appendix B] the action by
the left translations of a closed subgroup on a Lie group is free and proper,
so the applicability of Lemma 2.1 is justified.

On the other hand, the action of M on T ∗M is hamiltonian, so we can
also apply Lemma 2.2 and Corollary 2.3.

It is well-known that, given a dual pair [Wei83] of Poisson surjective
submersions

P
p2

−−−−→ P2

p1





y

P1

,

where the Poisson mainifold P is nondegenerate, there is a one-to-one corre-
spondence between the symplectic leaves of P1 and P2 which can be described
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as follows: if S1 is a symplectic leaf of P1 then p2(p
−1
1 (S1)) is a symplectic

leaf of P2 and vice versa.
In our situation, when we have the dual pair

T ∗M
JM−−−−→ m∗

p′′





y

m∗

,

where the vertical arrow is the canonical projection p′′ : T ∗M → T ∗M/M ≃
m∗, the symplectic leaves are selfdual, i.e. each coadjoint orbit corresponds to
itself. Indeed, after the identification of T ∗M with M × m∗ by means of the
left translations the maps in the diagrame above have the form: p′′(g, x) =
x, JM (g, x) = −Ad∗

gx, g ∈M,x ∈ m∗. Thus, given a coadjoint orbit O ⊂ m∗,

we have JM ((p′′)−1(O)) = JM (M ×O) = O.
From this we conclude that the Poisson submanifold Vν ⊂ m∗ is also

selfdual. In other words, under the identification P ′′′ ≃ P ′′ = m∗ of Lemma
2.1 Vν coincides with Uν of Lemma 3.1. Thus Uν and Wν = (p′′′)−1(Uν) are
submanifolds and we can use this lemma to conclude the proof. ⊓⊔

5 Appendix: weak hamiltonian actions

Assume that an action of a connected Lie group G on a connected non-
degenerate Poisson manifold (P, η) is given such that there exists a linear
map J : g → E(P ) with the property η(J (x)) = ξx, x ∈ g, where ξx is
the fundamental vector field on P corresponding to x and η(f) denotes the
hamiltonian vector field cooresponding to a function f ∈ E(P ). Then the
action is called weakly hamiltonian and the map J : P → g∗ defined by
〈J(q), x〉 = (J (x))(q), q ∈ P , is called the momentum map. If this last is
G-equivariant (the G-action on g∗ being the coadjoint one) or, equivalently,
it is Poisson (with the canonical Lie-Poisson structure ηg on g∗), the action
is called hamiltonian. The obstruction to hamiltonicity is measured by the
two-cocycle γ on g given by γ(x, y) = J ([x, y]) − {J (x),J (y)}, where {, }
are the Poisson brackets. The map J becomes Poisson when we endow g∗

with the affine Poisson structure ηg + γ̂ (cf. Section 1).
One can also define a g∗-valued one-cocycle ̟ on G by ̟(g) = J(gq) −

Ad∗

g−1(J(q)) (this in fact does not depend on q ∈ P ). Again the map J

becomes equivariant if one defines the action of G on g∗ by gξ = Ad∗

g−1(ξ) +
̟(g), g ∈ G, ξ ∈ g∗. The two cocycles are related by γ(x, y) = 〈de̟(x), y〉.

Note that we can add constants to the functions J (x) because this does
not change ξx, that is the momentum map J is defined up to a constant
element in g∗. This means that the corresponding cocycles are defined up to
a coboundary.

The reader is referred to reference [OR04] for more information on weak
hamiltonian actions and momentum maps.
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