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Given a 1-parameter family of 1-forms γ (t) = γ0+tγ1+· · ·+tnγn, consider the condition
dγ (t)∧γ (t) = 0 (of integrability for the annihilated by γ (t) distribution w(t)). We prove that
in order that this condition is satisfied for any t it is sufficient that it is satisfied for N = n+
3 different values of t (the corresponding implication for N = 2n+1 is obvious). In fact we
give a stronger result dealing with distributions of higher codimension. This result is related
to the so-called Veronese webs and can be applied in the theory of bihamiltonian structures.
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Introduction
The notion of a Veronese web was introduced by I. M. Gelfand and I. S. Za-

kharevich [2] as a natural invariant of bihamiltonian structures of corank 1. They
conjectured that locally this invariant is complete, i.e. determines the bihamiltonian
structure up to an isomorphism. This conjecture was proved by F. J. Turiel [6].

Let us briefly recall relevant definitions. Assume that we have a 1-parameter
family {w(t)}t∈RP1 , w(t) ⊂ TM, of distributions of codimension 1 on a smooth
manifold M such that in a neighbourhood of any point there exist an annihilating
w(t) 1-form γ (t) ∈ 0(w(t))⊥ and a coframe {γ0, . . . , γn} with the property γ (t) =
γ0 + tγ1 + · · · + tnγn (we assume that γ (∞) = γn annihilates w(∞) and write 0
for the space of sections of a vector bundle). We call this family of distributions a
Veronese curve of distributions. We say that it is integrable or it is a Veronese web
if each distribution w(t) is integrable, i.e.

dγ (t) ∧ γ (t) = 0, t ∈ R, (1)
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and
dγ (∞) ∧ γ (∞) = 0 (2)

(it can be shown that (1)⇒ (2)).
Eq. (1) is polynomial of degree 2n in t , hence it is sufficient that it is satisfied for

2n+1 different values of t in order that it is satisfied for any t ∈ R. In other words,
integrability of w(t) at 2n + 1 different points implies integrability of a Veronese
curve of distributions.

It is remarkable that this number can be essentially reduced. Zakharevich [8] con-
jectured that the integrability of w(t) at n+3 different points implies the integrability
of the Veronese curve of distributions.

The aim of this paper is to prove this result in a more general setting. We give
it for generalized Veronese curves of distributions. The precise definition is given in
Section 1. Here we shall only mention that integrable generalized Veronese curves
of distributions coincide with a particular case of the so-called Kronecker webs
introduced in [9]. The last notion serves as an invariant of bihamiltonian structures
of higher corank in the same manner as the notion of a Veronese web does this for
bihamiltonian structures of corank 1 (see also [7, 5]).

One of possible applications of our result is that it allows to generalize theory of
nonlinear wave equations [8] to higher dimensional and codimensional cases. Also
it may help to establish new relations between Veronese webs and classical webs.
In [4] such relations are studied in the case n = 1.

Briefly, our method can be described as follows. Given n + 3 foliations corre-
sponding to the integrable points of the curve of distributions w(t), we construct
locally a curve of foliations w̃(t) in a larger space such that w̃(t) projects onto
w(t), so proving the integrability of w(t). Our proof works only in the real-analytic
category, since it uses the complexifications of the objects. This, of course, is one
of the disadvantages of the method.

All objects in this paper are from Cω-category.

1. Basic definitions

DEFINITION 1. Let Mk(n+1) be a manifold of dimension m = k(n + 1) and let
{w(t)}t∈RP1 , w(t) ⊂ TM , be a family of distributions of codimension k (as subbundles
they have rank kn). Assume that in a neighbourhood of any point there exist k
independent annihilating w(t) 1-forms γ 1(t), . . . , γ k(t) ∈ 0(w(t))⊥ and a coframe
{γ 1

0 , . . . , γ
1
n , γ

2
0 , . . . , γ

2
n , . . . , γ

k
0 , . . . , γ

k
n } such that γ i(t) = γ i0 + tγ i1 + · · · + tnγ in, i ∈

1, k. Then we call {w(t)}t∈RP1 a generalized Veronese curve of distributions.

DEFINITION 2. A generalized Veronese curve of distributions {w(t)}t∈RP1 is called
integrable or a generalized Veronese web if each distribution w(t) is integrable, i.e.

dγ i(t) =
∑

s

β is(t) ∧ γ s(t), i ∈ 1, k, (3)
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for some depending on t 1-forms β is(t), i, s ∈ 1, k (we put γ i(∞) := γ in, i ∈ 1, k).
The corresponding foliations will be denoted by W(t).

REMARK 1. It can be proved that if Eqs. (3) are satisfied for each t ∈ R, then
w(∞) is automatically integrable.

REMARK 2. In case k = 1 one gets the standard definition of a Veronese web.
For k > 1 we obtain a particular case of Kronecker webs [9] with Kronecker blocks
of equal dimension. In [5] the terminology “generalized Veronese webs” was used
for different objects, namely for Kronecker webs without Kronecker blocks of equal
dimension.

REMARK 3. If {w(t)}t∈RP1 is a generalized Veronese web and a1, . . . , al ∈ RP1,
l ≥ m, are different, then {W(a1), . . . ,W(al)} is a “classical” l-web of codimension
k (see [3]), i.e. the foliations W(a1), . . . ,W(al) are in general position.

2. Main theorem
LEMMA. Let M be a complex manifold, J : TM → TM be the complex structure

operator on the real tangent bundle TM . Assume that F ⊂ TM is an integrable
distribution such that the distribution JF ⊂ TM is also integrable. Then the dis-
tribution (Id+tJ )F is integrable for any t ∈ R.

Proof : Let {v1, . . . , vs} be a local system of generating F vector fields. Then

[vi, vj ] =
∑

l

αlijvl, [Jvi, J vj ] =
∑

l

β lijJvl

for some functions αlij , β
l
ij . The following calculations use the integrability condition

for the complex structure

J [vi, vj ]− J [Jvi, J vj ] = [Jvi, vj ]+ [vi, J vj ]

and complete the proof:

[vi + tJ vi, vj + tJ vj ]
= [vi, vj ]+ t2[Jvi, J vj ]+ t ([vi, J vj ]+ [Jvi, vj ])

= [vi, vj ]+ t2[Jvi, J vj ]+ t (J [vi, vj ]− J [Jvi, J vj ])

= [vi, vj ]+ tJ [vi, vj ]+ t (−J [Jvi, J vj ]+ t[Jvi, J vj ])
= (Id+tJ )[vi, vj ]+ t (Id+tJ )(−J [Jvi, J vj ])

=
∑

l

αlij (vl + tJ vl)+ t
∑

l

β lij (vl + tJ vl)

=
∑

l

(αlij + tβ lij )(vl + tJ vl). �
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NOTATION. Given a real-analytic manifold M , let MC denote the germ along
M of a complexification of M , i.e. a complex-analytic manifold Z such that M is
embedded in Z as a completely real submanifold. The germ MC is defined uniquely
up to (a germ of) a biholomorphic map (see [1]). If ϕ is a real-analytic function
on M , ϕc will stand for the unique germ along M of a complex-analytic function
on MC such that ϕc|M = ϕ.

THEOREM 1. Let Mk(n+1) be a manifold of dimension m = k(n + 1) and let
{w(t)}t∈RP1 be an integrable generalized Veronese curve of distributions of codimen-
sion k on M . Then for any point x ∈ M there exist a coordinate map (U, ϕ),
M ⊃ U 3 x, ϕ = (ϕ1, . . . , ϕm), and a germ along U of an integrable distribution
F ⊂ T UC (T stands for the real tangent bundle) such that for any t ∈ RP1:

(1) The distribution (Id+tJ )F ⊂ T UC is integrable (we assume that the value
t = ∞ corresponds to JF ).

(2) rank((Id+tJ )F ) = kn = rankw(t).
(3) The distribution (Id+tJ )F is projectable on U along the germ of the foliation
Y = {Re ϕc1 = const, . . .Re ϕcm = const}.

(4) The projection of (Id−tJ )F coincides with w(t)|U .

Proof : Let a1, . . . , an+1 ∈ R be different nonzero numbers. Then the foliations
W(a1), . . . ,W(an+1) are in general position and for any point one can find a neigh-
bourhood U and functions

ϕ1 = ψ1
1 , . . . , ϕn+1 = ψ1

n+1,

ϕ(n+1)+1 = ψ2
1 , . . . , ϕ2n+2 = ψ2

n+1,

. . .

ϕ(k−1)(n+1)+1 = ψk1 , . . . , ϕm = ψkn+1

on U such that W(aj ) = {ψ1
j = const, . . . , ψk

j = const}, j ∈ 1, n+ 1.
We define a new family of distributions F(t) ⊂ T UC, t ∈ RP1, of codimension

k by
0(F(t))⊥ = 〈(Id−tJ ∗)π∗γ 1(t), . . . , (Id−tJ ∗)π∗γ k(t)〉.

Here 〈·〉 stands for the linear span, J ∗ : T ∗UC → T ∗UC is the adjoint operator to
the complex structure J : T UC → T UC, π : UC → U is the projection along the
foliation Y defined in (3), and γ 1(t), . . . , γ k(t) are the annihilating w(t) 1-forms
(see Definition 1).

Now, let us define the distribution F as

F =
⋂

t∈RP1

F(t)

or
0F⊥ = 〈(Id−tJ ∗)π∗γ 1(t), . . . , (Id−tJ ∗)π∗γ k(t)|t ∈ RP1〉.
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Notice that the 1-forms π ∗γ i0 , π
∗γ i1 − J ∗π∗γ i0 , . . . , π∗γ in − J ∗π∗γ in−1,−J ∗π∗γ in

corresponding to different powers of t in (Id−tJ ∗)π∗γ i(t), i ∈ 1, k, are linearly
independent. Therefore the standard properties of the Veronese curve (of degree
n+ 2) imply that

0F⊥ = 〈(Id−tJ ∗)π∗γ 1(t), . . . , (Id−tJ ∗)π∗γ k(t)|t ∈ {0, a1, . . . , an+1}〉
or

F =
⋂

j∈0,n+1

F(aj )

(here we put a0 = 0).
This allows us to prove the integrability of F by showing the integrability of

F(a0), . . . , F (an+1).
Evidently, γ i(aj ) = ∑k

s=1 β
i
jsdψ

s
j , i ∈ 1, k, j ∈ 1, n+ 1 for some functions β ijs .

Similarly, γ i(a0) =∑k
s=1 β

i
0sdψ

s
0 , i ∈ 1, k for some functions β i0s , ψ

s
0 . Thus

(Id−ajJ ∗)π∗γ i(aj ) = (Id−ajJ ∗)
k∑

s=1

π∗β ijsdπ
∗ψ sj

=
k∑

s=1

π∗β ijs(d(Re(ψ s
j )
c)+ ajd(Imψ sj )

c))

=
k∑

s=1

π∗β ijsd(Re(ψ sj )
c + aj (Imψ sj )

c), i ∈ 1, k, j ∈ 1, n+ 1

and

(Id−a0J
∗)π∗γ i(a0) = π∗γ i(a0) =

k∑

s=1

π∗β i0sdπ
∗ψ s0 , i ∈ 1, k

(here we used the obvious facts that π ∗ϕj = Re ϕcj , j ∈ 1, m, and that J ∗d(Re ϕcj ) =
−d(Im ϕcj )). Now it is easy to check the Frobenius integrability conditions using

the nondegeneracy of the matrix ‖β ijs‖i,s for any j ∈ 0, n+ 1. So the distributions
F(aj ) are indeed integrable.

To prove (1) we choose another set of generators for 0F ⊥ as follows

0F⊥ = 〈(Id−tJ ∗)π∗γ 1(t), . . . , (Id−tJ ∗)π∗γ k(t)|t ∈ {a1, . . . , an+2}〉,
where an+2 := ∞, and notice that

0J ∗F⊥ = 〈(J ∗ + t Id)π∗γ 1(t), . . . , (J ∗ + t Id)π∗γ k(t)|t ∈ {a1, . . . , an+2}〉.
Now the integrability for JF = ((J ∗)−1F⊥)⊥ = (J ∗F⊥)⊥ can be proved by the same
considerations as for F and the integrability of (Id+tJ )F follows from Lemma.
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In order to prove (2) we mention that rank F = kn by the construction and that
Id+tJ : T UC → T UC is the isomorphism for any t ∈ RP1: the inverse operator is
given by the formula

(Id+tJ )−1 = 1
1+ t2 (Id−tJ ), t 6= ∞,

J−1 = −J.
Now we are able to prove (3). We need to show that the distribution (Id−tJ )F+

T Y ⊂ T UC is integrable for any t ∈ RP1. We fix t = t0 ∈ R, choose b0 =
t0, b1, . . . , bn+1 to be different real numbers and calculate the annihilators:

((Id−t0J )F + T Y)⊥ = ((Id−t0J )F )⊥ ∩ (T Y)⊥,
0(T Y)⊥ = 〈d Reϕc1, . . . , d Reϕcm〉,

0((Id−t0J )F )⊥ = 0((Id−t0J ∗)−1F⊥)
= (Id+t0J ∗)〈(Id−tJ ∗)π∗γ 1(t), . . . , (Id−tJ ∗)π∗γ k(t)|t ∈ {b0, . . . , bn+1}〉
= 〈(1+ t20 )π∗γ 1(t0), . . . , (1+ t20 )π∗γ k(t0),
(1+ t0bj )π∗γ 1(bj )+ (t0 − bj )J ∗π∗γ 1(bj ), . . . ,

(1+ t0bj )π∗γ k(bj )+ (t0 − bj )J ∗π∗γ k(bj )|j ∈ 1, n+ 1〉.
It is easy to see that the collection of 1-forms

{π∗γ i(bj ), J ∗π∗γ i(bj )}1≤i≤k,1≤j≤n+1

is a coframe on UC, hence the 1-forms (t0 − bj )J ∗π∗γ i(bj ), 1 ≤ i ≤ k, 1 ≤ j ≤
n+ 1, cannot be linearly expressed by the 1-forms d Reϕc1, . . . , d Re ϕcm which are
combinations of π∗γ i(bj ). So, finally,

((Id−t0J )F + T Y)⊥ = 〈π∗γ 1(t0), . . . , π
∗γ k(t0)〉

and the distribution
(Id−t0J )F + T Y = π∗w(t0)

is integrable. In the same manner one can show that

JF + T Y = π∗w(∞).

Simultaneously, the last two equations prove (4). �
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3. Application to integrability

THEOREM 2. Let Mk(n+1) be a manifold and let {w(t)}t∈RP1 be a general-
ized Veronese curve of distributions of codimension k on M . Then in order that
{w(t)}t∈RP1 is a generalized Veronese web it is sufficient that it is integrable at
n+ 3 different points a0, . . . , an+2 ∈ RP1.

Proof : A careful analysis of the proof of Theorem 1 shows that this proof uses
only integrability of {w(t)} at 0,∞ and arbitrary different nonzero finite points
a1, . . . , an+1 for the construction of the distribution F ⊂ T UC such that (Id+tJ )F
is integrable for any t ∈ RP1 and is projectable onto w(t). Thus it remains to map
0 and ∞ to a0 and an+2 respectively by an appropriate automorphism of RP1. �
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