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Abstract. Let G/K be a semisimple orbit of the adjoint representation of a real connected
reductive Lie group G. Let Kj be any closed subgroup of K containing the commutant of
the identity component of K. We prove that the geodesic flow on the symplectic manifold
T*(G/K1), corresponding to a G-invariant pseudo-Riemannian metric on G/K3 which is in-
duced by a bi-invariant pseudo-Riemannian metric on G, is completely integrable in the class
of real analytic functions, polynomial in momenta. To this end we study the Poisson geometry
of the space of G-invariant functions on 7" (G/K) using a one-parameter family of moment
maps.

Introduction

Let M be a homogeneous space of a real connected reductive Lie group G, i.e., M =
G/K. Suppose K is a (closed) reductive subgroup of G. Consider the space A® of
all G-invariant real analytic functions on the cotangent bundle T*M. This space is
an algebra with respect to the canonical Poisson bracket on the symplectic manifold
T*M. Let C% be a center of the algebra A“. Denote by ddim A (resp. ddim C%)
the maximal number of functionally independent functions from the set A% (resp. C%).
Put ddim(A%/C%) = ddim A — ddim C¢.

One calls a Hamiltonian system on T*M (completely) integrable if it admits a ma-
ximal number of independent integrals in involution, i.e., dim M functions commuting
with respect to the Poisson bracket on 7% M whose differentials are independent in an
open dense subset of T*M. By Liouville’s theorem the integral curves of an integrable
Hamiltonian system under a certain additional compactness hypothesis are quasiperiodic
(are the orbits of a constant vector field on an invariant torus).

The natural extension of the action of G on M to an action on the symplectic manifold
T*M is Hamiltonian with the moment mapping p" : T*M — g*, where g is the Lie
algebra of GG. The functions of type hou", h : g* — R, are integrals for any G-invariant
Hamiltonian flow on 7% M, in particular, for the geodesic flow corresponding to any G-
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invariant pseudo-Riemannian metric on M. The maximal number of independent real
analytic functions in involution on T* M of type hou®" is equal to dim(G/K)—e, where
the nonnegative integer € = (G, K) has the following two equivalent definitions [Myk3,
Vin]:

(1) e is the complexity of the complex affine variety G/ K€, i.e., equals to codimen-
sion of the maximal dimension orbits of the Borel subgroup B ¢ G® in G¢/K€,
if G and K are algebraic Lie groups;

(2) 2 = ddim(A%/C%).

From this fact it follows immediately that if e(G,K) = 0, then any G-invariant
Hamiltonian flow on T*M is integrable in the class of integrals generated only by the
symmetries of the considered dynamical system. In this case the subgroup K€ is called
a spherical subgroup of G®. All spherical subgroups of semisimple complex Lie groups
are described in [Kra, Myk2, Bri]. Remark also that if e(G, K) = 0 and the group K
is compact, then the homogeneous space G/K is a weakly symmetric space (see [Vin]).
The complete integrability of the geodesic flows on the cotangent bundles to symmetric
spaces was considered in papers [Thi, Mish, GS, Myk2].

In the paper [MS] it was observed that if e(G, K) = 1, then again any Hamiltonian
flow on T* M with a G-invariant Hamiltonian H is integrable: for the integrability we can
use either H- or another G-invariant function as one additional integral (to the integrals
of the form ho ). All pairs (G®, K©) with e(G, K) = 1 are enumerated in [Pan2, MS]
(the case of simple G) and in [AC] (the semisimple case). Remark also that some spaces
G/K from these lists were found by Thimm [Thi] (the space SO(n)/SO(n — 2)) and by
Paternain and Spatzier [PS] (the space SU(3)/(U(1) x U(1))).

So the problem of constructing a maximal commutative set of real analytic functions
on T*(G/K) is reduced to the problem of finding a maximal commutative set Z¢ of
real analytic functions in the set AY (containing e(G, K) functions additional to the
functions of type h o u®).

For the homogeneous space G/K with compact G (of an arbitrary complexity) Bolsi-
nov and Jovanovic [BJ2] showed that the geodesic flow on T*(G/K) of the bi-invariant
metric on G/K is integrable in the class of smooth integrals. The proof of this fact is
based on their paper [BJ1], where they proved the so-called noncommutative integra-
bility of this geodesic flow (in the class of real analytic integrals).

Let G/K be a semisimple orbit of the adjoint representation of the Lie group G,
ie., G/K = Ad(G) - a, where a is a semisimple element of the Lie algebra g. Denote
by K; any closed subgroup of G such that K’ ¢ K; C K, where K’ is the com-
mutant of the identity component of K. In this paper we prove (Theorem 3.10) the
complete integrability in the class of real analytic integrals of the geodesic flow on the
symplectic manifold T*(G /K1) corresponding to the following two classes of metrics:
(a) G-invariant pseudo-Riemannian metrics on G/K; which are induced by bi-invariant
pseudo-Riemannian metrics on G; (b) G-invariant pseudo-Riemannian metrics on G/ K
which arise from the so-called Mishchenko—Fomenko sectional operators ¢, 4. p (see Sub-
section 3.1). The analogous result for the unitary group G = U(n) was obtained by
Bolsinov and Jovanovic in their paper [BJ3, Theorem 3.4]. The proof of their theorem
is based on a verification of some sufficient conditions using canonical matrix repre-
sentations of semisimple elements of the Lie algebra u(n) and, as remarked in [BJ3],
may be generalized for the case of compact classical Lie groups G = SO(n) or Sp(n).
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Our method of proof is different and works also in the case of an exceptional Lie group
G although the set Z¢ of integrals, which we obtain, is the same as in [BJ3]. These
G-invariant integrals { H*(z) = h(z+a)} viewed as Ad* (K)-invariant functions on the
cotangent space TEK} (G/K) are obtained by the argument translation method from the
invariants {h} of the Lie algebra g. Note that the integrability of the geodesic flows on
G/T, where the Lie group G is compact and T is its maximal torus, was first proved,
using this method, by Bordemann [Bor| and later independently in [BJ1].

If G is a compact Lie group, all the metrics from the class (a) and a dense subset
of the metrics from the class (b) are Riemannian. For such metrics the theorem of
Liouville applies (all common level surfaces of the integrals are compact). This is of
special interest since it allows for the possibility of a qualitative study of the flow.

Crucial ingredients in our proof are 1) a method of investigation of the Poisson
algebra A“ using a one-parameter family of moment maps on 7*(G/K) with the same
locally free group action of G (the method is based on the Gelfand-Zakharevich theory
of bihamiltonian structures [GZ, Zakh] and on the technique of their reductions [Panal,
Pana2]); 2) the reduction of the Poisson algebra A% on T*(G/K) to a Poisson algebra
A% on T*(G/K), such that the “effective part” of the action of G on T*(G/K) is locally
free (this part of the proof originates from [Myk3]).

1. G-invariant bi-Poisson structures and moment maps

1.1. Some definitions, conventions, and notation

All objects in this paper are real analytic or complex analytic, X stands for a connected
manifold, £(X) for the space of respectively real analytic or holomorphic functions on
X. We shall write F for R or C depending on the category.

We will say that some functions from the set £(X) are independent if their differ-
entials are independent at each point of some open dense subset in X. For any subset
F C €(X) denote by ddim, F the maximal number of independent functions from the

set F at a point z € X. Put ddim F % max,c x ddim, F.

Definition 1.1. A pair (11, 72) of linearly independent bi-vector fields (bi-vectors for

short) on a manifold X is called Poisson if n' def tim1 + tame is a Poisson bi-vector for
any t = (t1,t2) € F2, i.e., each bi-vector n' determines on X a Poisson structure with
the Poisson bracket { , }! : (f1, f2) — n'(df1, df2); the whole family of Poisson bi-vectors
{n'}iere is called a bi-Poisson structure.

A bi-Poisson structure {n'} (we shall often skip the parameter space) can be viewed
as a two-dimensional vector space of Poisson bi-vectors, the Poisson pair (n1,72) as a
basis in this space.

The following two definitions are motivated by Proposition 1.4, which is due to Bolsi-
nov (see below), and by the Gelfand—Zakharevich theory of bi-Poisson (bi-Hamiltonian)
structures [GZ, Zakh].

Definition 1.2. A bi-Poisson structure {n'} on X is Kronecker at a point € X if
rankc(t1m1 + tane)|. is constant with respect to (t1,t3) € C?\ {0} (in the real ana-
lytic category we consider (1;), as a skew-symmetric bilinear form on the complexified
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cotangent space (T X)C). We say that {n'} is micro-Kronecker if it is Kronecker at
any point of some open dense subset in X.

Let G be a Lie group acting on a manifold X. Denote by Ag*; the space of all G-
invariant functions from the set £(X). We say that the bi-Poisson structure {n'} is

G-invariant if each bi-vector n, t € F? is. Put DY e {df. | f € A$} C T X for any
r € X. Let B! denote the restriction of 1%, to this subspace DS. If F = R, we mean
B!t € C2, as the complex bilinear form tlBa(cl’O) + tQBg(3071).

Definition 1.3. Let {n'} be a G-invariant bi-Poisson structure. We say that the pair
(A, {n'}) is Kronecker at a point € X, where ddim, A§ = ddim A§, if the linear
space { B!, t € F?} is two-dimensional and rankc B is constant with respect to (t1,t) €
C2\ {0}. We say that (AS, {n'}) is micro-Kronecker if it is Kronecker at any point of
some open dense subset in X.

Proposition 1.4. [Bol] Let By and By be two linearly independent skew-symmetric
bilinear forms on a vector space V. Suppose that the kernel of each form Bt = t, By +
t2By, t € F2, is nontrivial, i.e., 0 < 1o Y minsepe dimker BY. Put Ty = {t € F? |
dimker B* = ro}. Then

(1) the subspace Lo def > ier, ker B is isotropic with respect to any form B*, t € F?,
z'.e., Bt(Lo, Lo) = O,‘

(2) the space Lo is mazximal isotropic with respect to any form B, ty € Ty, i.e.,
dim Lo = $(ro + dim V) iff dimc ker B! = rq for all t € C?\ {0}.

By Proposition 1.4 if the set {B'} = { B!} is associated with some bi-Poisson struc-
ture as in Definition 1.3, then the subspace Ly C V = D¢ is spanned by differentials
of functions at x and these functions are involutive at x with respect to any Poisson
bracket { , }*. Note also that the space ker B, contains the differentials of the functions
from the center C}C(;’t of the algebra (A$, n'). But Ly is generated by a finite set of spaces
{ker By }C1. So if the pair (A, {n'}) is micro-Kronecker in some neighborhood of

and each ker BY is generated by the differentials of the functions from C)G(’tj , we have
1 (dimker B! + dim DY) involutive independent functions on X, i.e., these functions
form a maximal involutive subset of functions in A.

If a Poisson bi-vector 7 on X is nondegenerate, then there exists a unique symplectic
form w such that n(-,-) = —w(w; '(-),w; *(-)). Here w, : TX — T*X is the natural
isomorphism given by the contraction with the 2-form w on the first index. Such a

Poisson bi-vector 1 will be denoted by w=!.

Definition 1.5. Let g be the Lie algebra of the group G and n = w™! be a nonde-
generate G-invariant Poisson bi-vector on X. For each vector £ € g denote by £x the
fundamental vector field on X generated by the one-parameter diffeomorphism group
exp(t€) C G. The group G acts on the symplectic manifold (X,w) in a Hamiltonian
fashion if there is a G-equivariant map p : X — g*, such that for each £ € g, the field {x
is the Hamiltonian vector field with the Hamiltonian function fe : X — F, 2 — p(x)(§),
ie., dfe = —w(éx,-)-

The equivariance property u(g=12)(¢) = u(z)(Ad(g)¢), where g € G, x € X, of the
moment map g implies the identity {fe, fc} = fle¢), where §,¢ € g and { , } is the
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Poisson bracket associated with 7. In other words, the mapping p is canonical with
respect to the Poisson structure 7 on X and the standard linear Poisson structure on
g*. Moreover, by definition {f,h o u} = 0 for any G-invariant function f € A§ and
h € E(g*). If n € {n'}, combining involutive functions of type h o yu with that from

Cg’tj we shall get complete involutive families on X.

1.2. Bi-Poisson structures {n'(a)} on T*M

Let M be a real (or complex) connected manifold. Denote by €2 the canonical symplectic
form on the cotangent bundle T*M. Let w : T*M — M be the canonical projection.

Proposition 1.6. Let o be a nontrivial closed 2-form on M. Put w; = Q and wy =
Q+ m*a. Write ;= wi'', m2 = wy* for the inverse Poisson bi-vectors. Then the
family {nt(a) =nt =tym + tona}, t1,t2 € F, is a bi-Poisson structure. The Poisson
structure n' is nondegenerate iff t1 +ta # 0. Ift1 +ty = 0 and the 2-form o on M is
nondegenerate, then the symplectic leaves of the degenerate structure n coincide with
the fibers of m.

Proof. Let us use the canonical local coordinates (p,q) on T*M. In them the matrix
of the 2-form w, % Q + (s = 1)(7*a),s € F, is equal to Wy = W + (s — 1) B with the
inverse matrix W, ! = —W + (s — 1)C, where

SERIE (PR

I,, is the identity n X n-matrix (n = dim M) and A(q) is the matrix of the 2-form «.
Therefore

_ _ t -1
BW LW = (4 +t2)(W+ 2 B) :
t1 +to
i.e., each bi-vector t11m1 +tana, t1 +t2 # 0, is Poisson (is determined by the nondegenerate
closed (symplectic) 2-form proportional to some form ws, s € F). By continuity the bi-
vector n(t=%) t; € I, is also Poisson. Since it is defined by the matrix —C: n(th—1) =

— ij Ajk(‘])a%j A %, we obtain the latest assertion of the proposition. [

Remark 1.7. Fix x € T*M and put V = 7~ !(7(x)). As we proved above, if the form «
is symplectic, the degenerate Poisson bi-vector n(1—1) () determines on the linear space
V' a symplectic structure and this structure is independent of a point v € V. In other
words, at each v € V' (under the natural identification of T,V with V') this structure
induces the same skew-symmetric nondegenerate bilinear form o’ : V x V — F.

1.3. Hamiltonian actions and maximal involutive sets of functions

Let G be a reductive connected Lie group over a field F (real or complex numbers) with
a closed reductive subgroup H. Denote by g and h the Lie algebras of the Lie groups G
and H. Suppose that these Lie algebras are algebraic (see Subsection 2.2). Let n°" be
the canonical (defined by the canonical symplectic form Q) bi-vector on the cotangent
bundle X = T*M, where M = G/H. The natural action of G on X is Hamiltonian with
the moment " : X — g*. For this moment map u®*" the corresponding Hamiltonian
function fg*", £ € g, has the form fg*" = 0(¢x), where 6 is the canonical 1-form on
X =T*(G/H).
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Put BS® = n¢an| DY for each z € X. Remark that dim DY = ddim, A%, where we set
A% = A§. Since Lie algebras g and b are algebraic, ddim A® = min, ¢ x codim G-z’ and
ddim C¢ = min, ¢ x dimker BS", where C¢ is a center of Poisson algebra (A%, n®a")
(see also Lemma 2.4). The following proposition is known [Myk3, §2], [BJ1, Lemma 3],
[Panal].

Proposition 1.8. Let F = R. Suppose that there exist m = 1(ddim AY + ddim C%)
independent functions in involution {f1,..., fm} (with respect to n®*) on T*(G/H)
from the set AS. Then there are s = dim(G/H) — m polynomials {hi,...,hs} on g*
such that the functions {f1,..., fm;h1 o u®®, ... hs o u®} form a mazimal involutive
set of independent functions on T*(G/H).

Remark 1.9. We will give some comments on this proposition. The set {f1,..., fm}
is a maximal involutive subset in A®, i.e., any function f € AY commuting with
each f; locally is a function of {fi,..., f;n}. The number i(ddim A® — ddim C%)
equals the complexity €(g,h) of complex algebraic variety G¢/HC (if the groups are
not closed in the Zariski topology we complexify their closures). This number is
calculated in [Myk3, §2] in terms of the Lie algebras g and b; similar expressions
for e(g,h) were obtained in [Panl]. So by the condition of the proposition we have
m = e(g,h) + ddim C¢ independent functions in involution from the set AY. The ma-
ximal number of independent real analytic functions in involution of the form h o p"
on T*(G/H) is equal to dim(G/H) —e(g, h)[Myk3]. Since at a generic point z € X, the
space {df | f € CY} = ker BS* coincides with the intersection of two subspaces of T} X
spanned by the differentials of the functions from the sets A€ and {hou®" | h € £(g*)}
respectively, [Myk3, Panal], we can complete the involutive set of functions {f1,..., fm}
by integrals of the form h o y®" and get a maximal involutive set of independent func-
tions on T*(G/H).

Let O C g* be some Ad*(G)-orbit through a semisimple element a € g ~ g* of the
Lie algebra g. Here we identified the reductive Lie algebra g with its dual space g*
using some invariant nondegenerate form on g. Then O = G/K, where K is a closed
reductive subgroup of G (the isotropy group of a). Denote by ¢ the Lie algebra of K.
The orbit O C g* is a symplectic manifold with the Kirillov-Kostant—Souriau form we.
So we can consider the bi-Poisson structure {n'(we)} on the manifold X = T*0. As we
noted above, the natural extension of Ad*-action of G on O to the action on (T*O, Q)
is Hamiltonian with the moment map p". Moreover, for the fundamental vector fields
&x and €o on the manifolds X = T*O and O respectively (associated with a vector
¢ € g) we have 7, (€x) = o, where, recall, 7 : T*O — O is the natural projection.

We will formulate and prove the following theorem only in the complex case since for
us its assertion is an auxiliary result for the proof of the main Theorem 3.9. The proof
below is the verification of conditions of Theorem 4.2 in [Panal].

Theorem 1.10. Let F = C. Suppose that the action of the Lie group Ad(G) on the
cotangent bundle T*O s locally free (as in the case of a generic O). Then the pair
(AC {nt(wo)}) is micro-Kronecker.

Proof. Since the Lie group G acts on g* by the coadjoint action, without loss of genera-
lity we may assume that the action of G itself on T*O is locally free. Then, in particular,
G is a semisimple Lie group.



BI-POISSON STRUCTURES AND INTEGRABILITY 295

It is well known that Ad*-action of G on the symplectic manifold (O, we) is Hamilto-
nian. By the definition of the form we the natural embedding O — g* is (up to a sign)
the corresponding moment map which we denote by €. Then the Hamiltonian vector
field of the function fEO = u®(€), € € g, coincides with ¢o, i.e., dff(9 = —wo(o,").

We claim that the group G acts on the symplectic manifold (T*0O, Q?), where Q° =
Q+ s(m*wo), s € C, in a Hamiltonian fashion. Indeed, since m.({x) = &p, it is easy

can

to verify that the function f¢*" + S(ﬂ'*fgo) has £x as its Hamiltonian vector field with
respect to the form Q°. The mapping p® = p®® +s(7*u®) : T*O — g* is G-equivariant
since so is the projection m. So u* is the corresponding moment map.

Let z € X = T*O. The image us(T,X) C g* coincides with the annihilator in g*
of the Lie algebra of the isotropy group G* of x, [GS]. Since this algebra vanishes at a
generic point x, at such a point rank p*(2) = dim g* and the image p*(X) contains an
open subset of g*.

Denote by W, C T,X the tangent space to the G-orbit G -z in X = T*O. Let
W2t be the (skew)orthogonal complement to W, in T, X with respect to the form Q°.
Fix the nondegenerate Poisson structure n* = (Q%)~1. Tt is easy to see that dim ker B,
coincides with dimension of the intersection W, N W2+, But by the G-equivariance of
the moment map p°, Ex(x) € W, N WL iff ad™ &(uf(x)) = 0, i.e., dimker B! is equal
to codimension of the orbit Ad*(G) - u®(z) in g*. So dimker B! = rankg at a generic
point z € T*O.

Now consider the degenerate Poisson structure n¢, t; + to = 0. Its symplectic leaves
are the cotangent spaces T, O, 01 € O. Since the action of GG on the base O is transitive,
it is sufficient to consider only one leaf V' = T;O, where 0o = {K} € O = G/K. By
Remark 1.7 the corresponding symplectic structure wg, on V is independent of the point
v € V. Moreover, since the bi-vector 7’ is G-invariant, the Poisson algebra (A%, n?) is
isomorphic to the Poisson algebra (A%|V, (w},)~!). The action of G on T*O induces
a linear action of the subgroup K on V = T}O. It is clear that the space A%|V
coincides with the space A{f of all analytic K-invariant functions on V. Therefore
dimension dimker B!, v € V coincides with the dimension of kernel of the restriction

v
of the (nondegenerate) bi-vector (wf,), ! to the space {df, | f € AE}. So we are in the
similar to the above situation. Indeed, the action K on V is locally free because so is the
action of G on T*O. Since the form wy, on V is independent of v € V and K acts on V' by
linear (symplectic) transformations preserving wy,, this action of K on V' is Hamiltonian.
The corresponding K-equivariant moment map 1 has the form 1/ (v)(¢) = Fwi (v, ¢ v),
where ¢ € € and € acts on V' by some linear representation (see also Remark 3.2, where
the exact expression for wy, is calculated). Here we consider the vector v € V also as an
element of T,V = V. Therefore the number dim ker B is equal to the codimension of
orbit Ad*(K) - ¢/(v) in €, i.e., dimker B = rank ¢ = rank g at a generic point v € V.
Since the degenerate structure n' is G-invariant, dimker B! = rankg and dimG* = 0
for all z from some open dense G-invariant subset U C T*O.

Consider again the nondegenerate Poisson structure n‘ = (Q%)~!. If for x € U
the dimension dim ker BY, is not minimal, then the coadjoint orbit through the element
u®(z) in g* has nonmaximal dimension. Since the algebra Lie g is reductive, the union
Bling C 07 of such (singular) orbits in g* has the codimension > 3. Thus the preimage
(us)_l(g;‘ing) has codimension > 3 in U because the mapping p® : U — g* is a submer-
sion on U. The union of these subsets when the parameter s runs through all complex
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numbers gives us a set of codimension > 2 in U. Thus there exists an open dense subset
in U where the pair (A%, {n*(we)}) is Kronecker. [

2. Lie-algebraic auxiliary results

In this section we prove some Lie-algebraic assertions, allowing us to prove Theo-
rem 1.10 in the case when the corresponding Ad(G)-action is not locally free.

2.1. Pairs of reductive Lie algebras

Let g be a reductive real (or complex) Lie algebra. There exists a faithful representation
x of g such that its associated bilinear form @, is nondegenerate on g (if g is semisimple
we can take the Killing form associated with the adjoint representation of g). Let ¢ C g
be a reductive in g subalgebra, i.e., the representation x — ady x of £ on g is completely
reducible. This subalgebra is necessarily reductive (in itself). Assume also that the
form @, is nondegenerate on €. Denote by m the orthogonal complement to £ in g with
respect to ( , ) (in particular g = € @ m is the direct sum decomposition of g). For
each element = € g let g°(z) (respectively g) denote the set of all z € g which satisfy
(ad x)™(z) = 0 for sufficiently large n (respectively [z,z] = 0). Let ¥ = £ g®. The set

R(m) ={z € m | dimg” = ¢(m),dim go(x) = Q(m),dim ¢ = p(m)}, (2.1)

where g(m) (respectively Q(m) and p(m)) is the minimum of dimensions of the spaces
g¥ (respectively g°(y) and €¥) over all y € m, is a nonempty Zariski open subset of m.
Since the number p(m) is determined only by ad representation of £ in m, we will denote
it also by p(m, £). The set R(m) consists of semisimple elements of g, [Myk2, Prop. 1.2],
ie., ¢(m) = Q(m) and the centralizer g%,z € R(m) is a reductive (in g) subalgebra of g.
Moreover, the maximal semisimple ideal [g*, g*] of g* is contained in the algebra %, i.e.,

[gx’gm} = [Ekaaﬂ]v (2'2)

(see [Mish] or [Myk2, Prop.1.1]). In particular, the subalgebra #* C g? is reductive in
g and dim(g”/¢*) = rank g — rank £*.
Now, let us consider an important subset of m. For any z € m define the subspace
m(z) C m putting
m(z) € {z em|[z,2] € m}, (2.3)

ie., adz(m(x)) C m. By the invariance of ®,,
m(z) = {z € m| &, (z,adz(t)) = 0}. (2.4)

Proposition 2.1. [Myk3] For arbitrary element x € R(m), we have [m(z), t*] = 0.
By the dimension arguments from this proposition and definition (2.1) we get
Corollary 2.2. For z € R(m) and each element ' € m(z) N R(m), we have & = ¢,

The following proposition generalize some assertions of the proof of Theorem 11
in [Myk3].



BI-POISSON STRUCTURES AND INTEGRABILITY 297

Proposition 2.3. Assume that xg € R(m) and a is a reductive (in g) subalgebra of €7°.

Let g = g° and t =€ be the centralizers of a in g and € respectively. Let m def {reg]
O, (x,8) =0}. Then

(1) the subalgebras €*°, a, g and € are reductive in g subalgebras, the restrictions
of the form ®, to the subalgebras g and ¢ respectively are nondegenerate, in
particular, § = E o m;

(2) m=gnNm (¢ =gne by definition);

(3) for any element x from Zariski open subset miN R(m) (containing xo) of m we
have m(x) = m(x) and a C €*.

If in addition a = €%, then for any element x of the (nonempty) set m N R(m) we have
7 = % and the centralizer ¥ is contained in, the center 3(§) of the reductive Lie algebra

g, i.e, pr = 3(g)N t. Moreover, this element z is a reqular element of the reductive Lie
algebra g and x € R(Ww) (i.e., (M N R(m)) C R(m)).

Proof. As we noted above the element xg € R(m) is semisimple and the algebras g*°, ¢*°
are reductive in g. Therefore the subalgebra a C £*° is reductive in g by transitivity of
this property. To prove property (1) we will use the following well known method [Bou2,
Ch. VII, §1]. Since the representation z — adg z of the Lie algebra a is completely
reducible and the algebra g is an intersection of the kernels of endomorphisms ady(z), z €
a, we have the following splitting

g=00a,g| (2:5)

(see [Boul, Ch. I, §3, Prop. 6]). Using the invariance of the form ®, and the relation
[a, 9] = 0, we obtain that ®,([a,g],8) = ®,(g, [a,g]) =0, i.e., the subspaces g and |[a, g]
are mutually orthogonal. Now it follows from the above mentioned splitting (2.5) that
the form @, is nondegenerate on g. Changing in the considerations above the algebra
g by £, we prove that the form ®, is nondegenerate on £,

The centralizer Z(b) of a semisimple subalgebra b C g in g is reductive in g sub-
algebra [Bou2, Ch. VII, §1, Prop. 13]. So the algebra § is reductive (the center of a
consists of semisimple elements of the Lie algebra g). The center of § also consists of
semisimple elements of the Lie algebra g because this center is a Cartan subalgebra of
the centralizer Z([g, 3] @ [a,a]) (of a semisimple algebra). Similarly € is a reductive in
and, consequently, in g subalgebra.

Since £ and m are stable under ad(a), we obtain the splitting g = gN€® gNm into
a sum of two mutually orthogonal subspaces, so that m = gnNm.

Let x be any element of the nonempty Zariski open set m N R(m) containing zg. By
Proposition 2.1, [m(z), "] = 0. But « € m, hence [z,a] = 0. Therefore a C ¥ and
[m(z),a] =0, i.e,, m(z) C m. Let 21 € m(z) and z € a. Given three elements z,z1, 2,
consider the Jacobi identity

[[x7 331], Z} + [['rlv Z]’ .13} + [[Zv x]a 3;‘1} =0.
Since [m(z),a] = 0 and [z, a] = 0, the second and the third term in this identity vanish.

Therefore [[z,m(z)],a] = 0, and, consequently, [x,m(z)] C g. But [z,m(z)] C m by
definition. From these two inclusions it follows that [z, m(z)] C m. Since m(xz) C m, we
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have m(z) C m(z) (see (2.3)). Using analogous arguments from the inclusion m C m
and (2.3) we obtain that m(z) C m(z). Thus m(z) = m(x).

Suppose now that in addition a = €*°. By already proved condition (3) we have
gro C €. But dim€"0 = dim£*, so that €70 = £*. Let 3(x) be the center of the Lie
algebra a = €. By the definition of the algebra g, we have [3(z¢), §] = 0 and 3(z¢) C §.
Since

G NE=(g"NE)N(ENE) =gNE =gnE™,
we have

[6°,€7] =0 and €° C €%,

Thus 3(zo) is a subspace of the center of § and & C 3(x¢), i.e., 8 = 3(3) Nt By
definition, g* = g N g* and [g”, &*] = 0 because £ = £70. Since the algebra £ contains
the maximal semisimple ideal of the centralizer g*, the algebra §* is a subalgebra of the
center of g*. Thus z is a regular element of the reductive Lie algebra § because z is
a semisimple element of g. Now taking into account definition (2.1) and the fact that
dimension of the space £ = 3(§) N ¢ is constant for all z from the open set t N R(m),
we obtain that z € R(m). O

2.2. Pairs of reductive algebraic Lie algebras

Here we will use the notation of the previous subsection, but suppose in addition that
the Lie algebras £ C g are algebraic, i.e., there are algebraic connected in the Zariski
topology (irreducible) Lie groups K C G with these Lie algebras. Remark here that
if F = C, these groups are connected in usual topology, and if F = R, they have a
finite number of connected components. Denote by PX the space of Ad(K )-invariant
polynomial functions on the space m. For any smooth function f on m, write grad f (or
grad,, f if f is the restriction of some function to m) for the vector field on m such that

dfz(y) = ®y(grad f(z),y) forall yem. (2.6)

Lemma 2.4. Put P(m) = {z € R(m) | ddim, PX = ddim PX}. Then for each point z
from the nonempty Zariski open subset P(m) C R(m), we have ddim, PX = dimm(z)
and the space m(x) is generated by the vectors {grad f(z) | f € PK}.

Proof. The proof below is simple and standard, but we need it for further references on
this method. Consider first the real case, i.e., F = R. Let K€ be the complexification
of the Lie group K with a compact real form K, C KC€. Denote by €€ and £, the
corresponding Lie algebras. The Lie groups K© and Ky are connected (in the usual
topology) [VO, Ch.5, §2]. Since the algebra £, is a compactly embedded subalgebra of
g%, & is contained in some compact real form go of g©. The natural extension ®% of

the form ®, is negative-definite on go. It is clear that the space m®© 4 m @ im coincides
with the space mg ® img, where mg = E(J)- in go with respect to ®§|go.

Consider the space Pnﬁ(oo of Ad(Ky)-invariant polynomial functions on mg. Since the
connected Lie group Ad(Kj) is compact, any two its orbits in my are separated by some
polynomial from PE°. So ddim PL? is equal to codimension in mq of an Ad(Kp)-orbit of
maximal dimension, i.e., to dimmg — (dim & — p(mo, £)). But each polynomial f € PLo
determines the (complex) polynomial f on m€. Since Ad(Ky) is a real form of Ad(K®),



BI-POISSON STRUCTURES AND INTEGRABILITY 299

this polynomial is Ad(K©)-invariant. So ddimg P‘fo(’ < ddim¢ Pfcc. Taking into account
that m is a real form of m® and considering the real and imaginary parts of the restriction
f|m, we obtain that ddimc PnIfCC < ddimg PX. Since p(mg, ) = p(m®,€C) = p(m,€),
these two inequalities above are equalities. To prove the last assertion it is sufficient
to note that for any f € PX by definition grad f(z) € m(z). Slightly modifying this
considerations, we obtain the proof in the complex case. [

Let o be an element of the set P(m) C R(m). Let § = g® and & = €* be the
centralizers determined by the algebra a = £7°. The Lie algebras t and ¢ are Lie algebras
of the connected in Zariski topology algebraic Lie subgroups K and G of the Lie group
G, K ¢ G. Tt is clear that PX|m C PX . Since, by Proposition 2.3, m(z¢) = t(zq) and
xo € R(m), as an immediate consequence of Lemma 2.4 we obtain

Corollary 2.5. For the point g € P(m) C R(m) we have m N P(m) C P(m). In par-
ticular, zo € m N P(m) and for any point x € m N P(m), the following equality holds:
ddim, PX = ddim, (PX |#) = ddim, PX.

Since the form <I>§ is negative-definite on the compact form gg, the form <I>§ is nonde-
generate on each complex subspace ad y(¢¢) € m€ if y € my, i.e., m©(y) Dad y(¢¢) = mC.
Taking into account that m is a real form of m®, we obtain

Corollary 2.6. If the reductive Lie algebras € C g are algebraic, then a splitting m(z) @
ad z(€) = m holds for all elements x from some nonempty Zariski open subset of m.

3. Reduction

In this section we will prove Theorem 1.10 in the general case, i.e., for an arbitrary
orbit O C g of a semisimple element a € g, thus obtaining the integrability of the
geodesic flow for such spaces and for other homogeneous spaces.

3.1. The bi-Poisson structure {n*(we)}: exact formulas and involutive sets
of functions

Let G be a reductive connected Lie group over the field F (of real or complex numbers)
with the Lie algebra g. Suppose that the Lie algebra g is algebraic. Then, in particular,
G can be chosen to be a connected component of some connected in the Zariski topology
algebraic group. Consider the adjoint action of G on g and some G-orbit O C g through
a semisimple element a € g of the Lie algebra g. Then O = G/K, where K is a closed
reductive subgroup of G (the isotropy group of a). Denote by ¢ the (algebraic) Lie
algebra of K.

Using the invariant form ( , ) def ®,, on the Lie algebra g, we identify the dual space
g* and g. So O is a symplectic (real or complex) manifold with the Kirillov-Kostant—
Souriau symplectic structure wp. By definition the form we is G-invariant and at the
point a € O we have

wo(a)([av 51]’ [avé.?D = _<a7 [51552]>a V&1, € 8, (31)

where we consider the vectors [a, &1],[a,&2] € Tog = g as tangent vectors to the orbit
O C g at the point a € O.
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Since ¢ is a reductive subalgebra of g of maximal rank, the form (, ) is nondegenerate
on . Then g = €@ m, where recall m = £+ in g. The form (, ) defines a G-invariant
F-valued metric on G/K. This metric identifies the cotangent bundle 7*O and the
tangent bundle TO. Let ¢ : T*O — T'O be the corresponding morphism. Thus we can
also talk about the canonical 2-form Q on T'O. The symplectic form 2 is G-invariant
with respect to the natural action of G on T'O (extension of the action of G on O).

Denote by 7 : TO — O the natural projection. It is clear that 7 o ¢ = 7, where,
recall, 7 : T*O — O is also the natural projection. So 7*wp = ¢*(7*we) and by
Proposition 1.6 the inverses 71,72 to the closed 2-forms w; = Q and ws = Q + T*wWE
(a = we) on TO define the bi-Poisson structure {n* = n'(we)}ierz on TO.

Consider the trivial vector bundle G x m with the two commuting Lie group actions
on it: the left G-action, lj : (g,w) — (hg,w), and the right K-action ry : (g,w) +—
(gk, Ad k=1 (w)). Let p; : G x m — G xx m be the natural projection. It is well known
that G xxg m and T(G/K) are isomorphic. Using the corresponding G-equivariant
diffeomorphism ¢ : G xgm — T(G/K), [(g,w)] — %}Og exp(tw) K and the projection
p1 we define the G-equivariant submersion I1: G x m — T(G/K), Il = 1 o p;.

We can identify the tangent space T,(G/K) at the point o = p(e) with the space m
by means of the canonical projection p : G — G/K. Let A® (resp. AK) be the set of
all F-analytic G-invariant (resp. Ad(K)-invariant) functions on T'(G/K) (resp. on m).
There is a one-to-one correspondence between G-orbits in T(G/K) and Ad(K)-orbits
in m. Thus using the submersion IT : G x m — T(G/K) we can identify naturally the
spaces of functions A and AK.

Let ¢ be the left-invariant vector field on the Lie group G' defined by a vector ¢ € g.
The form IT*Q on the manifold G x m has the following form, [Myk4]:

(I*Q) (g,2) (€1(9), 1), (€5(9), 2)) = (€2, 51) — (€1, 2) — (=, [&1, &), (3.2)

where g e G,l’ €em, 61752 €9 Y,y2 €mMm= Txm
The kernel K C T(G x m) of the 2-form IT*Q) coincides with the kernel of II,, i.e.,

]C(gal') = {(Cl(g)ﬂ [:Ca C]) S TgG X ma g S E} (33)

Now it is easy to verify using formulas (3.1), (3.2) and (left) G- and (right) K-
invariance of the form IT*(s;9Q + s27*wo), (s1,52) € F? that

IT* (512 + 557" w0 ) (g,2) (€1 (9), 1), (€5(9), y2))
= s1((&2,51) — (&1,92) — (2, [&1, &) — s2(a, [&1,&2]).  (3.4)

By Proposition 1.6 the form ds, s, L 510 + syr*we s nondegenerate on T(G/K) if
S1 75 0.

Using expressions (3.4) for the form IT*d,, 5, and (3.3) for the kernel of II,, we obtain
that the left G-invariant Hamiltonian vector field of the function f € AKX = A% equals
I1.(Xy), where

Xy(e,x) = (s7 ' grad f(z), s7' [z + s2s7"a, grad f(z)]) € g x m

(the vector-field grad f on m is determined by (2.6)). Therefore the Poisson bracket of
two functions f1, fo from the set AX with respect to the Poisson structure determined by
the form 4, 4,, 51 # 0, is equal to the function —s;%(s1x+s2a, [grad fi(z), grad fa(z)]).
So we have proved
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Lemma 3.1. Given an orbit O = G/K, let { , }' be the Poisson bracket on the tangent
bundle TO corresponding to the Poisson structure nt = nt(wo), t = (t1,t2) € F2. Then
for arbitrary functions fi, fo € AK = A% and a point v € m = T,(G/K) we have

{fi. f2}' (@) = =((t1 + t2)a + taa, [grad fi(x),grad fa(2)]). (3.5)

The G-invariant Hamiltonian vector field of the function f; has the form 11, ()v(}] ), where

X}j (e,z) = ((t1 +t9) grad f;(x), [(tl + to)x + taa, grad fj(:r)]) €gxm. (3.6)

Remark 3.2. Consider on the linear space m the nondegenerate bilinear form 3(y,y2) =

(y1,ad; " (y2)), y1,y2 € m, where ad; ' f (ad a|m)~!. Since the endomorphism ad a|m :

m — m is skew-symmetric (with respect to the form ( , )), the form j is also skew-
symmetric. Identifying the tangent space T, m with m for each x € m, we can consider
B as a symplectic form on m. It is easy to verify (using the invariance of the form ( , ))
that for arbitrary functions f1, fo on m the corresponding Poisson bracket has the form

{f1. 2} (x) = ~{a, [grad fi(2),grad fa(2)]), (3.7)

i.e., it coincides on the space of Ad(K)-invariant functions with the Poisson bracket
{, }' (3.5) in the exceptional case (t; + t2) = 0, t2 = 1. By Proposition 1.6 this
degenerate Poisson structure ¢ has the space m = 1,0 as a symplectic leaf and the
reduced Poisson structure { , }’ on it is nondegenerate. Using expression (3.4) and
calculating the Hamiltonian vector fields of arbitrary functions on T'O with respect to
the symplectic form s1Q+ s37*we, we can show that this Poisson bracket { , }' coincides
with { , }# (3.7). Since the Ad action of K on m preserves the form 3, this action of
K is Hamiltonian with the moment map z% : m — €, p%(2)(¢) = —3(ad, " (2), [¢, z]),
V¢ € ¢ (see the proof of Theorem 1.10).

The centralizer £ = g% is a direct sum of Lie algebras ¢ = 3 @ ¢, where 3 is the
center of ¢ and ¥ its maximal semisimple ideal. It is clear that a € 3. Moreover, since
the Lie group Ad(K) (resp. Ad(K®)) is connected if F = C (resp. if F = R), we have
Ad(K)b =0 for each b € 3. Let £; be some algebraic Lie subalgebra of € containing the
semisimple Lie algebra ¥ = [¢, £]. There exist closed subgroups K’ and K of the group
K with the Lie algebras ¢ and £; respectively such that K’ C Ki. The center 3; of £
is a subalgebra of the center 3 of &. Then we have the following orthogonal splittings
with respect to the form ( , )

bh=5n®t, g=mot, m=306m ;=3 i, (3.8)

which serve as definitions for 3, and m;.

Consider on the tangent bundle 7'(G/K;) the space A of all G-invariant F-analytic
functions. As in the case of the subgroup K, we can identify naturally the spaces
A and AE'. Using the form ( , ), identify T*(G/K1) and T(G/K1). The canonical
Poisson structure, determined by the symplectic form ©Q; on T(G/K3), induces the
bracket operation { , }°*" on the space £(T(G/K1)). Using an expression for the lift of
Q1 to G x my similar to (3.2), we find that for arbitrary functions fi, fo € Anifll on my

{1, f2}7"(2) = —(z, [grady, f1(2), grady, f2(2)]). (3.9)
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Denote by I(g) the space of all Ad(G)-invariant polynomials on g. If h € I(g), then
it is clear that the function h*, h*(y) = h(y+Aa), A € F, is Ad(K;)-invariant on g. Put
H> = hMm,. For each element b € 3 and a symmetric (with respect to the form ( , ) on
g) endomorphism D : ¢ — ¢, D(3) C 3, D] = Idy, we can consider the endomorphism
Yabp 8 — @ putting @, pp(z) = Dz if z € € and @4 p(x) = ad;l([b,x]) if z €
m C g. It is clear that the endomorphism ¢, p is symmetric and the group Ad(K7)
commutes elementwise with ¢, p on g. So the function hap p(y) = (¥, @abn(y))
on g is Ad(K;)-invariant. Suppose in addition that the endomorphism D leave the
subspace 3. C 3 C ¢ invariant, i.e., D(3+) C 3. Then ¢, p p(m;) C my and the function
H,pp(x) = %(a:, ©Yab,0(2)), * € my, is a Hamiltonian function of the geodesic flow of
some pseudo-Riemannian metric on G/Kj if ¢4 5, p|m; is nondegenerate.

Lemma 3.3. [BJ1] For any functions hy, ha, h € 1(g) and arbitrary parameters A1, Az,
A € F we have {Hf‘l,HQ’\z}mn =0 and {H)‘,Hmb,D}Can =0.

Proof. Mainly to fix notation we shall prove this lemma here. The functions hi\l,héz
and hg,p p commute on g ~ g* with respect to the Lie—Poisson bracket [MF]. This
means, for example for the functions h}*, hy?, that (z, [grad, h (), grad, hay? (x)]) =0
for all z € m; C g. But grad, Hj)‘l(x) = (grad, h;\l(ac))ml. Now taking into account
that grad,,, Hj‘l (x) € my(x), [x,m1(z)] C my and my L&, we obtain that

(z, [(gradg hi\l (@))mi (gradg hg\z (@))mi]) =0,

ie., {H, Hy?}°(z) = 0. Similarly we can show that {H*, H, 4 p}* =0. O

Remark 3.4. Since the form ( , ) is invariant, the quadratic form x +— (x, x) is contained
in the involutive function set {h*|my | h € I(g),A € F} C AE!. The functions h*
and hqp p were considered in the papers [MF, BJ1]. Moreover, in [BJ3] the geodesic
flow with the Hamiltonian H,; p on T(G/K;) was studied. If the symmetric operator
©a.b,p| M1 is positive-definite, the function H,p p € Anffi = A? is a Hamiltonian function
for some G-invariant geodesic flow on T(G/K7). Remark that such a Riemannian metric
on G/K; exists also for noncompact G.

3.2. The bi-Poisson structure {n*(wo)}: maximal involutive subsets of func-
tions

We continue with the notation of Subsection 3.1 but in this subsection it is assumed in
addition that [F is the field of complex numbers. Since F = C, the group G is algebraic
and the isotropy group Ad(K) of a € g is connected [Kos, Lemma 5].

Let x be an element of R(m) which satisfies the following conditions:

m(z) ®adz(k) =m, ddim, PX = ddim PX (3.10)

(see Lemma 2.4 and its corollaries). The bi-Poisson structure {n! = n'(wp)} determines
at this point 2 € m = T,(G/K) the bilinear forms B!, : D¢ x DS — C, where recall the
space DS is spanned by differentials of functions from the set A% and B = 1| DS (see
subsection 1.1). Since we identified the spaces A and AX B! determines the following
bilinear forms (which we denote also by Bt for short)

By :m(z) xm(z) = C,  (y1,y2) — —((t1 + t2)z +taa, [y1,2]) (3.11)
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on the space m(x) = {grad f(z) | f € AX}. Here we used expression (3.5) and the form
(', ) to identify the spaces m(z) and m(x)* (this form is nondegenerate on m(z)). It is
easy to see that the kernel of B! is the subspace V!(z) C m(x) given by

Vi(z) = {y em(x) | [(t1 + t2)z + taa, y] € adz(E)}. (3.12)

Remark here that by definition [z, m(z)] C m and [a, m] C m. Moreover, since [a, €] = 0,
we have

Vi(z) = (gtitte)ettaay  where t; 41y #0 (3.13)

and (-);, denotes the projection onto m along ¢. In particular, for ¢ = (1,0) (for the
canonical Poisson structure on T(G/K)), V(10 (z) = (g%)m. Since z € R(m), dimension
of the space (g%)n is equal to the constant r = g(m) — p(m), where the numbers ¢(m)
and p(m) are defined in Subsection 2.1.

Consider the set R(3 ® m) determined by (2.1) for the pair (g, ¥). By [Myk2, Propo-
sition 1.2] the intersection R(3 @ m) N R(m) is nonempty. If 2’ € m is an element of this
intersection, then the whole line ta + z’, t € C, with the exception of a finite number
of points belongs to the Zariski open subset R(3 ® m) of 3 ® m. So we can choose an
element z € R(m) satisfying (3.10) and such that

a+x € R(3&m). (3.14)

Lemma 3.5. The number ming ¢ pm) dim V*(z'), t € C?, is equal to v, if t; + 1ty # 0,
and > r, if t1 +ty = 0. In particular, the pair (A9, {n'},ec2) is Kronecker at the point
x iff dim Vi(z) = r for all t € C%\ {0}.

Proof. By [Myk2] (see the proof of Proposition 1.2) g(m) = ¢(3®m), i.e., the centralizers
g” and g®t® have the same dimension. Now the evident relation g*™® Nt = g®* N ¢
([a,®] = 0) implies that dim(g*"*)y, = dim(g*)m. Since ming e pg(m) dim (g% ), =
ming: ¢ p(m) dim(g”””ra)m7 where A € C, we obtain the assertion of the lemma. [

Proposition 3.6. Suppose that an element © € R(m) satisfies conditions (3.10) and
(3.14). If the pair (A9, {n'}ier2), F = C, is Kronecker at the point x, then
(1) in the set {h*m | h € I(g),A € F} C AE = A% there are 1(r + dimm(z))
functions functionally independent at this point;

(2) this pair (A9, {n'}icr2) is Kronecker on some open subset of T(G/K) for which
the intersection with m = T,(G/K) is a Zariski open subset of m.

Proof. Since dim V¥(z) = r for all t € C2\ {0}, it follows from Proposition 1.4 that the
space Lo(z) = 3, cc2\ (0} V*t(z) is a maximal isotropic subspace of m(z) with respect to
the form BM9(z) (of maximal rank). In particular, dim Lo(x) = +(r + dimm(x)).

But the space Lo(z) is generated by a finite subset of spaces from the set {V(z)}.
Since the family V*(z) depends smoothly on the parameter t € C?\ {0}, we obtain that
Lo(z) = Z;\Ll VJ(x), where each space V7 (z) is determined by (3.12) with ¢; +to = 1
and t; = \; € C, j =1, N. Moreover, by (3.14) we can choose these numbers {\;} such
that z 4+ A\ja € R(3 @ m).
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Consider the space I(g) of all Ad(G)-invariant polynomials on g. If h € I(g), then the
function h*(x) = h(z+ Aa) restricted to m is Ad(K)-invariant. But [z 4 Xa, grad, h(z+
Aa)] = 0 by invariance of the form ( , ). So

[z 4 Aa, grad,, h*(2)] = —[z + Aa, (gradgy h(z + Aa))e]
= —[z, (gradg h(z + Aa))e] € ad z(¥),

i.e., grad,, h" (z) € VI(x). Denote by V/ (x) the subspace of V7 (x) spanned by vectors
grad,, ki (z), h € I(g).

We claim that V/ (z) = V7 (z). Indeed, the elements z+\;a € R(3m) are semisimple
elements of g. So by [Mykl, Theorem 2.5], the vectors grad, h(z + Aa), h € I(g), span
the center h(z 4 \ja) of the centralizer g“"t%% i.e., V/(z) = (h(z + A\ja))m. By (2.2),
(h(z + Aja))m = (g°T2 ), but by (3.13), we have Vi(z) = (g%, ie., Vi (z) =
Vi(x). Thus Lo(z) = > V/(x), the assertion (1) is proved.

By Lemma 3.3 and by dimension arguments, the space > y VIj (2') is maximal isotropic
with respect to the form B9 ('), diim V7 (2') = r,j = 1, N for all 2’ from some Zariski
open subset in R(m) containing . Taking into account that V/(z) C VI (z') C Lo(2'),
from Proposition 1.4 it follows that the pair (A%, {n'};cc2) is Kronecker at 2. O

Consider again the pair (g,8;). For ;1 € R(my) we have 1 = g(my) — p(my) =
dim(g™ /€]*). As we have shown above, r1 is corank of the skew-symmetric bilinear
form BS™ associated with the bracket { , }°*" (3.9) on the set AX1 = A, where recall
A¥ denotes the space of all G-invariant C-analytic functions on T(G/K7).

Proposition 3.7. Let x € R(m) and F = C. Suppose that in the set {h*\m | h €
I(g), A € F} C A there are £(r + dimm(z)) functionally independent functions at x.
Then there is a point ¥1 € R(m) N R(my) such that in the set {h*my | h € I(g),\ €
F} C AK:1, there are $(r1+dimm(z1)) functionally independent functions at z1. These
functions form a mazximal involutive subset of independent functions in the algebra A§ =
Anffll with respect to the canonical Poisson structure on T(G/Ky). Moreover, these
functions are integrals of the geodesic flow on T(G/K1) determined by the form ( | )
and of the Hamiltonian flow with the Hamiltonian H,p p.

Proof. By [Myk2, Proposition 1.2] the intersection R(m;) N R(m) is nonempty. Since
the functions considered are polynomials, we can suppose that the point =z = x; is
contained in the set R(m;) N R(m). So by assumptions of the proposition the isotropic

subspace Ly () ot {grad,, h*(z) | h € I(g),\ € C} of m(z) has the maximal possible
dimension (dim(g®/¢*)+dimm(z)). From the inclusion 3. C € it follows that dim & =
dim €% — dim(€),,. Taking into account that z € m, we get
dimm; (z) = dimm; — dim(ad z(¥1))
= (dimm + dim3,) — ((dim € — dim,) — (dim ¢ — dim(¢");,))  (3.15)
= dimm(z) + 2dim 3, — dim(¢*);, .
Thus
3(r1 + dimmy (1)) = 1(dim(g” /&) + dimmy ()
= 1(dim(g"/€") + dimm(z) + 2dim3.) (3.16)
= dim Ly (x) + dim 3.
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By Lemma 3.3 the space Ly, () 2 {grad,, h*(z) | h € I(g),A € C} is an isotropic
subspace for BS". We claim that the space Ly, (z) contains the space 3. = (3)m,-
It is clear that it suffices to prove this fact for semisimple g. Let h € I(g) be some
homogeneous polynomial of degree n. Define the polynomials v;(x) by the identity
hz+Aa) = Z?:o Muj(z). Since the space Ly, (x) contains all vectors grad,,, h(z+Aa),
A € C, this space contains the vector grad,, v,—1(z). But by [Bou2, Ch. VIII, §8, Theo-
rem 1] each invariant homogeneous polynomial of degree n is a linear combination of the
functions on g of the form y — Tr(p(y))™, where p is a finite-dimensional representation
of the semisimple Lie algebra g. Since for such h we have v,_1(z) = nTr(p(a)" !p(x)),
we obtain that dh(a)(§),§ € g, coincides with v,_1(§), i.e., gradg h(a) = grad, v,—1(z).
Taking into account that the vectors grad, h(a),h € I(g) span the center 3 of ¢ = g*
(see [Mykl, Theorem 2.5]), we prove that 3. = (3)m; C Lm,(z). But by definition,
Liyn(2) = (L, (2))m. Since my = 3, & m, we have Ly, () = Ln(z) + 3. So by (3.16)
dim Ly, (z) = 1(dim(g”/8}) + dimmy (z)). O

Remark 3.8. Let G, be the identity component of a real form of the algebraic complex
Lie group G. Put K,, = K NG,.. Here, for this real case we will use all notation of this
subsection but with index ,.. Suppose also in addition to the previous assumptions that
O = Ad(G) - a, where a € g, C g. Now using the method of the proof of Lemma 2.4
and the fact that a nonempty Zariski open subset of a complex linear space intersects
its real form, we deduce that

(1) the pairs (A%, {n'})icc> and (A", {nt})icr> are micro-Kronecker simultane-

ously;

(2) Propositions 3.6, 3.7 hold if we replace the complex pair (G, K) by the real one
(Gr, K;) and put F = R.

3.3. The bi-Poisson structure {n(wp)}: reduction

We continue with the notation of Subsection 3.1 (in particular, F = C or R).

Theorem 3.9. The pair (A%, {n'(wo)}) on the cotangent bundle T*O is micro-Kro-
necker.

Proof. Let xy be some element from the set R(m) satisfying (3.10) and let ¢*° =
{#z € t | [zg,2] = 0} be the isotropy subalgebra of the point zy for Ad(K)-action.
As in Subsection 2.1 we consider two reductive Lie algebras

dg={yegl|ly,2]=0, Vz€t™} and E=gNeE.

Denote by G the connected closed Lie subgroup of G with the Lie algebra §. It is clear
that for each g € G we have Ad g(z) = z, Vz € #%°. Put K = G N K. Since [a, €] = 0,
the element a belongs to the algebra £ C § and ¢ € i C § by definition.

Now consider the G-orbit @ = Ad(G) -a in § C g. Then O = G/K. Using the form
O, (restricted to the Lie subalgebra g C g) for identifications, we obtain the following
two closed 2-forms on T'O: canonical { and the pull-back 7*&o of the Kirillov—Kostant—
Souriau symplectic form on @. These forms determine the bi-Poisson structure 7' (wo)
on TO.

Let fi,f» € AEK. Then grad f;(z') € m(2’) for 2/ € R(m). By Proposition 2.3,
m(z) = m(z) C m for all points = from the nonempty open set m N R(m) (containing
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the point x¢). But grad f;(z) € m(z) C m. So grad f;(x) = grady f;(z) and by (3.5),
for the brackets { , }/ and {, }f7 on the spaces AE and A% respectively, the following
relation holds:

{f1, F2}5 (@) = {fulih, fo|i}(2) forall oemcCm. (3.17)

Since ddim AX = ddim(AE|m) = ddim AX = dimm(z) for z € @ N R(m), these
two brackets induce on m(x) = m(z) the same two-dimensional linear space of skew-
symmetric bilinear forms B! : m(z) x m(z) — F determined by (3.11). Since by (3.10)
the set Ad(K)(m) D Ad(K)(m(z)) contains some open subset of m, we obtain that

the pair (AX, {n'}) is micro-Kronecker iff so is the pair (Aﬁff, {7'}). (3.18)

But by the latest assertion of Proposition 2.3 the centralizer  of = € N R(m) is
contained in the center 3(§) of the algebra g. Moreover, £ coincides with this center
because the Lie algebra & = §* contains 3(g). Since ad, (%’”) = 0 is the Lie algebra of the
isotropy group of the element x € m = TO(G’ / K ) for the action of the semisimple Lie
group Ad(G) on TO = T*O, from Theorem 1.10 it follows that the pair (AG, {i*}) =

(AX {n'}) is micro-Kronecker if F = C. In the real case this pair is micro-Kronecker
by Remark 3.8. [

3.4. Integrable geodesic flows

Here we will use notation of Subsection 3.1 but suppose that F = R. Consider the orbit
O = Ad(G) -a~ G/K and a closed subgroup K; C K. The Lie algebra of K contains
maximal semisimple ideal of the Lie algebra &.

Theorem 3.10. There exists a mazimal involutive set of independent real analytic
functions on (T(G/K1),Q1). These functions are integrals for 1) the geodesic flow
determined by the pseudo-Riemannian metric { , ) on G/Kj; 2) the Hamiltonian flow
with the Hamiltonian function Hqp p on T(G/Kq).

Proof. By Theorem 3.9 the pair (A%, {n*(we)}) is micro-Kronecker. By Propositions 3.6
and 3.7, there exists m = %(7’1 + ddim A§) independent involutive functions from the
set A§. These functions form a maximal involutive subset of independent functions in
the algebra A = AK1 with respect to the canonical Poisson structure on T(G/Kj).
Moreover, these functions are integrals of 1) the geodesic flow on T'(G/K7) determined
by the form ( , ); 2) the Hamiltonian flow with the Hamiltonian function H,; p on
T(G/K,). Now the assertion of the theorem follows immediately from Proposition 1.8.
O

Remark 3.11. Suppose that the group G is compact. Then the form (, ) defines on G/K;
Riemannian metric; in the set {¢q5 p,b € 3 C £}, where the endomorphism D : 3, — 3.
is positive-definite if 3, # 0, there is a dense subset of positive definite operators, i.e., the
corresponding bilinear form (-, ¢, 5 p-) defines G-invariant Riemannian metric on G/ Kj.
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