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BI-POISSON STRUCTURES AND INTEGRABILITY OF

GEODESIC FLOW ON HOMOGENEOUS SPACES

IHOR V. MYKYTYUK

Institute of Applied Problems
of Mathematics and Mechanics

Naukova Str. 3b, 79601, L’viv, Ukraine
mykytyuk i@yahoo.com

ANDRIY PANASYUK∗

Division of Mathematical Methods in
Physics, University of Warsaw
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Abstract. Let G/K be a semisimple orbit of the adjoint representation of a real connected
reductive Lie group G. Let K1 be any closed subgroup of K containing the commutant of
the identity component of K. We prove that the geodesic flow on the symplectic manifold
T ∗(G/K1), corresponding to a G-invariant pseudo-Riemannian metric on G/K1 which is in-
duced by a bi-invariant pseudo-Riemannian metric on G, is completely integrable in the class
of real analytic functions, polynomial in momenta. To this end we study the Poisson geometry
of the space of G-invariant functions on T ∗(G/K) using a one-parameter family of moment
maps.

Introduction

Let M be a homogeneous space of a real connected reductive Lie group G, i.e., M =
G/K. Suppose K is a (closed) reductive subgroup of G. Consider the space AG of
all G-invariant real analytic functions on the cotangent bundle T ∗M . This space is
an algebra with respect to the canonical Poisson bracket on the symplectic manifold
T ∗M . Let CG be a center of the algebra AG. Denote by ddim AG (resp. ddim CG)
the maximal number of functionally independent functions from the set AG (resp. CG).
Put ddim(AG/CG) = ddimAG − ddimCG.

One calls a Hamiltonian system on T ∗M (completely) integrable if it admits a ma-
ximal number of independent integrals in involution, i.e., dimM functions commuting
with respect to the Poisson bracket on T ∗M whose differentials are independent in an
open dense subset of T ∗M . By Liouville’s theorem the integral curves of an integrable
Hamiltonian system under a certain additional compactness hypothesis are quasiperiodic
(are the orbits of a constant vector field on an invariant torus).

The natural extension of the action of G on M to an action on the symplectic manifold
T ∗M is Hamiltonian with the moment mapping µcan : T ∗M → g∗, where g is the Lie
algebra of G. The functions of type h◦µcan, h : g∗ → R, are integrals for any G-invariant
Hamiltonian flow on T ∗M , in particular, for the geodesic flow corresponding to any G-
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invariant pseudo-Riemannian metric on M . The maximal number of independent real
analytic functions in involution on T ∗M of type h◦µcan is equal to dim(G/K)−ε, where
the nonnegative integer ε = ε(G, K) has the following two equivalent definitions [Myk3,
Vin]:

(1) ε is the complexity of the complex affine variety GC/KC, i.e., equals to codimen-
sion of the maximal dimension orbits of the Borel subgroup B ⊂ GC in GC/KC,
if G and K are algebraic Lie groups;

(2) 2ε = ddim(AG/CG).

From this fact it follows immediately that if ε(G,K) = 0, then any G-invariant
Hamiltonian flow on T ∗M is integrable in the class of integrals generated only by the
symmetries of the considered dynamical system. In this case the subgroup KC is called
a spherical subgroup of GC. All spherical subgroups of semisimple complex Lie groups
are described in [Kra, Myk2, Bri]. Remark also that if ε(G,K) = 0 and the group K
is compact, then the homogeneous space G/K is a weakly symmetric space (see [Vin]).
The complete integrability of the geodesic flows on the cotangent bundles to symmetric
spaces was considered in papers [Thi, Mish, GS, Myk2].

In the paper [MS] it was observed that if ε(G,K) = 1, then again any Hamiltonian
flow on T ∗M with a G-invariant Hamiltonian H is integrable: for the integrability we can
use either H- or another G-invariant function as one additional integral (to the integrals
of the form h◦µcan). All pairs (GC,KC) with ε(G,K) = 1 are enumerated in [Pan2, MS]
(the case of simple G) and in [AC] (the semisimple case). Remark also that some spaces
G/K from these lists were found by Thimm [Thi] (the space SO(n)/SO(n− 2)) and by
Paternain and Spatzier [PS] (the space SU(3)/(U(1)×U(1))).

So the problem of constructing a maximal commutative set of real analytic functions
on T ∗(G/K) is reduced to the problem of finding a maximal commutative set IG of
real analytic functions in the set AG (containing ε(G,K) functions additional to the
functions of type h ◦ µcan).

For the homogeneous space G/K with compact G (of an arbitrary complexity) Bolsi-
nov and Jovanovic [BJ2] showed that the geodesic flow on T ∗(G/K) of the bi-invariant
metric on G/K is integrable in the class of smooth integrals. The proof of this fact is
based on their paper [BJ1], where they proved the so-called noncommutative integra-
bility of this geodesic flow (in the class of real analytic integrals).

Let G/K be a semisimple orbit of the adjoint representation of the Lie group G,
i.e., G/K = Ad(G) · a, where a is a semisimple element of the Lie algebra g. Denote
by K1 any closed subgroup of G such that K ′ ⊂ K1 ⊂ K, where K ′ is the com-
mutant of the identity component of K. In this paper we prove (Theorem 3.10) the
complete integrability in the class of real analytic integrals of the geodesic flow on the
symplectic manifold T ∗(G/K1) corresponding to the following two classes of metrics:
(a) G-invariant pseudo-Riemannian metrics on G/K1 which are induced by bi-invariant
pseudo-Riemannian metrics on G; (b) G-invariant pseudo-Riemannian metrics on G/K1

which arise from the so-called Mishchenko–Fomenko sectional operators ϕa,b,D (see Sub-
section 3.1). The analogous result for the unitary group G = U(n) was obtained by
Bolsinov and Jovanovic in their paper [BJ3, Theorem 3.4]. The proof of their theorem
is based on a verification of some sufficient conditions using canonical matrix repre-
sentations of semisimple elements of the Lie algebra u(n) and, as remarked in [BJ3],
may be generalized for the case of compact classical Lie groups G = SO(n) or Sp(n).
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Our method of proof is different and works also in the case of an exceptional Lie group
G although the set IG of integrals, which we obtain, is the same as in [BJ3]. These
G-invariant integrals {Hλ(x) = h(x+λa)} viewed as Ad∗(K)-invariant functions on the
cotangent space T ∗{K}(G/K) are obtained by the argument translation method from the
invariants {h} of the Lie algebra g. Note that the integrability of the geodesic flows on
G/T , where the Lie group G is compact and T is its maximal torus, was first proved,
using this method, by Bordemann [Bor] and later independently in [BJ1].

If G is a compact Lie group, all the metrics from the class (a) and a dense subset
of the metrics from the class (b) are Riemannian. For such metrics the theorem of
Liouville applies (all common level surfaces of the integrals are compact). This is of
special interest since it allows for the possibility of a qualitative study of the flow.

Crucial ingredients in our proof are 1) a method of investigation of the Poisson
algebra AG using a one-parameter family of moment maps on T ∗(G/K) with the same
locally free group action of G (the method is based on the Gelfand-Zakharevich theory
of bihamiltonian structures [GZ, Zakh] and on the technique of their reductions [Pana1,
Pana2]); 2) the reduction of the Poisson algebra AG on T ∗(G/K) to a Poisson algebra
AĜ on T ∗(Ĝ/K̂), such that the “effective part” of the action of Ĝ on T ∗(Ĝ/K̂) is locally
free (this part of the proof originates from [Myk3]).

1. G-invariant bi-Poisson structures and moment maps

1.1. Some definitions, conventions, and notation

All objects in this paper are real analytic or complex analytic, X stands for a connected
manifold, E(X) for the space of respectively real analytic or holomorphic functions on
X. We shall write F for R or C depending on the category.

We will say that some functions from the set E(X) are independent if their differ-
entials are independent at each point of some open dense subset in X. For any subset
F ⊂ E(X) denote by ddimx F the maximal number of independent functions from the
set F at a point x ∈ X. Put ddimF def= maxx∈X ddimx F .

Definition 1.1. A pair (η1, η2) of linearly independent bi-vector fields (bi-vectors for
short) on a manifold X is called Poisson if ηt def= t1η1 + t2η2 is a Poisson bi-vector for
any t = (t1, t2) ∈ F2, i.e., each bi-vector ηt determines on X a Poisson structure with
the Poisson bracket { , }t : (f1, f2) 7→ ηt(df1, df2); the whole family of Poisson bi-vectors
{ηt}t∈F2 is called a bi-Poisson structure.

A bi-Poisson structure {ηt} (we shall often skip the parameter space) can be viewed
as a two-dimensional vector space of Poisson bi-vectors, the Poisson pair (η1, η2) as a
basis in this space.

The following two definitions are motivated by Proposition 1.4, which is due to Bolsi-
nov (see below), and by the Gelfand–Zakharevich theory of bi-Poisson (bi-Hamiltonian)
structures [GZ, Zakh].

Definition 1.2. A bi-Poisson structure {ηt} on X is Kronecker at a point x ∈ X if
rankC(t1η1 + t2η2)|x is constant with respect to (t1, t2) ∈ C2 \ {0} (in the real ana-
lytic category we consider (ηj)x as a skew-symmetric bilinear form on the complexified
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cotangent space (T ∗x X)C). We say that {ηt} is micro-Kronecker if it is Kronecker at
any point of some open dense subset in X.

Let G be a Lie group acting on a manifold X. Denote by AG
X the space of all G-

invariant functions from the set E(X). We say that the bi-Poisson structure {ηt} is
G-invariant if each bi-vector ηt, t ∈ F2 is. Put DG

x
def= {dfx | f ∈ AG

X} ⊂ T ∗x X for any
x ∈ X. Let Bt

x denote the restriction of ηt
x to this subspace DG

x . If F = R, we mean
Bt

x, t ∈ C2, as the complex bilinear form t1B
(1,0)
x + t2B

(0,1)
x .

Definition 1.3. Let {ηt} be a G-invariant bi-Poisson structure. We say that the pair
(AG

X , {ηt}) is Kronecker at a point x ∈ X, where ddimx AG
X = ddim AG

X , if the linear
space {Bt

x, t ∈ F2} is two-dimensional and rankCBt
x is constant with respect to (t1, t2) ∈

C2 \ {0}. We say that (AG
X , {ηt}) is micro-Kronecker if it is Kronecker at any point of

some open dense subset in X.

Proposition 1.4. [Bol] Let B1 and B2 be two linearly independent skew-symmetric
bilinear forms on a vector space V . Suppose that the kernel of each form Bt = t1B1 +
t2B2, t ∈ F2, is nontrivial, i.e., 0 < r0

def= mint∈F2 dim kerBt. Put T0 = {t ∈ F2 |
dimkerBt = r0}. Then

(1) the subspace L0
def=

∑
t∈T0

kerBt is isotropic with respect to any form Bt, t ∈ F2,
i.e., Bt(L0, L0) = 0;

(2) the space L0 is maximal isotropic with respect to any form Bt0 , t0 ∈ T0, i.e.,
dimL0 = 1

2 (r0 + dim V ) iff dimC kerBt = r0 for all t ∈ C2 \ {0}.
By Proposition 1.4 if the set {Bt} = {Bt

x} is associated with some bi-Poisson struc-
ture as in Definition 1.3, then the subspace L0 ⊂ V = DG

x is spanned by differentials
of functions at x and these functions are involutive at x with respect to any Poisson
bracket { , }t. Note also that the space kerBt

x contains the differentials of the functions
from the center CG,t

X of the algebra (AG
X , ηt). But L0 is generated by a finite set of spaces

{kerB
tj
x }N

j=1. So if the pair (AG
X , {ηt}) is micro-Kronecker in some neighborhood of x

and each kerB
tj
x is generated by the differentials of the functions from C

G,tj

X , we have
1
2 (dimkerBt

x + dimDG
x ) involutive independent functions on X, i.e., these functions

form a maximal involutive subset of functions in AG
X .

If a Poisson bi-vector η on X is nondegenerate, then there exists a unique symplectic
form ω such that η(· , ·) = −ω(ω−1

[ (·), ω−1
[ (·)). Here ω[ : TX → T ∗X is the natural

isomorphism given by the contraction with the 2-form ω on the first index. Such a
Poisson bi-vector η will be denoted by ω−1.

Definition 1.5. Let g be the Lie algebra of the group G and η = ω−1 be a nonde-
generate G-invariant Poisson bi-vector on X. For each vector ξ ∈ g denote by ξX the
fundamental vector field on X generated by the one-parameter diffeomorphism group
exp(tξ) ⊂ G. The group G acts on the symplectic manifold (X, ω) in a Hamiltonian
fashion if there is a G-equivariant map µ : X → g∗, such that for each ξ ∈ g, the field ξX

is the Hamiltonian vector field with the Hamiltonian function fξ : X → F, x 7→ µ(x)(ξ),
i.e., dfξ = −ω(ξX , ·).

The equivariance property µ(g−1x)(ξ) = µ(x)(Ad(g)ξ), where g ∈ G, x ∈ X, of the
moment map µ implies the identity {fξ, fζ} = f[ξ,ζ], where ξ, ζ ∈ g and { , } is the
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Poisson bracket associated with η. In other words, the mapping µ is canonical with
respect to the Poisson structure η on X and the standard linear Poisson structure on
g∗. Moreover, by definition {f, h ◦ µ} = 0 for any G-invariant function f ∈ AG

X and
h ∈ E(g∗). If η ∈ {ηt}, combining involutive functions of type h ◦ µ with that from
C

G,tj

X we shall get complete involutive families on X.

1.2. Bi-Poisson structures {ηt(α)} on T ∗M

Let M be a real (or complex) connected manifold. Denote by Ω the canonical symplectic
form on the cotangent bundle T ∗M . Let π : T ∗M → M be the canonical projection.

Proposition 1.6. Let α be a nontrivial closed 2-form on M . Put ω1 = Ω and ω2 =
Ω + π∗α. Write η1 = ω−1

1 , η2 = ω−1
2 for the inverse Poisson bi-vectors. Then the

family {ηt(α) = ηt = t1η1 + t2η2}, t1, t2 ∈ F, is a bi-Poisson structure. The Poisson
structure ηt is nondegenerate iff t1 + t2 6= 0. If t1 + t2 = 0 and the 2-form α on M is
nondegenerate, then the symplectic leaves of the degenerate structure ηt coincide with
the fibers of π.

Proof. Let us use the canonical local coordinates (p, q) on T ∗M . In them the matrix
of the 2-form ωs

def= Ω + (s − 1)(π∗α), s ∈ F, is equal to Ws = W + (s − 1)B with the
inverse matrix W−1

s = −W + (s− 1)C, where

W =
[

0 In

−In 0

]
, B =

[
0 0
0 A(q)

]
, C =

[
A(q) 0

0 0

]
,

In is the identity n × n-matrix (n = dim M) and A(q) is the matrix of the 2-form α.
Therefore

t1W
−1
1 + t2W

−1
2 = (t1 + t2)

(
W +

t2
t1 + t2

B
)−1

,

i.e., each bi-vector t1η1+t2η2, t1+t2 6= 0, is Poisson (is determined by the nondegenerate
closed (symplectic) 2-form proportional to some form ωs, s ∈ F). By continuity the bi-
vector η(t1,−t1), t1 ∈ F, is also Poisson. Since it is defined by the matrix −C: η(1,−1) =
−∑

jk Ajk(q) ∂
∂pj

∧ ∂
∂pk

, we obtain the latest assertion of the proposition. ¤

Remark 1.7. Fix x ∈ T ∗M and put V = π−1(π(x)). As we proved above, if the form α
is symplectic, the degenerate Poisson bi-vector η(1,−1)(α) determines on the linear space
V a symplectic structure and this structure is independent of a point v ∈ V . In other
words, at each v ∈ V (under the natural identification of TvV with V ) this structure
induces the same skew-symmetric nondegenerate bilinear form α′ : V × V → F.

1.3. Hamiltonian actions and maximal involutive sets of functions

Let G be a reductive connected Lie group over a field F (real or complex numbers) with
a closed reductive subgroup H. Denote by g and h the Lie algebras of the Lie groups G
and H. Suppose that these Lie algebras are algebraic (see Subsection 2.2). Let ηcan be
the canonical (defined by the canonical symplectic form Ω) bi-vector on the cotangent
bundle X = T ∗M , where M = G/H. The natural action of G on X is Hamiltonian with
the moment µcan : X → g∗. For this moment map µcan the corresponding Hamiltonian
function f can

ξ , ξ ∈ g, has the form f can
ξ = θ(ξX), where θ is the canonical 1-form on

X = T ∗(G/H).
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Put Bcan
x = ηcan

x |DG
x for each x ∈ X. Remark that dim DG

x = ddimx AG, where we set
AG = AG

X . Since Lie algebras g and h are algebraic, ddim AG = minx′∈X codim G·x′ and
ddimCG = minx′∈X dimker Bcan

x′ , where CG is a center of Poisson algebra (AG, ηcan)
(see also Lemma 2.4). The following proposition is known [Myk3, §2], [BJ1, Lemma 3],
[Pana1].

Proposition 1.8. Let F = R. Suppose that there exist m = 1
2 (ddim AG + ddim CG)

independent functions in involution {f1, . . . , fm} (with respect to ηcan) on T ∗(G/H)
from the set AG. Then there are s = dim(G/H) − m polynomials {h1, . . . , hs} on g∗

such that the functions {f1, . . . , fm; h1 ◦ µcan, . . . , hs ◦ µcan} form a maximal involutive
set of independent functions on T ∗(G/H).

Remark 1.9. We will give some comments on this proposition. The set {f1, . . . , fm}
is a maximal involutive subset in AG, i.e., any function f ∈ AG commuting with
each fj locally is a function of {f1, . . . , fm}. The number 1

2 (ddimAG − ddimCG)
equals the complexity ε(g, h) of complex algebraic variety GC/HC (if the groups are
not closed in the Zariski topology we complexify their closures). This number is
calculated in [Myk3, §2] in terms of the Lie algebras g and h; similar expressions
for ε(g, h) were obtained in [Pan1]. So by the condition of the proposition we have
m = ε(g, h) + ddim CG independent functions in involution from the set AG. The ma-
ximal number of independent real analytic functions in involution of the form h ◦ µcan

on T ∗(G/H) is equal to dim(G/H)−ε(g, h)[Myk3]. Since at a generic point x ∈ X, the
space {dfx | f ∈ CG} = ker Bcan

x coincides with the intersection of two subspaces of T ∗x X
spanned by the differentials of the functions from the sets AG and {h◦µcan | h ∈ E(g∗)}
respectively, [Myk3, Pana1], we can complete the involutive set of functions {f1, . . . , fm}
by integrals of the form h ◦ µcan and get a maximal involutive set of independent func-
tions on T ∗(G/H).

Let O ⊂ g∗ be some Ad∗(G)-orbit through a semisimple element a ∈ g ' g∗ of the
Lie algebra g. Here we identified the reductive Lie algebra g with its dual space g∗

using some invariant nondegenerate form on g. Then O = G/K, where K is a closed
reductive subgroup of G (the isotropy group of a). Denote by k the Lie algebra of K.
The orbit O ⊂ g∗ is a symplectic manifold with the Kirillov–Kostant–Souriau form ωO.
So we can consider the bi-Poisson structure {ηt(ωO)} on the manifold X = T ∗O. As we
noted above, the natural extension of Ad∗-action of G on O to the action on (T ∗O, Ω)
is Hamiltonian with the moment map µcan. Moreover, for the fundamental vector fields
ξX and ξO on the manifolds X = T ∗O and O respectively (associated with a vector
ξ ∈ g) we have π∗(ξX) = ξO, where, recall, π : T ∗O → O is the natural projection.

We will formulate and prove the following theorem only in the complex case since for
us its assertion is an auxiliary result for the proof of the main Theorem 3.9. The proof
below is the verification of conditions of Theorem 4.2 in [Pana1].

Theorem 1.10. Let F = C. Suppose that the action of the Lie group Ad(G) on the
cotangent bundle T ∗O is locally free (as in the case of a generic O). Then the pair
(AG, {ηt(ωO)}) is micro-Kronecker.

Proof. Since the Lie group G acts on g∗ by the coadjoint action, without loss of genera-
lity we may assume that the action of G itself on T ∗O is locally free. Then, in particular,
G is a semisimple Lie group.
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It is well known that Ad∗-action of G on the symplectic manifold (O, ωO) is Hamilto-
nian. By the definition of the form ωO the natural embedding O → g∗ is (up to a sign)
the corresponding moment map which we denote by µO. Then the Hamiltonian vector
field of the function fOξ = µO(ξ), ξ ∈ g, coincides with ξO, i.e., dfOξ = −ωO(ξO, ·).

We claim that the group G acts on the symplectic manifold (T ∗O, Ωs), where Ωs =
Ω + s(π∗ωO), s ∈ C, in a Hamiltonian fashion. Indeed, since π∗(ξX) = ξO, it is easy
to verify that the function f can

ξ + s(π∗fOξ ) has ξX as its Hamiltonian vector field with
respect to the form Ωs. The mapping µs = µcan +s(π∗µO) : T ∗O → g∗ is G-equivariant
since so is the projection π. So µs is the corresponding moment map.

Let x ∈ X = T ∗O. The image µs
∗(TxX) ⊂ g∗ coincides with the annihilator in g∗

of the Lie algebra of the isotropy group Gx of x, [GS]. Since this algebra vanishes at a
generic point x, at such a point rank µs(x) = dim g∗ and the image µs(X) contains an
open subset of g∗.

Denote by Wx ⊂ TxX the tangent space to the G-orbit G · x in X = T ∗O. Let
W s⊥

x be the (skew)orthogonal complement to Wx in TxX with respect to the form Ωs.
Fix the nondegenerate Poisson structure ηt = (Ωs)−1. It is easy to see that dim kerBt

x

coincides with dimension of the intersection Wx ∩W s⊥
x . But by the G-equivariance of

the moment map µs, ξX(x) ∈ Wx ∩W s⊥
x iff ad∗ ξ(µs(x)) = 0, i.e., dimkerBt

x is equal
to codimension of the orbit Ad∗(G) · µs(x) in g∗. So dim kerBt

x = rank g at a generic
point x ∈ T ∗O.

Now consider the degenerate Poisson structure ηt, t1 + t2 = 0. Its symplectic leaves
are the cotangent spaces T ∗o1

O, o1 ∈ O. Since the action of G on the base O is transitive,
it is sufficient to consider only one leaf V = T ∗oO, where o = {K} ∈ O = G/K. By
Remark 1.7 the corresponding symplectic structure ω′O on V is independent of the point
v ∈ V . Moreover, since the bi-vector ηt is G-invariant, the Poisson algebra (AG, ηt) is
isomorphic to the Poisson algebra (AG|V, (ω′O)−1). The action of G on T ∗O induces
a linear action of the subgroup K on V = T ∗oO. It is clear that the space AG|V
coincides with the space AK

V of all analytic K-invariant functions on V . Therefore
dimension dim kerBt

v, v ∈ V coincides with the dimension of kernel of the restriction
of the (nondegenerate) bi-vector (ω′O)−1

v to the space {dfv | f ∈ AK
V }. So we are in the

similar to the above situation. Indeed, the action K on V is locally free because so is the
action of G on T ∗O. Since the form ω′O on V is independent of v ∈ V and K acts on V by
linear (symplectic) transformations preserving ω′O, this action of K on V is Hamiltonian.
The corresponding K-equivariant moment map µ′ has the form µ′(v)(ζ) = 1

2ω′O(v, ζ ·v),
where ζ ∈ k and k acts on V by some linear representation (see also Remark 3.2, where
the exact expression for ω′O is calculated). Here we consider the vector v ∈ V also as an
element of TvV = V . Therefore the number dim kerBt

v is equal to the codimension of
orbit Ad∗(K) · µ′(v) in k∗, i.e., dim kerBt

v = rank k = rank g at a generic point v ∈ V .
Since the degenerate structure ηt is G-invariant, dimkerBt

x = rank g and dimGx = 0
for all x from some open dense G-invariant subset U ⊂ T ∗O.

Consider again the nondegenerate Poisson structure ηt = (Ωs)−1. If for x ∈ U
the dimension dim kerBt

x is not minimal, then the coadjoint orbit through the element
µs(x) in g∗ has nonmaximal dimension. Since the algebra Lie g is reductive, the union
g∗sing ⊂ g∗ of such (singular) orbits in g∗ has the codimension > 3. Thus the preimage
(µs)−1(g∗sing) has codimension > 3 in U because the mapping µs : U → g∗ is a submer-
sion on U . The union of these subsets when the parameter s runs through all complex
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numbers gives us a set of codimension > 2 in U . Thus there exists an open dense subset
in U where the pair (AG, {ηt(ωO)}) is Kronecker. ¤

2. Lie-algebraic auxiliary results

In this section we prove some Lie-algebraic assertions, allowing us to prove Theo-
rem 1.10 in the case when the corresponding Ad(G)-action is not locally free.

2.1. Pairs of reductive Lie algebras

Let g be a reductive real (or complex) Lie algebra. There exists a faithful representation
χ of g such that its associated bilinear form Φχ is nondegenerate on g (if g is semisimple
we can take the Killing form associated with the adjoint representation of g). Let k ⊂ g
be a reductive in g subalgebra, i.e., the representation x 7→ adg x of k on g is completely
reducible. This subalgebra is necessarily reductive (in itself). Assume also that the
form Φχ is nondegenerate on k. Denote by m the orthogonal complement to k in g with
respect to 〈 , 〉 (in particular g = k ⊕ m is the direct sum decomposition of g). For
each element x ∈ g let g0(x) (respectively gx) denote the set of all z ∈ g which satisfy
(ad x)n(z) = 0 for sufficiently large n (respectively [x, z] = 0). Let kx = k ∩ gx. The set

R(m) = {x ∈ m | dim gx = q(m), dim g0(x) = Q(m), dim kx = p(m)}, (2.1)

where q(m) (respectively Q(m) and p(m)) is the minimum of dimensions of the spaces
gy (respectively g0(y) and ky) over all y ∈ m, is a nonempty Zariski open subset of m.
Since the number p(m) is determined only by ad representation of k in m, we will denote
it also by p(m, k). The set R(m) consists of semisimple elements of g, [Myk2, Prop. 1.2],
i.e., q(m) = Q(m) and the centralizer gx, x ∈ R(m) is a reductive (in g) subalgebra of g.
Moreover, the maximal semisimple ideal [gx, gx] of gx is contained in the algebra kx, i.e.,

[gx, gx] = [kx, kx], (2.2)

(see [Mish] or [Myk2, Prop. 1.1]). In particular, the subalgebra kx ⊂ gx is reductive in
g and dim(gx/kx) = rank g− rank kx.

Now, let us consider an important subset of m. For any x ∈ m define the subspace
m(x) ⊂ m putting

m(x) def= {z ∈ m | [x, z] ∈ m}, (2.3)

i.e., adx(m(x)) ⊂ m. By the invariance of Φχ

m(x) = {z ∈ m | Φχ(z, adx(k)) = 0}. (2.4)

Proposition 2.1. [Myk3] For arbitrary element x ∈ R(m), we have [m(x), kx] = 0.

By the dimension arguments from this proposition and definition (2.1) we get

Corollary 2.2. For x ∈ R(m) and each element x′ ∈ m(x) ∩R(m), we have kx′ = kx.

The following proposition generalize some assertions of the proof of Theorem 11
in [Myk3].
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Proposition 2.3. Assume that x0 ∈ R(m) and a is a reductive (in g) subalgebra of kx0 .
Let ĝ = ga and k̂ = ka be the centralizers of a in g and k respectively. Let m̂

def= {x ∈ ĝ |
Φχ(x, k̂) = 0}. Then

(1) the subalgebras kx0 , a, ĝ and k̂ are reductive in g subalgebras, the restrictions
of the form Φχ to the subalgebras ĝ and k̂ respectively are nondegenerate, in
particular, ĝ = k̂⊕ m̂;

(2) m̂ = ĝ ∩m (k̂ = ĝ ∩ k by definition);
(3) for any element x from Zariski open subset m̂ ∩ R(m) (containing x0) of m̂ we

have m̂(x) = m(x) and a ⊂ kx.
If in addition a = kx0 , then for any element x of the (nonempty) set m̂ ∩R(m) we have
kx = kx0 and the centralizer k̂x is contained in the center z(ĝ) of the reductive Lie algebra
ĝ, i.e, k̂x = z(ĝ) ∩ k̂. Moreover, this element x is a regular element of the reductive Lie
algebra ĝ and x ∈ R(m̂) (i.e., (m̂ ∩R(m)) ⊂ R(m̂)).

Proof. As we noted above the element x0 ∈ R(m) is semisimple and the algebras gx0 , kx0

are reductive in g. Therefore the subalgebra a ⊂ kx0 is reductive in g by transitivity of
this property. To prove property (1) we will use the following well known method [Bou2,
Ch. VII, §1]. Since the representation z 7→ adg z of the Lie algebra a is completely
reducible and the algebra ĝ is an intersection of the kernels of endomorphisms adg(z), z ∈
a, we have the following splitting

g = ĝ⊕ [a, g] (2.5)

(see [Bou1, Ch. I, §3, Prop. 6]). Using the invariance of the form Φχ and the relation
[a, ĝ] = 0, we obtain that Φχ([a, g], ĝ) = Φχ(g, [a, ĝ]) = 0, i.e., the subspaces ĝ and [a, g]
are mutually orthogonal. Now it follows from the above mentioned splitting (2.5) that
the form Φχ is nondegenerate on ĝ. Changing in the considerations above the algebra
g by k, we prove that the form Φχ is nondegenerate on k̂.

The centralizer Z(b) of a semisimple subalgebra b ⊂ g in g is reductive in g sub-
algebra [Bou2, Ch. VII, §1, Prop. 13]. So the algebra ĝ is reductive (the center of a
consists of semisimple elements of the Lie algebra g). The center of ĝ also consists of
semisimple elements of the Lie algebra g because this center is a Cartan subalgebra of
the centralizer Z([ĝ, ĝ]⊕ [a, a]) (of a semisimple algebra). Similarly k̂ is a reductive in k
and, consequently, in g subalgebra.

Since k and m are stable under ad(a), we obtain the splitting ĝ = ĝ ∩ k⊕ ĝ ∩ m into
a sum of two mutually orthogonal subspaces, so that m̂ = ĝ ∩m.

Let x be any element of the nonempty Zariski open set m̂ ∩R(m) containing x0. By
Proposition 2.1, [m(x), kx] = 0. But x ∈ m̂, hence [x, a] = 0. Therefore a ⊂ kx and
[m(x), a] = 0, i.e., m(x) ⊂ m̂. Let x1 ∈ m(x) and z ∈ a. Given three elements x, x1, z,
consider the Jacobi identity

[[x, x1], z] + [[x1, z], x] + [[z, x], x1] = 0.

Since [m(x), a] = 0 and [x, a] = 0, the second and the third term in this identity vanish.
Therefore [[x, m(x)], a] = 0, and, consequently, [x, m(x)] ⊂ ĝ. But [x, m(x)] ⊂ m by
definition. From these two inclusions it follows that [x, m(x)] ⊂ m̂. Since m(x) ⊂ m̂, we
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have m(x) ⊂ m̂(x) (see (2.3)). Using analogous arguments from the inclusion m̂ ⊂ m
and (2.3) we obtain that m̂(x) ⊂ m(x). Thus m̂(x) = m(x).

Suppose now that in addition a = kx0 . By already proved condition (3) we have
kx0 ⊂ kx. But dim kx0 = dim kx, so that kx0 = kx. Let z(x0) be the center of the Lie
algebra a = kx0 . By the definition of the algebra ĝ, we have [z(x0), ĝ] = 0 and z(x0) ⊂ ĝ.
Since

k̂x def= ĝx ∩ k̂ = (gx ∩ ĝ) ∩ (ĝ ∩ k) = ĝ ∩ kx = ĝ ∩ kx0 ,

we have
[̂kx, kx0 ] = 0 and k̂x ⊂ kx0 .

Thus z(x0) is a subspace of the center of ĝ and k̂x ⊂ z(x0), i.e., k̂x = z(ĝ) ∩ k̂. By
definition, ĝx = ĝ ∩ gx and [ĝx, kx] = 0 because kx = kx0 . Since the algebra kx contains
the maximal semisimple ideal of the centralizer gx, the algebra ĝx is a subalgebra of the
center of gx. Thus x is a regular element of the reductive Lie algebra ĝ because x is
a semisimple element of g. Now taking into account definition (2.1) and the fact that
dimension of the space k̂x = z(ĝ) ∩ k̂ is constant for all x from the open set m̂ ∩ R(m),
we obtain that x ∈ R(m̂). ¤

2.2. Pairs of reductive algebraic Lie algebras

Here we will use the notation of the previous subsection, but suppose in addition that
the Lie algebras k ⊂ g are algebraic, i.e., there are algebraic connected in the Zariski
topology (irreducible) Lie groups K ⊂ G with these Lie algebras. Remark here that
if F = C, these groups are connected in usual topology, and if F = R, they have a
finite number of connected components. Denote by PK

m the space of Ad(K)-invariant
polynomial functions on the space m. For any smooth function f on m, write grad f (or
gradm f if f is the restriction of some function to m) for the vector field on m such that

dfx(y) = Φχ(grad f(x), y) for all y ∈ m. (2.6)

Lemma 2.4. Put P (m) = {x ∈ R(m) | ddimx PK
m = ddim PK

m }. Then for each point x
from the nonempty Zariski open subset P (m) ⊂ R(m), we have ddimx PK

m = dim m(x)
and the space m(x) is generated by the vectors {grad f(x) | f ∈ PK

m }.
Proof. The proof below is simple and standard, but we need it for further references on
this method. Consider first the real case, i.e., F = R. Let KC be the complexification
of the Lie group K with a compact real form K0 ⊂ KC. Denote by kC and k0 the
corresponding Lie algebras. The Lie groups KC and K0 are connected (in the usual
topology) [VO, Ch.5, §2]. Since the algebra k0 is a compactly embedded subalgebra of
gC, k0 is contained in some compact real form g0 of gC. The natural extension ΦCχ of

the form Φχ is negative-definite on g0. It is clear that the space mC
def= m⊕ im coincides

with the space m0 ⊕ im0, where m0 = k⊥0 in g0 with respect to ΦCχ|g0.
Consider the space PK0

m0
of Ad(K0)-invariant polynomial functions on m0. Since the

connected Lie group Ad(K0) is compact, any two its orbits in m0 are separated by some
polynomial from PK0

m0
. So ddim PK0

m0
is equal to codimension in m0 of an Ad(K0)-orbit of

maximal dimension, i.e., to dim m0−(dim k0−p(m0, k0)). But each polynomial f ∈ PK0
m0

determines the (complex) polynomial f̃ on mC. Since Ad(K0) is a real form of Ad(KC),
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this polynomial is Ad(KC)-invariant. So ddimR PK0
m0

6 ddimC PKC
mC . Taking into account

that m is a real form of mC and considering the real and imaginary parts of the restriction
f̃ |m, we obtain that ddimC PKC

mC 6 ddimR PK
m . Since p(m0, k0) = p(mC, kC) = p(m, k),

these two inequalities above are equalities. To prove the last assertion it is sufficient
to note that for any f ∈ PK

m by definition grad f(x) ∈ m(x). Slightly modifying this
considerations, we obtain the proof in the complex case. ¤

Let x0 be an element of the set P (m) ⊂ R(m). Let ĝ = ga and k̂ = ka be the
centralizers determined by the algebra a = kx0 . The Lie algebras k̂ and ĝ are Lie algebras
of the connected in Zariski topology algebraic Lie subgroups K̂ and Ĝ of the Lie group
G, K̂ ⊂ Ĝ. It is clear that PK

m |m̂ ⊂ P K̂
m̂ . Since, by Proposition 2.3, m(x0) = m̂(x0) and

x0 ∈ R(m̂), as an immediate consequence of Lemma 2.4 we obtain

Corollary 2.5. For the point x0 ∈ P (m) ⊂ R(m) we have m̂ ∩ P (m) ⊂ P (m̂). In par-
ticular, x0 ∈ m̂ ∩ P (m) and for any point x ∈ m̂ ∩ P (m), the following equality holds:
ddimx P K̂

m̂ = ddimx(PK
m |m̂) = ddimx PK

m .

Since the form ΦCχ is negative-definite on the compact form g0, the form ΦCχ is nonde-
generate on each complex subspace ad y(kC) ⊂ mC if y ∈ m0, i.e., mC(y)⊕ad y(kC) = mC.
Taking into account that m is a real form of mC, we obtain

Corollary 2.6. If the reductive Lie algebras k ⊂ g are algebraic, then a splitting m(x)⊕
adx(k) = m holds for all elements x from some nonempty Zariski open subset of m.

3. Reduction

In this section we will prove Theorem 1.10 in the general case, i.e., for an arbitrary
orbit O ⊂ g of a semisimple element a ∈ g, thus obtaining the integrability of the
geodesic flow for such spaces and for other homogeneous spaces.

3.1. The bi-Poisson structure {ηt(ωO)}: exact formulas and involutive sets
of functions

Let G be a reductive connected Lie group over the field F (of real or complex numbers)
with the Lie algebra g. Suppose that the Lie algebra g is algebraic. Then, in particular,
G can be chosen to be a connected component of some connected in the Zariski topology
algebraic group. Consider the adjoint action of G on g and some G-orbit O ⊂ g through
a semisimple element a ∈ g of the Lie algebra g. Then O = G/K, where K is a closed
reductive subgroup of G (the isotropy group of a). Denote by k the (algebraic) Lie
algebra of K.

Using the invariant form 〈 , 〉 def= Φχ on the Lie algebra g, we identify the dual space
g∗ and g. So O is a symplectic (real or complex) manifold with the Kirillov–Kostant–
Souriau symplectic structure ωO. By definition the form ωO is G-invariant and at the
point a ∈ O we have

ωO(a)([a, ξ1], [a, ξ2]) = −〈a, [ξ1, ξ2]〉, ∀ξ1, ξ2 ∈ g, (3.1)

where we consider the vectors [a, ξ1], [a, ξ2] ∈ Tag = g as tangent vectors to the orbit
O ⊂ g at the point a ∈ O.
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Since k is a reductive subalgebra of g of maximal rank, the form 〈 , 〉 is nondegenerate
on k. Then g = k ⊕ m, where recall m = k⊥ in g. The form 〈 , 〉 defines a G-invariant
F-valued metric on G/K. This metric identifies the cotangent bundle T ∗O and the
tangent bundle TO. Let ϕ : T ∗O → TO be the corresponding morphism. Thus we can
also talk about the canonical 2-form Ω on TO. The symplectic form Ω is G-invariant
with respect to the natural action of G on TO (extension of the action of G on O).

Denote by τ : TO → O the natural projection. It is clear that τ ◦ ϕ = π, where,
recall, π : T ∗O → O is also the natural projection. So π∗ωO = ϕ∗(τ∗ωO) and by
Proposition 1.6 the inverses η1, η2 to the closed 2-forms ω1 = Ω and ω2 = Ω + τ∗ωO
(α = ωO) on TO define the bi-Poisson structure {ηt = ηt(ωO)}t∈F2 on TO.

Consider the trivial vector bundle G×m with the two commuting Lie group actions
on it: the left G-action, lh : (g, w) 7→ (hg, w), and the right K-action rk : (g, w) 7→
(gk, Ad k−1(w)). Let p1 : G×m → G×K m be the natural projection. It is well known
that G ×K m and T (G/K) are isomorphic. Using the corresponding G-equivariant
diffeomorphism ϕ1 : G×K m → T (G/K), [(g, w)] 7→ d

dt

∣∣
0
g exp(tw)K and the projection

p1 we define the G-equivariant submersion Π : G×m → T (G/K), Π = ϕ1 ◦ p1.
We can identify the tangent space To(G/K) at the point o = p(e) with the space m

by means of the canonical projection p : G → G/K. Let AG (resp. AK
m ) be the set of

all F-analytic G-invariant (resp. Ad(K)-invariant) functions on T (G/K) (resp. on m).
There is a one-to-one correspondence between G-orbits in T (G/K) and Ad(K)-orbits
in m. Thus using the submersion Π : G × m → T (G/K) we can identify naturally the
spaces of functions AG and AK

m .
Let ξl be the left-invariant vector field on the Lie group G defined by a vector ξ ∈ g.

The form Π∗Ω on the manifold G×m has the following form, [Myk4]:

(Π∗Ω)(g,x)((ξl
1(g), y1), (ξl

2(g), y2)) = 〈ξ2, y1〉 − 〈ξ1, y2〉 − 〈x, [ξ1, ξ2]〉, (3.2)

where g ∈ G, x ∈ m, ξ1, ξ2 ∈ g, y1, y2 ∈ m = Txm.
The kernel K ⊂ T (G×m) of the 2-form Π∗Ω coincides with the kernel of Π∗, i.e.,

K(g,x) = {(ζl(g), [x, ζ]) ∈ TgG×m, ζ ∈ k}. (3.3)

Now it is easy to verify using formulas (3.1), (3.2) and (left) G- and (right) K-
invariance of the form Π∗(s1Ω + s2τ

∗ωO), (s1, s2) ∈ F2 that

Π∗(s1Ω + s2τ
∗ωO)(g,x)((ξl

1(g), y1), (ξl
2(g), y2))

= s1

(〈ξ2, y1〉 − 〈ξ1, y2〉 − 〈x, [ξ1, ξ2]〉
)− s2〈a, [ξ1, ξ2]〉. (3.4)

By Proposition 1.6 the form δs1,s2

def= s1Ω + s2τ
∗ωO is nondegenerate on T (G/K) if

s1 6= 0.
Using expressions (3.4) for the form Π∗δs1,s2 and (3.3) for the kernel of Π∗, we obtain

that the left G-invariant Hamiltonian vector field of the function f ∈ AK
m = AG equals

Π∗(X̌f ), where

X̌f (e, x) =
(
s−1
1 grad f(x), s−1

1

[
x + s2s

−1
1 a, grad f(x)

]) ∈ g×m

(the vector-field grad f on m is determined by (2.6)). Therefore the Poisson bracket of
two functions f1, f2 from the set AK

m with respect to the Poisson structure determined by
the form δs1,s2 , s1 6= 0, is equal to the function −s−2

1 〈s1x+s2a, [grad f1(x), grad f2(x)]〉.
So we have proved
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Lemma 3.1. Given an orbit O = G/K, let { , }t be the Poisson bracket on the tangent
bundle TO corresponding to the Poisson structure ηt = ηt(ωO), t = (t1, t2) ∈ F2. Then
for arbitrary functions f1, f2 ∈ AK

m = AG and a point x ∈ m = To(G/K) we have

{f1, f2}t(x) = −〈(t1 + t2)x + t2a, [grad f1(x), grad f2(x)]〉. (3.5)

The G-invariant Hamiltonian vector field of the function fj has the form Π∗(X̌t
fj

), where

X̌t
fj

(e, x) =
(
(t1 + t2) grad fj(x),

[
(t1 + t2)x + t2a, grad fj(x)

]) ∈ g×m. (3.6)

Remark 3.2. Consider on the linear space m the nondegenerate bilinear form β(y1, y2) =
〈y1, ad−1

a (y2)〉, y1, y2 ∈ m, where ad−1
a

def= (ad a|m)−1. Since the endomorphism ad a|m :
m → m is skew-symmetric (with respect to the form 〈 , 〉), the form β is also skew-
symmetric. Identifying the tangent space Txm with m for each x ∈ m, we can consider
β as a symplectic form on m. It is easy to verify (using the invariance of the form 〈 , 〉)
that for arbitrary functions f1, f2 on m the corresponding Poisson bracket has the form

{f1, f2}β(x) = −〈a, [grad f1(x), grad f2(x)]〉, (3.7)

i.e., it coincides on the space of Ad(K)-invariant functions with the Poisson bracket
{ , }t (3.5) in the exceptional case (t1 + t2) = 0, t2 = 1. By Proposition 1.6 this
degenerate Poisson structure ηt has the space m = ToO as a symplectic leaf and the
reduced Poisson structure { , }′ on it is nondegenerate. Using expression (3.4) and
calculating the Hamiltonian vector fields of arbitrary functions on TO with respect to
the symplectic form s1Ω+s2τ

∗ωO, we can show that this Poisson bracket { , }′ coincides
with { , }β (3.7). Since the Ad action of K on m preserves the form β, this action of
K is Hamiltonian with the moment map µβ : m → k∗, µβ(x)(ζ) = − 1

2 〈ad−1
a (x), [ζ, x]〉,

∀ζ ∈ k (see the proof of Theorem 1.10).
The centralizer k = ga is a direct sum of Lie algebras k = z ⊕ k′, where z is the

center of k and k′ its maximal semisimple ideal. It is clear that a ∈ z. Moreover, since
the Lie group Ad(K) (resp. Ad(KC)) is connected if F = C (resp. if F = R), we have
Ad(K)b = b for each b ∈ z. Let k1 be some algebraic Lie subalgebra of k containing the
semisimple Lie algebra k′ = [k, k]. There exist closed subgroups K ′ and K1 of the group
K with the Lie algebras k′ and k1 respectively such that K ′ ⊂ K1. The center z1 of k1
is a subalgebra of the center z of k. Then we have the following orthogonal splittings
with respect to the form 〈 , 〉

k1 = z1 ⊕ k′, g = m1 ⊕ k1, m1 = z∗ ⊕m, z = z1 ⊕ z∗, (3.8)

which serve as definitions for z∗ and m1.
Consider on the tangent bundle T (G/K1) the space AG

1 of all G-invariant F-analytic
functions. As in the case of the subgroup K, we can identify naturally the spaces
AG

1 and AK1
m1

. Using the form 〈 , 〉, identify T ∗(G/K1) and T (G/K1). The canonical
Poisson structure, determined by the symplectic form Ω1 on T (G/K1), induces the
bracket operation { , }can on the space E(T (G/K1)). Using an expression for the lift of
Ω1 to G×m1 similar to (3.2), we find that for arbitrary functions f1, f2 ∈ AK1

m1
on m1

{f1, f2}can(x) = −〈x, [gradm1
f1(x), gradm1

f2(x)]〉. (3.9)
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Denote by I(g) the space of all Ad(G)-invariant polynomials on g. If h ∈ I(g), then
it is clear that the function hλ, hλ(y) = h(y+λa), λ ∈ F, is Ad(K1)-invariant on g. Put
Hλ = hλ|m1. For each element b ∈ z and a symmetric (with respect to the form 〈 , 〉 on
g) endomorphism D : k → k, D(z) ⊂ z, D|k′ = Idk′ , we can consider the endomorphism
ϕa,b,D : g → g putting ϕa,b,D(z) = Dz if z ∈ k and ϕa,b,D(x) = ad−1

a ([b, x]) if x ∈
m ⊂ g. It is clear that the endomorphism ϕa,b,D is symmetric and the group Ad(K1)
commutes elementwise with ϕa,b,D on g. So the function ha,b,D(y) = 1

2 〈y, ϕa,b,D(y)〉
on g is Ad(K1)-invariant. Suppose in addition that the endomorphism D leave the
subspace z∗ ⊂ z ⊂ k invariant, i.e., D(z∗) ⊂ z∗. Then ϕa,b,D(m1) ⊂ m1 and the function
Ha,b,D(x) = 1

2 〈x, ϕa,b,D(x)〉, x ∈ m1, is a Hamiltonian function of the geodesic flow of
some pseudo-Riemannian metric on G/K1 if ϕa,b,D|m1 is nondegenerate.

Lemma 3.3. [BJ1] For any functions h1, h2, h ∈ I(g) and arbitrary parameters λ1, λ2,
λ ∈ F we have {Hλ1

1 ,Hλ2
2 }can = 0 and {Hλ,Ha,b,D}can = 0.

Proof. Mainly to fix notation we shall prove this lemma here. The functions hλ1
1 , hλ2

2

and ha,b,D commute on g ' g∗ with respect to the Lie–Poisson bracket [MF]. This
means, for example for the functions hλ1

1 , hλ2
2 , that 〈x, [gradg hλ1

1 (x), gradg hλ2
2 (x)]〉 = 0

for all x ∈ m1 ⊂ g. But gradm1
Hλ1

j (x) = (gradg hλ1
j (x))m1 . Now taking into account

that gradm1
Hλ1

j (x) ∈ m1(x), [x, m1(x)] ⊂ m1 and m1⊥k1, we obtain that

〈x, [(gradg hλ1
1 (x))m1 , (gradg hλ2

2 (x))m1 ]〉 = 0,

i.e., {Hλ1
1 ,Hλ2

2 }can(x) = 0. Similarly we can show that {Hλ,Ha,b,D}can = 0. ¤
Remark 3.4. Since the form 〈 , 〉 is invariant, the quadratic form x 7→ 〈x, x〉 is contained
in the involutive function set {hλ|m1 | h ∈ I(g), λ ∈ F} ⊂ AK1

m1
. The functions hλ

and ha,b,D were considered in the papers [MF, BJ1]. Moreover, in [BJ3] the geodesic
flow with the Hamiltonian Ha,b,D on T (G/K1) was studied. If the symmetric operator
ϕa,b,D|m1 is positive-definite, the function Ha,b,D ∈ AK1

m1
= AG

1 is a Hamiltonian function
for some G-invariant geodesic flow on T (G/K1). Remark that such a Riemannian metric
on G/K1 exists also for noncompact G.

3.2. The bi-Poisson structure {ηt(ωO)}: maximal involutive subsets of func-
tions

We continue with the notation of Subsection 3.1 but in this subsection it is assumed in
addition that F is the field of complex numbers. Since F = C, the group G is algebraic
and the isotropy group Ad(K) of a ∈ g is connected [Kos, Lemma 5].

Let x be an element of R(m) which satisfies the following conditions:

m(x)⊕ adx(k) = m, ddimx PK
m = ddim PK

m (3.10)

(see Lemma 2.4 and its corollaries). The bi-Poisson structure {ηt = ηt(ωO)} determines
at this point x ∈ m = To(G/K) the bilinear forms Bt

x : DG
x ×DG

x → C, where recall the
space DG

x is spanned by differentials of functions from the set AG and Bt
x = ηt|DG

x (see
subsection 1.1). Since we identified the spaces AG and AK

m , Bt
x determines the following

bilinear forms (which we denote also by Bt
x for short)

Bt
x : m(x)×m(x) → C, (y1, y2) 7→ −〈(t1 + t2)x + t2a, [y1, y2]〉 (3.11)
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on the space m(x) = {grad f(x) | f ∈ AK
m}. Here we used expression (3.5) and the form

〈 , 〉 to identify the spaces m(x) and m(x)∗ (this form is nondegenerate on m(x)). It is
easy to see that the kernel of Bt

x is the subspace V t(x) ⊂ m(x) given by

V t(x) = {y ∈ m(x) | [(t1 + t2)x + t2a, y] ∈ ad x(k)}. (3.12)

Remark here that by definition [x, m(x)] ⊂ m and [a,m] ⊂ m. Moreover, since [a, k] = 0,
we have

V t(x) = (g(t1+t2)x+t2a)m, where t1 + t2 6= 0 (3.13)

and (·)m denotes the projection onto m along k. In particular, for t = (1, 0) (for the
canonical Poisson structure on T (G/K)), V (1,0)(x) = (gx)m. Since x ∈ R(m), dimension
of the space (gx)m is equal to the constant r = q(m) − p(m), where the numbers q(m)
and p(m) are defined in Subsection 2.1.

Consider the set R(z⊕m) determined by (2.1) for the pair (g, k′). By [Myk2, Propo-
sition 1.2] the intersection R(z⊕m)∩R(m) is nonempty. If x′ ∈ m is an element of this
intersection, then the whole line ta + x′, t ∈ C, with the exception of a finite number
of points belongs to the Zariski open subset R(z ⊕ m) of z ⊕ m. So we can choose an
element x ∈ R(m) satisfying (3.10) and such that

a + x ∈ R(z⊕m). (3.14)

Lemma 3.5. The number minx′∈R(m) dim V t(x′), t ∈ C2, is equal to r, if t1 + t2 6= 0,
and > r, if t1 + t2 = 0. In particular, the pair (AG, {ηt}t∈C2) is Kronecker at the point
x iff dim V t(x) = r for all t ∈ C2 \ {0}.
Proof. By [Myk2] (see the proof of Proposition 1.2) q(m) = q(z⊕m), i.e., the centralizers
gx and gx+a have the same dimension. Now the evident relation gx+a ∩ k = gx ∩ k
([a, k] = 0) implies that dim(gx+a)m = dim(gx)m. Since minx′∈R(m) dim(gx′+λa)m =
minx′∈R(m) dim(gx′+a)m, where λ ∈ C, we obtain the assertion of the lemma. ¤

Proposition 3.6. Suppose that an element x ∈ R(m) satisfies conditions (3.10) and
(3.14). If the pair (AG, {ηt}t∈F2), F = C, is Kronecker at the point x, then

(1) in the set {hλ|m | h ∈ I(g), λ ∈ F} ⊂ AK
m = AG there are 1

2 (r + dim m(x))
functions functionally independent at this point;

(2) this pair (AG, {ηt}t∈F2) is Kronecker on some open subset of T (G/K) for which
the intersection with m = To(G/K) is a Zariski open subset of m.

Proof. Since dim V t(x) = r for all t ∈ C2 \ {0}, it follows from Proposition 1.4 that the
space L0(x) =

∑
t∈C2\{0} V t(x) is a maximal isotropic subspace of m(x) with respect to

the form B(1,0)(x) (of maximal rank). In particular, dim L0(x) = 1
2 (r + dim m(x)).

But the space L0(x) is generated by a finite subset of spaces from the set {V t(x)}.
Since the family V t(x) depends smoothly on the parameter t ∈ C2 \{0}, we obtain that
L0(x) =

∑N
j=1 V j(x), where each space V j(x) is determined by (3.12) with t1 + t2 = 1

and t2 = λj ∈ C, j = 1, N . Moreover, by (3.14) we can choose these numbers {λj} such
that x + λja ∈ R(z⊕m).
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Consider the space I(g) of all Ad(G)-invariant polynomials on g. If h ∈ I(g), then the
function hλ(x) = h(x+λa) restricted to m is Ad(K)-invariant. But [x+λa, gradg h(x+
λa)] = 0 by invariance of the form 〈 , 〉. So

[x + λa, gradm hλ(x)] = −[x + λa, (gradg h(x + λa))k]

= −[x, (gradg h(x + λa))k] ∈ adx(k),

i.e., gradm hλj (x) ∈ V j(x). Denote by V j
I (x) the subspace of V j(x) spanned by vectors

gradm hλj (x), h ∈ I(g).
We claim that V j

I (x) = V j(x). Indeed, the elements x+λja ∈ R(z⊕m) are semisimple
elements of g. So by [Myk1, Theorem 2.5], the vectors gradg h(x + λa), h ∈ I(g), span
the center h(x + λja) of the centralizer gx+λja, i.e., V j

I (x) = (h(x + λja))m. By (2.2),
(h(x + λja))m = (gx+λja)m, but by (3.13), we have V j(x) = (gx+λja)m, i.e., V j

I (x) =
V j(x). Thus L0(x) =

∑
j V j

I (x), the assertion (1) is proved.
By Lemma 3.3 and by dimension arguments, the space

∑
j V j

I (x′) is maximal isotropic
with respect to the form B(1,0)(x′), dim V j(x′) = r, j = 1, N for all x′ from some Zariski
open subset in R(m) containing x. Taking into account that V j

I (x′) ⊂ V j(x′) ⊂ L0(x′),
from Proposition 1.4 it follows that the pair (AG, {ηt}t∈C2) is Kronecker at x′. ¤

Consider again the pair (g, k1). For x1 ∈ R(m1) we have r1 = q(m1) − p(m1) =
dim(gx1/kx1

1 ). As we have shown above, r1 is corank of the skew-symmetric bilinear
form Bcan

x1
associated with the bracket { , }can (3.9) on the set AK1

m1
= AG

1 , where recall
AG

1 denotes the space of all G-invariant C-analytic functions on T (G/K1).

Proposition 3.7. Let x ∈ R(m) and F = C. Suppose that in the set {hλ|m | h ∈
I(g), λ ∈ F} ⊂ AK

m there are 1
2 (r + dim m(x)) functionally independent functions at x.

Then there is a point x1 ∈ R(m) ∩ R(m1) such that in the set {hλ|m1 | h ∈ I(g), λ ∈
F} ⊂ AK1

m1
, there are 1

2 (r1+dim m1(x1)) functionally independent functions at x1. These
functions form a maximal involutive subset of independent functions in the algebra AG

1 =
AK1

m1
with respect to the canonical Poisson structure on T (G/K1). Moreover, these

functions are integrals of the geodesic flow on T (G/K1) determined by the form 〈 , 〉
and of the Hamiltonian flow with the Hamiltonian Ha,b,D.

Proof. By [Myk2, Proposition 1.2] the intersection R(m1) ∩ R(m) is nonempty. Since
the functions considered are polynomials, we can suppose that the point x = x1 is
contained in the set R(m1) ∩R(m). So by assumptions of the proposition the isotropic
subspace Lm(x) def= {gradm hλ(x) | h ∈ I(g), λ ∈ C} of m(x) has the maximal possible
dimension 1

2 (dim(gx/kx)+dim m(x)). From the inclusion z∗ ⊂ k it follows that dim kx
1 =

dim kx − dim(kx)z∗ . Taking into account that x ∈ m, we get

dim m1(x) = dim m1 − dim(ad x(k1))

= (dim m + dim z∗)−
(
(dim k− dim z∗)− (dim kx − dim(kx)z∗)

)

= dim m(x) + 2 dim z∗ − dim(kx)z∗ .

(3.15)

Thus
1
2 (r1 + dim m1(x1)) = 1

2 (dim(gx/kx
1) + dim m1(x))

= 1
2 (dim(gx/kx) + dim m(x) + 2 dim z∗)

= dim Lm(x) + dim z∗.

(3.16)
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By Lemma 3.3 the space Lm1(x) def= {gradm1
hλ(x) | h ∈ I(g), λ ∈ C} is an isotropic

subspace for Bcan
x . We claim that the space Lm1(x) contains the space z∗ = (z)m1 .

It is clear that it suffices to prove this fact for semisimple g. Let h ∈ I(g) be some
homogeneous polynomial of degree n. Define the polynomials vj(x) by the identity
h(x+λa) =

∑n
j=0 λjvj(x). Since the space Lm1(x) contains all vectors gradm1

h(x+λa),
λ ∈ C, this space contains the vector gradm1

vn−1(x). But by [Bou2, Ch. VIII, §8, Theo-
rem 1] each invariant homogeneous polynomial of degree n is a linear combination of the
functions on g of the form y 7→ Tr(ρ(y))n, where ρ is a finite-dimensional representation
of the semisimple Lie algebra g. Since for such h we have vn−1(x) = n Tr(ρ(a)n−1ρ(x)),
we obtain that dh(a)(ξ), ξ ∈ g, coincides with vn−1(ξ), i.e., gradg h(a) = gradg vn−1(x).
Taking into account that the vectors gradg h(a), h ∈ I(g) span the center z of k = ga

(see [Myk1, Theorem 2.5]), we prove that z∗ = (z)m1 ⊂ Lm1(x). But by definition,
Lm(x) = (Lm1(x))m. Since m1 = z∗ ⊕ m, we have Lm1(x) = Lm(x) + z∗. So by (3.16)
dim Lm1(x) = 1

2 (dim(gx/kx
1) + dim m1(x)). ¤

Remark 3.8. Let Gr be the identity component of a real form of the algebraic complex
Lie group G. Put Kr = K ∩Gr. Here, for this real case we will use all notation of this
subsection but with index r. Suppose also in addition to the previous assumptions that
O = Ad(G) · a, where a ∈ gr ⊂ g. Now using the method of the proof of Lemma 2.4
and the fact that a nonempty Zariski open subset of a complex linear space intersects
its real form, we deduce that

(1) the pairs (AG, {ηt})t∈C2 and (AGr , {ηt
r})t∈R2 are micro-Kronecker simultane-

ously;
(2) Propositions 3.6, 3.7 hold if we replace the complex pair (G,K) by the real one

(Gr,Kr) and put F = R.

3.3. The bi-Poisson structure {ηt(ωO)}: reduction
We continue with the notation of Subsection 3.1 (in particular, F = C or R).

Theorem 3.9. The pair (AG, {ηt(ωO)}) on the cotangent bundle T ∗O is micro-Kro-
necker.

Proof. Let x0 be some element from the set R(m) satisfying (3.10) and let kx0 =
{z ∈ k | [x0, z] = 0} be the isotropy subalgebra of the point x0 for Ad(K)-action.
As in Subsection 2.1 we consider two reductive Lie algebras

ĝ = {y ∈ g | [y, z] = 0, ∀z ∈ kx0} and k̂ = ĝ ∩ k.

Denote by Ĝ the connected closed Lie subgroup of G with the Lie algebra ĝ. It is clear
that for each g ∈ Ĝ we have Ad g(z) = z, ∀z ∈ kx0 . Put K̂ = Ĝ ∩K. Since [a, kx0 ] = 0,
the element a belongs to the algebra k̂ ⊂ ĝ and x0 ∈ m̂ ⊂ ĝ by definition.

Now consider the Ĝ-orbit Ô = Ad(Ĝ) · a in ĝ ⊂ g. Then Ô = Ĝ/K̂. Using the form
Φχ (restricted to the Lie subalgebra ĝ ⊂ g) for identifications, we obtain the following
two closed 2-forms on T Ô: canonical Ω̂ and the pull-back τ̂∗ω̂O of the Kirillov–Kostant–
Souriau symplectic form on Ô. These forms determine the bi-Poisson structure η̂t(ω̂O)
on T Ô.

Let f1, f2 ∈ AK
m . Then grad fj(x′) ∈ m(x′) for x′ ∈ R(m). By Proposition 2.3,

m(x) = m̂(x) ⊂ m̂ for all points x from the nonempty open set m̂ ∩ R(m) (containing
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the point x0). But grad fj(x) ∈ m(x) ⊂ m̂. So grad fj(x) = gradm̂ fj(x) and by (3.5),
for the brackets { , }t

η and { , }t
η̂ on the spaces AK

m and AK̂
m̂ respectively, the following

relation holds:

{f1, f2}t
η(x) = {f1|m̂, f2|m̂}t

η̂(x) for all x ∈ m̂ ⊂ m. (3.17)

Since ddim AK
m = ddim(AK

m |m̂) = ddim AK̂
m̂ = dim m(x) for x ∈ m̂ ∩ R(m), these

two brackets induce on m(x) = m̂(x) the same two-dimensional linear space of skew-
symmetric bilinear forms Bt

x : m(x)×m(x) → F determined by (3.11). Since by (3.10)
the set Ad(K)(m̂) ⊃ Ad(K)(m(x)) contains some open subset of m, we obtain that

the pair (AK
m , {ηt}) is micro-Kronecker iff so is the pair (AK̂

m̂ , {η̂t}). (3.18)

But by the latest assertion of Proposition 2.3 the centralizer k̂x of x ∈ m̂ ∩ R(m) is
contained in the center z(ĝ) of the algebra ĝ. Moreover, k̂x coincides with this center
because the Lie algebra k̂ = ĝa contains z(ĝ). Since adĝ(k̂x) = 0 is the Lie algebra of the
isotropy group of the element x ∈ m̂ = To(Ĝ/K̂) for the action of the semisimple Lie
group Ad(Ĝ) on T Ô = T ∗Ô, from Theorem 1.10 it follows that the pair (AĜ, {η̂t}) =
(AK̂

m̂ , {η̂t}) is micro-Kronecker if F = C. In the real case this pair is micro-Kronecker
by Remark 3.8. ¤
3.4. Integrable geodesic flows
Here we will use notation of Subsection 3.1 but suppose that F = R. Consider the orbit
O = Ad(G) · a ' G/K and a closed subgroup K1 ⊂ K. The Lie algebra of K1 contains
maximal semisimple ideal of the Lie algebra k.

Theorem 3.10. There exists a maximal involutive set of independent real analytic
functions on (T (G/K1),Ω1). These functions are integrals for 1) the geodesic flow
determined by the pseudo-Riemannian metric 〈 , 〉 on G/K1; 2) the Hamiltonian flow
with the Hamiltonian function Ha,b,D on T (G/K1).

Proof. By Theorem 3.9 the pair (AG, {ηt(ωO)}) is micro-Kronecker. By Propositions 3.6
and 3.7, there exists m = 1

2 (r1 + ddimAG
1 ) independent involutive functions from the

set AG
1 . These functions form a maximal involutive subset of independent functions in

the algebra AG
1 = AK1

m1
with respect to the canonical Poisson structure on T (G/K1).

Moreover, these functions are integrals of 1) the geodesic flow on T (G/K1) determined
by the form 〈 , 〉; 2) the Hamiltonian flow with the Hamiltonian function Ha,b,D on
T (G/K1). Now the assertion of the theorem follows immediately from Proposition 1.8.
¤
Remark 3.11. Suppose that the group G is compact. Then the form 〈 , 〉 defines on G/K1

Riemannian metric; in the set {ϕa,b,D, b ∈ z ⊂ k}, where the endomorphism D : z∗ → z∗
is positive-definite if z∗ 6= 0, there is a dense subset of positive definite operators, i.e., the
corresponding bilinear form 〈·, ϕa,b,D·〉 defines G-invariant Riemannian metric on G/K1.
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