
Veronese webs for bihamiltonian structures

of higher corank

Andriy Panasyuk
Division of Mathematical Methods in Physics,

University of Warsaw,
Hoża St. 74, 00-682 Warsaw, Poland

E-mail: panas@fuw.edu.pl
and

Mathematical Institute of the Polish Academy of Sciences
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0 Introduction.

A C∞- manifold M is endowed by a Poisson pair if two linearly independent smooth
bivectors c1, c2 are defined on M and cλ = λ1c1 + λ2c2 is a Poisson bivector for any
λ = (λ1, λ2) ∈ R2. A bihamiltonian structure J = {cλ} is the whole 2-dimensional
family of bivectors. The structure J is degenerate if rank cλ < dim M, λ ∈ R2.

An intensive study of such objects was done by I.M.Gelfand and I.S.Zakharevich
([8], [9], [10]) in a particular case of bihamiltonian structures in general position on
an odd-dimensional M (the corresponding Poisson pairs are necessarily degenerate:
rank cλ = 2n, λ ∈ R2 \ {0}, if dimM = 2n + 1). In [9] there was introduced a notion
of a Veronese web, i.e. a 1-parameter family of 1-codimensional foliations such that
the corresponding family of annihilators is represented by the Veronese curve in the
cotangent space at each point. It turns out that Veronese webs form a complete system
of local invariants for bihamiltonian structures of general position. More precisely, it
was proved in [9] that any such structure J = {cλ} in R2n+1 admits a local reduction
to a Veronese web WJ and that for any Veronese web W one can locally construct a
bihamiltonian structure J(W) of general position in R2n+1 with the reduction equal to
W. In the real analytic case J and J(WJ) are isomorphic.

The aim of this paper is to introduce a wider class of degenerate bihamiltonian
structures that posess many features of the general position case and to generalize the
notion of a Veronese web for this class. We call the bihamiltonian structures from this
class complete since they are intemately connected with the completely integrable sys-
tems ([2]) on M . In particular, the Poisson pairs appearing in the well known method
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of argument translation (see [6], [7], and Example 1.11, below) generate complete bi-
hamiltonian structures of higher (> 1) corank.

The paper is organized as follows. In Section 1 we recall some definitions and facts
about bihamiltonian structures and introduce the main definition of completeness. The
last is based on one result of A.Brailov (Theorem 1.8). We show that complete bihamil-
tonian structures generalize the case of general position. Analyzing the corresponding
Poisson pair (c1(x), c2(x)) at a point x ∈ M we deduce that it consists of finite number
of the so called Kronecker blocks (Corollary 1.14); the general position is characterized
by the case of the sole block. Section 2 is devoted to distinguishing the invariants
for the sum of k Kronecker blocks. In the next section we define local Veronese webs
for complete bihamiltonian structures under some assumption of regularity. This last
means that the number of Kronecker blocks does not change from point to point and
the corresponding subspaces vary smoothly ”sweeping” k subbundles in the tangent
bundle. In general, these distributions are nonintegrable (Example 3.5); consequently,
the bihamiltonian structure does not split to direct product of the bihamiltonian struc-
tures of corank 1, i.e. of general position. We conclude the paper calculating the
Veronese web for the method of argument translation (Section 5). In the case of nor-
mal noncompact real form of complex semisimple Lie algebra this web is a product of
flat Veronese webs of codimension 1.

Off course, the most interesting (open) question is the folowing. Does the Veronese
web of complete bihamiltonian structure determine it up to isomorphism?

1 Bihamiltonian structures and completeness.

Let M be a C∞- manifold. In the sequel, all considered Poisson bivectors will have
maximal rank on an open dense subset in M . Given a Poisson bivector c, define rank c
as maxx∈M rank c(x).

1.1. Definition Two linearly independent Poisson bivectors c1, c2 on M form a Pois-
son pair if cλ = λ1c1 + λ2c2 is a Poisson bivector for any λ = (λ1, λ2) ∈ R2.

1.2. Proposition A pair of linearly independent Poisson bivectors (c1, c2) is Poisson
if and only if [c1, c2] = 0, where [·, ·] is the Schouten bracket.

1.3. Definition A bihamiltonian structure on M is defined as a two-dimensional lin-
ear subspace J = {cλ}λ∈S of Poisson bivectors on M parametrized by a two-dimensional
vector space S over R . We say that J is degenerate if rank cλ < dimM for any cλ ∈ J .

It is clear that every Poisson pair generates a bihamiltonian structure and the
transition from the latter one to a Poisson pair corresponds to a choice of basis in S.
We shall write (J, c1, c2) for a bihamiltonian structure J with a chosen Poisson pair
(c1, c2) generating J .
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1.4. Definition Let J be a bihamiltonian structure. Introduce a subfamily J0 ⊂ J
of Poisson bivectors of maximal rank R0 (the set J \ J0 is at most a finite sum of
1-dimensional subspaces), and a set of functions F0 = SpanR(

⋃
c∈J0

Zc(M)), where
Zc(M) stands for the space of the Casimir functions of c on M . We take Span in order
to obtain a vector space: a sum of two Casimir functions for different c1, c2 ∈ J0 need
not be a Casimir function.

The following proposition shows how the degenerate bihamiltonian structures can
be applied for constructing the completely integrable systems.

1.5. Proposition Let J be a degenerate bihamiltonian structure on M . A family F0

is involutive with respect to any cλ ∈ J .

Proof Let c1, c2 ∈ J0 be linearly independent, fi ∈ Zci , i = 1, 2. Then

{f1, f2}cλ
= (λ1c1(f1) + λ2c2(f1))f2 = −λ2c2(f2)f1 = 0. (1.5.1)

Now it remains to prove that for any c ∈ J0, fi ∈ Zc, i = 1, 2, one has {f1, f2}cλ
= 0.

For that purpose we first rewrite (1.5.1) as

cλ(x)(φ1, φ2) = 0, (1.5.2)

where φi ∈ ker ci(x), i = 1, 2, x ∈ M , and the lefthandside denotes the contraction
of the bivector with two covectors. Second, we fix x such that rank c(x) = R0 and
approximate df2|x by a sequence of elements {φi}∞i=1, φi ∈ ker ci(x), where ci ∈ J0, i =
1, 2, . . . , is linearly independent with c. Finally, by (1.5.2) we get cλ(x)(df1|x, φi) = 0
and by the continuity {f1, f2}cλ

(x) = 0. Since the set of such points x is dense in M ,
the proof is finished. q.e.d.

In fact this proposition is true for the local Casimir functions (for the germs of
Casimir functions). The corresponding family of functions (germs) SpanR(

⋃
c∈J0

Zc(U))
(SpanR(

⋃
c∈J0

Zc,x) is denoted by F0(U) (F0,x).
In order to obtain a completely integrable system from Casimir functions one should

require additional assumptions on the bihamiltonian structure J . Off course, the con-
dition of completeness given below concerns the local Casimir functions (in fact their
germs) and may be insufficient for obtaining the completely integrable system. How-
ever, it is of use if the local Casimir functions are restrictions of the global ones (see
Example 1.11, below).

Given a Poisson bivector cλ ∈ J , let Sλ(x) denote the symplectic leaf of cλ through
a point x ∈ M .

1.6. Definition ([3]) Let J be a bihamiltonian structure; fix some cλ ∈ J .
J is called complete at a point x ∈ M with respect to cλ if the linear subspace

of T ∗xM generated by the differentials of the germs f ∈ F0,x restricted to Sλ(x) has
dimension 1

2 dimSλ(x).
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1.7. Proposition A bihamiltonian structure J is complete with respect to cλ ∈ J0 at a
point x ∈ M such that Sλ(x) is of maximal dimension if and only if dim(

⋂
cλ∈J0

TxSλ(x))
= 1

2 dimSλ(x).

The following theorem is due to A.Brailov (see [3], Theorem 1.1 and Remark after
it).

1.8. Theorem A bihamiltonian structure (J, c1, c2) is complete with respect to cλ ∈ J0

at a point x ∈ M such that Sλ(x) is of maximal dimension if and only if the following
condition holds

(∗) rank(λ1c1 + λ2c2)(x) = R0 for any λ = (λ1, λ2) ∈ C2 \ {0}.

Here the bivector cλ = (λ1c1 + λ2c2)(x) is regarded as an element of
∧2 T Cx M ,

where T CM is the complexified tangent bundle, and its rank is defined as that of the
associated sharp map c]

λ(x) : (TCx M)∗ −→ T Cx M .
The theorem shows that J is complete with respect to a fixed cλ ∈ J0 at a point x

such that the dimension Sλ(x) is maximal if and only if J = J0
⋃{0} and J is complete

at x with respect to any nontrivial cλ ∈ J . This motivates the next definition.

1.9. Definition Let (J, c1, c2) be a bihamiltonian structure. The structure J (the pair
(c1, c2)) is complete at a point x ∈ M if condition (∗) of Theorem 1.8 holds at x. J
((c1, c2)) is called complete if it is so at any point from some open and dense subset in
M .

1.10. Proposition Let J be complete on M and let x ∈ M be a point of completeness.
Then there exists a neighbourhood U 3 x such that the foliation L defined on U by F0(U)
is lagrangian in any Sλ(y), λ 6= 0, y ∈ U (by Proposition 1.7 this foliation can be defined
as the intersection of the foliations of symplectic leaves for cλ ∈ J0).

1.11. Example (Method of argument translation, see [6], [3].) Let g be a Lie algebra,
g∗ its dual space. Fix a basis {e1, . . . , en} in g with the structure constants {ck

ij}; write
{e1, . . . , en} for the dual basis in g∗. The standard linear Poisson bivector on g∗ is
defined as

c1(x) = ck
ijxk

∂

∂xi
∧ ∂

∂xj
,

where {xk} are linear coordinates in g∗ corresponding to {e1, . . . , en}. In more invariant
terms c1 is described as an operator dual to the Lie-multiplication map [ , ] : g∧g −→ g.
It is well-known that the symplectic leaves of c1 are the coadjoint orbits in g∗. Now de-
fine c2 as a bivector with constant coefficients c2 = c(a), where a is a fixed point on any
leaf of maximal dimension. It turns out that c1, c2 form a Poisson pair and it is easy to
describe the set I of points x for which condition (∗) fails. Consider the complexification
(g∗)C ∼= (gC)∗ and the sum Sing(gC)∗ of symplectic leaves of nonmaximal dimension
for the complex linear bivector ck

ijzk
∂

∂zi
∧ ∂

∂zj
, where zj = xj + iyj , j = 1, . . . , n, are
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the corresponding complex coordinates in (g∗)C. Then I is equal to the intersection
of the sets g∗ ⊂ (g∗)C and a,Sing(gC)∗, where a,Sing(gC)∗ denotes a cone of complex
2-dimensional subspaces passing through a and Sing(gC)∗.

In particular, (c1, c2) is complete for a semisimple g (codim Sing(gC)∗ ≥ 3, see [1],
Corollary 4.42, and codimension of I in g∗ is not less than 2). Note, that this gives rise
to completely integrable systems since the local Casimir functions on g∗ are restrictions
of the global ones, i.e. the invariants of the coadjoint action.

1.12. Example (Bihamiltonian structure of general position on an odd-dimensional
manifold, see [9].) Consider a pair of bivectors (a1, a2), ai ∈

∧2 V, i = 1, 2, where V
is a (2m + 1)-dimensional vector space; (a1, a2) is in general position if and only if is
represented by the Kronecker block of dimension 2m + 1, i.e.

a1 = p1 ∧ q1 + p2 ∧ q2 + · · ·+ pm ∧ qm

a2 = p1 ∧ q2 + p2 ∧ q3 + · · ·+ pm ∧ qm+1
(1.12.0)

in an appropriate basis p1, . . . pm, q1, . . . qm+1 of V . A bihamiltonian structure J on a
(2m + 1)-dimensional M is in general position if and only if the pair (c1(x), c2(x)) is
so for any x ∈ M . Such J is complete. In general, a complete Poisson pair at a point
is a direct sum of the Kronecker blocks and the zero pair as the corollary of the next
theorem shows. This theorem is a reformulation of the classification result for pairs of
2-forms in a vector space ([8], [10]).

1.13. Theorem Given a finite-dimensional vector space V over C and a pair of bivec-
tros (c1, c2), ci ∈

∧2 V, there exists a direct decomposition V = ⊕Vj , ci =
∑

c
(j)
i , c

(j)
i ∈∧2 Vj , i = 1, 2, such that each triple (Vj , c

(j)
1 , c

(j)
2 ) is from the following list:

(a) the zero block: c
(j)
1 = c

(j)
2 = 0;

(b) the Jordan block: dimVj = 2nj and in an appropriate basis of Vj the matrix of
c
(j)
i is equal to (

0 Ai

−AT
i 0

)
, i = 1, 2,

where A1 = Inj (the unity nj × nj-matrix) and A2 = Jλ
nj

(the Jordan block with
the eigenvalue λ);

(c) the Kronecker block: dimVj = 2nj +1 and in an appropriate basis of Vj the matrix
of c

(j)
i is equal to (

0 Bi

−BT
i 0

)
, i = 1, 2,

where B1 =




1 0 0 . . . 0 0
0 1 0 . . . 0 0

. . .
0 0 0 . . . 1 0


 , B2 =




0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 1


 ((nj + 1)×

nj-matrices).
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1.14. Corollary Let (J, c1, c2) be a bihamiltonian structure. It is complete at a point
x ∈ M if and only if the pair (c1(x), c2(x)), ci(x) ∈ ∧2(T Cx M), i = 1, 2, does not contain
the Jordan blocks in its decomposition.

Proof The statement follows from the definition of completeness. q.e.d.

2 Complete bihamiltonian structure at a point.

Now, we shall examine a linear bihamiltonian structure (J, c1, c2), ci ∈
∧2 V such that

the decomposition V = ⊕k
j=0Vj , ci =

∑k
j=0 c

(j)
i from Theorem 1.13 consists of the zero

block V0, dimV0 = n0 and k Kronecker blocks V1, . . . , Vk, dimVj = 2nj + 1. The aim
is to introduce the infinithesimal approximation to Verones webs (these last will be
defined in the next section).

2.1. Definition ([9]) Let S, V be vector spaces of dimensions 2 and n+1 respectively.
A Veronese inclusion of P(S) in P(V ) is a map i : P(S) −→ P(V ) such that there exists
a linear isomorphism φ : P(V ) −→ P(SnS) making the following diagram commutative:

P(S) i−→ P(V )
‖ ↑ φ

P(S)
P(Sn(·))−→ P(SnS).

Here Sn denotes the n-th symmetric power; the standard model of the mapping
Sn(·) is described as follows. Let S be a space of linear functions f in two variables
t1, t2. Then SnS is a space of homogeneous polynomials in t1, t2 and Sn(f) = fn.

2.2. Theorem ([8],[9]) Let Vλ,j ⊂ V be the characteristic subspace (i.e. the symplectic
leaf passing through 0) of the bivector c

(j)
λ = λ1c

(j)
1 + λ2c

(j)
2 .

a) The folloving objects are defined invariantly (j=1,. . . ,k):

(i) the subspace Vj ⊂ V ;

(ii) the intersection of the characteristic subspaces Lj =
⋂

λ 6=0 Vλ,j ⊂ Vj and its anni-

hilator W j = L
⊥j

j = SpanR(
⋃

λ6=0 ker c
(j)
λ ) ⊂ V ∗

j ;

(iii) the spaces Wj = Vj/Lj and Wλ,j = Vλ,j/Lj ⊂ Wj (dimWj/Wλ,j = 1);

(iv) the map R2 \ {0} 3 λ
φj7→ ker c

(j)
λ ⊂ W j (under the canonical identification W ∗

j
∼=

W j the map φj can be written also as λ
φj7→ W⊥j

λ,j ⊂ W ∗
j ).

b) The projectivization P(φj) : P(R2) ∼= P(S) −→ P(W j) is a Veronese inclusion,
j = 1, . . . , k.

2.3. Remark In fact all objects mentioned in Theorem 2.2 are invariants of the bi-
hamiltonian structure J itself, i.e. they do not depend on the choice of the generating
Poisson pair (c1, c2).
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2.4. Definition An infinithesimal Veronese web of type (n0, n1, . . . , nk) on a vector
space W,dimW = n0 + n1 + · · ·+ nk + k, is a 1-parameter family {Wλ}λ∈P(S) of linear
subspaces Wλ ⊂ W, codimWλ = n0 + k, satisfying the following conditions:

(i) there is a distinguished subspace W 0 ⊂ W ∗,dimW 0 = n0, contained in any anni-
hilator W⊥

λ ⊂ W ∗, λ ∈ P(S);

(ii) there is a direct decomposition WK = ⊕k
j=1Wj , dimWj = nj + 1 of the subspace

WK = (W 0)⊥ ⊂ W ; the corresponding decomposition Wλ = ⊕k
j=1Wλ,j , λ ∈ P(S),

of the subspace Wλ ⊂ WK is such that codimension of Wλ,j in Wj is 1 for
j = 1, . . . , k;

(iii) if W ∗/W 0 = ⊕k
j=1W

j ,W j ∼= W ∗
j , is the corresponding decomposition of the space

(WK)∗ ∼= W ∗/W 0, then the map P(S) 3 λ
ψj7→ W⊥j

λ,j ∈ P(W j), where W⊥j

λ,j denotes
the (1-dimensional) annihilator of Wλ,j ⊂ Wj in W j , is a Veronese inclusion for
j = 1, . . . , k.

2.5. Proposition Let (J, c1, c2) be as above. Then the vector space W = V/L, where
L = ⊕k

j=1Lj (see Theorem 2.2), has a structure of an infinithesimal Veronese web of
type (n0, n1, . . . , nk).

(Note that L =
⋂

λ 6=0 Vλ ⊂ V , where Vλ = ⊕k
j=1Vλ,j is the characteristic subspace

of the bivector cλ.)

Proof Set V 0 = (⊕k
j=1Vj)⊥ ⊂ V ∗, and WK = ⊕k

j=1Wj (Wj taken from condition (iii)
of Theorem 2.2). We first make the following two remarks: 1) WK can be regarded
as a subspace of W = V/L; 2) if W 0 = (WK)⊥ ⊂ W ∗, then V 0 = W 0 ⊂ W ∗ under
the canonical identification (V/L)∗ ∼= L⊥ ⊂ V ∗. Now the proof follows from Theorem
2.2.q.e.d.

2.6. Remark Let W = (W, {Wλ}λ∈P(R2)) be an infinithesimal Veronese web of type
(n0, n1, . . . , nk). Using the construction of Gelfand and Zakharevich ([9],p.165-166) to
each component (Wj , {(Wλ)j}), j = 1, . . . , k, one can obtain a linear bihamiltonian
structure J(W) on some vector space V (W) of dimension n0 + 2n1 + · · ·+ 2nk + k. If
W = WJ is associated to a priori defined linear bihamiltonian structure J , then J(WJ)
and J are linearly isomorphic.

3 Regular bihamiltonian structures and their Veronese
webs.

In this section we shall define objects that generalize the Veronese webs introduced in [9]
for the bihamiltonian structures of general posiiton. We shall show that any complete
bihamiltonian structure satisfying some additional (cf. Example 3.7) conditions of
regularity admits the local reduction to such an object.
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3.1. Definition Let J be a complete bihamiltonian structure on M . A type of J at
x ∈ M is the vector (n0, n1, . . . , nk)(x), where n0(x) is dimension of the zero block and
2n1(x)+1, . . . , 2nk(x)+1 are dimensions of the Kronecker blocks in the decomposition
of (c1(x), c2(x)) for some generating J Poisson pair (c1, c2) (these dimensions do not
depend on this pair, see 2.3). If this vector is independent of x we call it a type of J
and say that J is regular.

3.2. Definition Consider a manifold U diffeomorphic to an open set in RN , where
N = n0+(n1+1)+· · ·+(nk+1), and a familyW = {Wλ}λ∈P(S) of (n0+k)-codimensional
foliations on U parametrized by the projectivizaton of a two-dimensional vector space
S. We call W a Veronese web of type (n0, n1, . . . , nk) if the following conditions are
satisfied:

(i) there is a distinguished subbundle W 0 ⊂ T ∗U, rankW 0 = n0, such that W 0 ⊂ W⊥
λ

for any λ ∈ P(S), where W⊥
λ ⊂ T ∗U is the subbundle annihilating TWλ;

(ii) there is a bundle decomposition WK = ⊕k
j=1Wj , rankWj = nj + 1 , of the sub-

bundle WK = (W 0)⊥ ⊂ TU ; the corresponding bundle decomposition TWλ =
⊕k

j=1(TWλ)j of the subbundle TWλ ⊂ WK is such that the fiber codimension of
(TWλ)j in Wj is 1;

(iii) if T ∗U/W 0 = ⊕k
j=1W

j , W j ∼= W ∗
j , is the corresponding decomposition of the

bundle (WK)∗ ∼= T ∗U/W 0, then the map P(S) 3 λ
ψj,x7→ (TxWλ)⊥j

j ∈ P(W j
x),

where (TxWλ)⊥j

j denotes (the 1-dimensional) annihilator of (TxWλ)j ⊂ Wj,x in
W j

x , is a Veronese inclusion for any j = 1, . . . , k and x ∈ U .

In analogy with 1.13 we say that W 0 is the zero block and Wj , j = 1, . . . , k, are the
Kronecker blocks.

3.3. Theorem Let J be a regular bihamiltonian structure of type n = (n0, n1, . . . , nk)
and let x ∈ M be a point of completeness for J . Write Vλ for the foliation of symplectic
leaves of cλ ∈ J . Then there exists a neighbourhood Ũ 3 x such that U = Ũ/L (see
1.10) is diffeommorphic to an open set in RN and {Vλ|Ũ/L}λ∈P(S) is a Veronese web
of type n on U .

Proof The theorem follows from Proposition 2.5.q.e.d.

3.4. Example Let U = R3 with coordinates (x, y, z), v1 = ∂
∂x , v2 = ∂

∂y +x ∂
∂z , TuWλ =

SpanR{(λ1v1+λ2v2)(u)}, u ∈ U . Then Γ(W 0) = SpanC∞(U){xdy−dz}, where Γ stands
for the space of sections, WK = W1 ⊂ TU is the nonintegrable distribution generated
by v1, v2. On Ũ = U × R one defines the corresponding bihamiltonian structure as
{ ∂

∂p ∧ (λ1v1 + λ2v2)}(λ1,λ2)∈R2 , where p is a coordinate on R.
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3.5. Example Let U = R4 with coordinates (x, y, z, t), v1 = ∂
∂x , v2 = ∂

∂y + x ∂
∂z , v3 =

∂
∂z , v4 = ∂

∂t , TuWλ = SpanR{(λ1v1 + λ2v2)(u), (λ1v3 + λ2v4)(u)}, u ∈ U . Then W 0 =
0,WK = W1 ⊕W2, Γ(W1) = SpanC∞(U){v1, v2},Γ(W2) = SpanC∞(U){v3, v4}. On Ũ =
U×R2 the corresponding bihamiltonian structure is { ∂

∂p1
∧(λ1v1+λ2v2)+ ∂

∂p2
∧(λ1v3 +

λ2v4)}(λ1,λ2)∈R2 , where p1, p2 are coordinates on R2.

3.6. Definition In the case when the zero block W 0 ⊂ T ∗U is trivial a Veronese
web admits the following local description. One has TU = ⊕k

j=1Wj , T
∗U = ⊕k

j=1W
j ,

and one can choose linear coordinates (λ1, λ2) on S and a local coframe α1
1, . . . , α

1
n1+1,

. . . , αk
1 , . . . , α

k
nk+1, α

j
1, . . . , α

j
nj+1 ∈ Γ(W j) such that the annihilator (TWλ)⊥ ⊂ T ∗U is

generated by α1
λ, . . . , αk

λ, where αj
λ = λ

nj

1 αj
1 + λ

nj−1
1 λ2α

j
2 + · · · + λ

nj

2 αj
nk+1 (Veronese

curve). If in a neighbourhood of any x ∈ U there exists a holonomic coframe satisfying
the above properties, the Veronese web is called flat (such a web splits to a direct
product of flat Veronese webs of codimension 1).

In the general case a Veronese web {Wλ} of type (n0, n1, . . . , nk) is called flat if
there exists a foliation C of codimension n0 on M such that {Wλ} can be restricted to
some Veronese web on each leaf of C and the restriction is flat in the above sense.

The webs from Examples 3.4, 3.5 do not split to a direct product of 1-codimensional
Veronese webs; in particular, they are not flat.

We conclude the section by an example of a complete bihamiltonian structure that
is not regular.

3.7. Example Let M = R6 with coordinates (p1, p2, q1, . . . , q4), c1 = ∂
∂p1

∧ ∂
∂q1

+
∂

∂p2
∧ ∂

∂q2
, c2 = ∂

∂p1
∧ ( ∂

∂q2
+ q1

∂
∂q3

) + ∂
∂p2

∧ ∂
∂q4

. Here we have: two 3-dimensional
Kronecker blocks on M \H, H = {q1 = 0}; the 5-dimensional Kronecker block and the
1-dimensional zero block on the hyperplane H.

4 Veronese webs for the argument translation method.

The notations from Subsection 1.11 will be used below. We consider normal (déployable
in terminology of Bourbaki, [5], IX,3) real form g of complex simple Lie algebra. The
generalization to the semisimple case is straightforward. Let m1, . . . , mr, r = rank(g)
be the exponents of g.

4.1. Theorem Let (c1, c2) be the Poisson pair from Example 1.11. Then the Veronese
web {Wλ}λ∈R2 of the corresponding bihamiltonian structure J is of type (0,m1, . . . ,mr)
and is flat (see 3.6).

Proof Let g1(x), . . . , gr(x),deg gj = mj + 1, be a set of algebraically independent
global homogeneous polynomial Casimir functions for c (see [4], VIII,8). Here we have
identified g and g∗ by means of the Killing form. Note that g1, . . . , gr are functionally
independent on g \ Sing g, where Sing g is the set of adjoint orbits of nonmaximal
dimension. Indeed, their restrictions to a Cartan subalgebra h ⊂ g are algebraically
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independent and invariant with respect to the Weyl group W . Now, we can apply
the result of R.Steinberg ([12]) to deduce the nondegeneracy for the Jacobi matrix of
g1|h, . . . , gr|h at a regular point.

Consider the subspace dF0 ⊂ Γ(T ∗g∗) generated by the differentials of functions
from the involutive set F0 (see 1.4) corresponding to J . It turns out that dF0 is
generated by {dgj |λ1x+λ2a, (λ1, λ2) ∈ R2, j = 1, . . . , r}. If gi

j(a, x), i = 0, . . . , mj +1, j =
1, . . . , r, are the coefficients of the Taylor expansions gj(x + λa), j = 1, . . . , r, with
respect to λ ∈ R, then one also has

dF0 = Span{dgi
j(a, x), i = 0, . . . , mj , j = 1, . . . , r}. (4.1.1)

Moreover, these differentials are linearly independent at any x ∈ g∗ \ I. This
follows from the fact that J is complete at A \ I, from (4.1.1), and from the formula∑r

j=1 mj = 1
2(dim g− r) (cf. [11], formula (F1), p. 289).

Thus, we can regard gi
j(a, x), i = 0, . . . ,mj , j = 1, . . . , r as coordinates on the

reduced space (g∗\I)/L (see Theorem 3.3). Finally, (TWλ)⊥, λ = (λ1, λ2), is generated
by

λ
mj

1 dg0
j (a, x) + λ

mj−1
1 λ2dg1

j (a, x) + · · ·+ λ
mj

2 dg
mj

j (a, x), j = 1, . . . , r.

q.e.d.
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