Wstep do programowania
semestr zimowy 2025/2026

Dr Anna Muranova
UWM w Olsztynie

Wyktad 9

1/86

Czytanie z plikéw
Proces czytania i zapisu danych do pliku to zadanie ztozone. Python jak
wiekszo$¢ jezykéw programowania pozwala wezytywac dane ze zbioréw
zewnetrznych, jak i zapisywa¢ dane do plikéw. Proces czytania mozna
zrealizowaé¢ przy pomocy funkcji wbudowanych -open(), read() i close()
lub — w przypadku danych o ustalonej strukturze — najczesciej tabelarycznej,
mozna skorzystaé z gotowych funkcji wspierajacych ten proces.

Aby odczyta¢ plik tekstowy nalezy wykona¢ trzy polecenia:
> open() aby nawigza¢ potaczenie z plikiem (nic nie zostaje wczytane)
> read() aby wczyta¢ cata zawartos¢ pliku do jednej zmiennej jako tekst
» close() zamkna¢ plik po zakonczeniu czytania

Dodatkowo proces czytania lub zapisu wymaga znalezienia wtasciwego pliku,
lub - w przypadku odczytu utworzenia nowego pliku.

Dalej uzywa sie plik.txt z zawartoscia

abrakadabra
abra
kadabra

2/86

Czytanie z plikéw

Woezytanie niewielkiego pliku tekstowego znajdujacego sie w tym samym
katalogu co nasz skrypt

f = open("plik.txt")
zawartosc = f.read()
f.close()
print(zawartosc)

abrakadabra
abra
kadabra

Funkcja open() nawigzuje potaczenie z plikiem, ale nie wczytuje danych.
Przypisuje jedynie do obiektu f wskaznik do pliku. Wynika to z faktu ze zbiér
danych moze by¢ bardzo duzy i programista powinien zachowa¢ kontrole nad
jego wezytywaniem. Funkcja read() wczytuje caty zawartos¢ ze zrédta f
(pliku) do zmiennej zawartos¢. Nastepnie zrédto zostaje zamkniete.

3/86

Funkcja open()

Podstawowa sktadnia tej funkgji jest nastepujaca:

file = open(’sciezka_do_pliku’, ’tryb’, encoding=None)

> 'r" — tryb odczytu (domyslny), pozwala na czytanie zawartosci pliku.
> 'r+' — tryb odczytu i modyfikacji
> 'w' — tryb zapisu, tworzy nowy plik lub nadpisuje istniejacy.
> 'a' — tryb dopisywania, dodaje nowe dane na koncu pliku bez nadpisywania
istniejacej zawartosci.
> 'x' — otwarte do wytacznego tworzenia, konczy sie niepowodzeniem, jesli
plik juz istnieje
> 'x+' — otwarte do wytacznego tworzenia z mozliwosciag odczytywania
Kazdy z tych trybéw (oprécz ,b') domysinie otwiera plik do zapisu jako plik
tekstowy. Jezeli chcemy zapisywaé plik formie binarnej musimy uzupetnié

atrybut otwarcia o litere ‘b’, na przyktad

4/86

Funkcja open()

» 'b' — tryb binarny, uzywany do pracy z plikami binarnymi.

Zwykle pliki s3 otwierane w trybie tekstowym, co oznacza, ze odczytujesz i
zapisujesz z i do pliku ciagi znakéw, ktére sa zakodowane w okreslonym
kodowaniu. Jesli kodowanie nie jest okreslone, domyslne jest zalezne od
platformy. Poniewaz UTF-8 jest wspétczesnym standardem de facto, zaleca sie
encoding="utf-8", chyba ze wiesz, ze musisz uzy¢ innego kodowania. Dodanie
,b" do trybu otwiera plik w trybie binarnym. Dane w trybie binarnym s3
odczytywane i zapisywane jako obiekty bajtéw. Nie mozesz okresli¢ kodowania
podczas otwierania pliku w trybie binarnym.

W trybie tekstowym, domyslnym ustawieniem podczas czytania jest konwersja
zakonczen wierszy specyficznych dla platformy (\n) w systemie Unix, \r, \n w
systemie Windows) na samo \n. Podczas pisania w trybie tekstowym,
domyslnym ustawieniem jest konwersja wystapien \n z powrotem na
zakofczenia wierszy specyficzne dla platformy. Ta modyfikacja danych pliku w
tle jest w porzadku dla plikéw tekstowych, ale uszkodzi dane binarne, takie jak
te w plikach JPEG lub EXE. Nalezy zachowa¢ szczegdlna ostroznos$¢ podczas
korzystania z trybu binarnego podczas czytania i zapisywania takich plikéw.

5/86

Metoda close()

Metoda close() zamyka otwarty plik.

Zawsze powiniene$ zamykac¢ swoje plikil W niektérych przypadkach, z powodu
buforowania, zmiany wprowadzone do pliku moga nie by¢ widoczne, dopéki nie
zamkniesz pliku.

6/86

with

Uzywanie with podczas pracy z obiektami plikéw nalezy do dobrych praktyk.
Zaleta tego podejscia jest to, ze plik jest prawidfowo zamykany po zakonczeniu
jego bloku, nawet jesli w pewnym momencie zostanie zgtoszony wyjatek.
Uzycie with jest réwniez znacznie krétsze niz pisanie réwnowaznych blokéw try
- finally:

with open(’plik.txt’, encoding="utf-8") as f:
read_data = f.read()
print(read_data)

Mozemy sprawdzié, ze plik zostat automatycznie zamkniety.
print (f.closed) #True

Uwaga! Wywotanie f.write() bez uzycia with lub f.close() moze spowodowat,
ze argumenty f.write() nie zostana w petni zapisane na dysku, nawet jesli
program zakonczy sie pomyslnie.

Po zamknieciu obiektu pliku, zaréwno przez instrukcje with, jak i f.close(),
wszystkie proby uzycia obiektu pliku automatycznie si¢ nie powioda.

7/86

Metody obiektéw plikéw

Zaktadamy, ze obiekt pliku o nazwie f zostat juz utworzony.

Aby odczyta¢ zawartosé¢ pliku, nalezy wywotaé polecenie f.read(size), ktére
odczytuje pewna ilos¢ danych i zwraca je jako ciag znakéw (w trybie
tekstowym) lub obiekt bajtowy (w trybie binarnym). size jest opcjonalnym
argumentem numerycznym. Gdy size jest pominiety lub ujemny, zostanie
odczytana i zwrécona cata zawartos¢ pliku. W przeciwnym razie odczytane i
zwrécone zostanie co najwyzej size znakéw (w trybie tekstowym) lub size
bajtéw (w trybie binarnym). Jesli zostat osiagniety koniec pliku, f.read() zwréci
pusty ciag znakéw ().

8/86

Wezytywanie po linii

W przypadku duzych plikéw lepiej zastosowaé procedure czytania linia po linii.
Czytanie linia po linii jest tez operacja stosowana, gdy chcemy odczytaé¢ z pliku
konkretne linie:

f = open("plik.txt")
text = f.readline()
print(text, end="x\n")
text = f.readline()
print(text, end="*\n")
text = f.readline()
print(text, end="*\n")
f.close()

abrakadabra

*

abra
*

kadabra*

9/86

Wezytywanie po linii — to samo z with

with open("plik.txt") as f:
text = f.readline()
print(text, end="*\n")
text = f.readline()
print (text, end="*\n")
text = f.readline()
print(text, end="*\n")

abrakadabra
*

abra
*

kadabra*

10/86

Woezytywanie linii do konca pliku w listg

f = open("plik.txt")
text = f.readlines()
print (text)
f.close()

['abrakadabra\n’, 'abra\n’, 'kadabra’]

Lub przy pomocy petli:

f = open("plik.txt")
text =1
while text:
text = f.readline()
print(text, end=’%’)

f.close()

abrakadabra
*abra
*kadabra**

11/86

Woezytywanie linii do konca pliku w listg, to samo z with

with open("plik.txt") as f:
text = f.readlines()

print (text)
['abrakadabra\n’, 'abra\n’, 'kadabra’]

Lub przy pomocy petli:

with open("plik.txt") as f:
text =1
while text:
text = f.readline()
print (text, end=’%’)

abrakadabra
*abra
*kadabra**

12/86

Jeszcze wezytywanie po linii w petli

with open(’plik.txt’, ’r’) as file:
for line in file:
print(line.strip())

abrakadabra
abra
kadabra

Funkcja strip() usuwa znaki biate (takie jak spacje i nowe linie) z poczatku i
konca kazdej linii, co jest przydatne do czyszczenia danych. Wszystkie uzyte
funkcje s3 funkcjami systemowymi wbudowanymi w interpreter jezyka, zatem

nie musimy importowaé zadnych dodatkowych bibliotek.

Dalej zawsze bedziemy uzywa¢ with, a nie open()—close()

13 /86

Zapisywanie danych do pliku

Zapis danych do pliku w Pythonie jest réwnie prosty jak ich odczyt. Aby
zapisa¢ dane do pliku, musimy otworzy¢ plik w trybie zapisu ('w’) lub
dopisywania ('a’). Warto nie myli¢ tych dwéch trybéw — w pierwszym z nich
jezeli wskazany plik istnieje jego zawarto$¢ zostanie usunieta i zastapiona przez
nowa. W drugim przypadku nowe dane zostang dodane na koncu pliku. W obu
przypadkach, jezeli wskazany plik nie istnieje, zostanie on utworzony. Ponizej
przyktadu kodu w obu trybach:
> with open(’output.txt’, ’w’) as file:
file.write(’To jest przyktadowy tekst zapisany do pliku.’)
> with open(’output.txt’, ’a’) as file:
file.write(’\nDodajemy nowg linie tekstu.’)

14 /86

Zapisywanie danych do pliku 'x’

Jest jeszcze jeden warty uwagi a mafo znany tryb zwany Exclusive creation. Za
jego pomoca otworzymy plik do zapisu, ale tylko jesli plik nie istnieje. Jesli plik
istnieje, Python zgtosi btad FileExistsError.
> with open(’outputl.txt’, ’x’) as file:
file.write(’To jest przykladowy tekst zapisany do pliku.’)
> with open(’plik.txt’, ’x’) as file:
file.write(’To jest przykladowy tekst zapisany do pliku.’)

15 /86

writelines

Metoda writelines() zapisuje elementy listy do pliku.
Miejsce, w ktérym zostang wstawione teksty, zalezy od trybu pliku i pozycji
strumienia.
> 'a' — Teksty zostang wstawione w biezacej pozycji strumienia pliku,
domyslnie na koncu pliku.
> 'w’ — Plik zostanie oprézniony przed wstawieniem tekstéw w biezacej
pozycji strumienia pliku, domyslnie 0.

with open("plik.txt", "a") as f:
f.writelines(["See you soon!", "Over and out."])

#open and read the file after the appending:
with open("plik.txt", "r") as f:
print (f.read())

16 /86

Metoda seek()

Metoda seek() ustawia biezaca pozycje pliku w strumieniu plikéw.

Metoda seek() zwraca réwniez nowa pozycje.

> with open("plik.txt", "r") as f:
a = f.seek(5)
print(a)
print (f.readline())
5
adabra

Metoda seekable() zwraca True, jesli plik jest wyszukiwalny, False, jesli nie.
Plik jest wyszukiwalny, jesli umozliwia dostep do strumienia plikéw, tzn metoda
seek().

17 /86

Odczyt i zapis

Istnieja tez tryby mieszane, ktére facza tryby tekstowe z trybami binarnymi oraz
operacje zapisu i odczytu. Dzieki nim mozemy wykonywa¢ bardziej
zaawansowane operacje na plikach, ktére wymagaja zaréwno czytania, jak i
modyfikowania zawartosci pliku bez koniecznosci zamykania i ponownego
otwierania go w innym trybie. Tryby mieszane s3 szczegélnie przydatne w
scenariuszach, gdzie dane musza by¢ dynamicznie aktualizowane lub
weryfikowane, a nastepnie zapisywane z powrotem do tego samego pliku. Tryby
mieszane poznamy po tym, ze w atrybutach ich otwarcia znajduje sie znak ‘+'.
Przyktadowo:

with open(’plik.txt’, ’r+’) as file:
content = file.read()
file.write(’Dopisana zawartosc.’)

Powyzsze kod otwiera plik do odczytu i zapisu. Jesli plik nie istnieje, Python
zgtosi btad FileNotFoundError.

Po odczytywaniu wskaznik jest na koncu plika, i tre§¢ do zapisywania zapisuje
sie na koniec.

18/86

Gdzie sie zapisujemy?

Poréwnaj z poprzednim:
> Tres¢ do zapisywania zapisuje sie na poczatku pliku.
with open(’plik.txt’, ’r+’) as file:
file.write(’Dopisana zawartosc.’)

> with open(’plik.txt’, ’r+’) as file:
file.seek(5)
file.write(’Dopisana zawartosc.’)

Metoda seek() ustawia biezacg pozycje pliku w strumieniu plikéw.

19/86

Porownaj

> with open("plik.txt", "r+") as f:

a = f.seek(5)
print(a)
f.write(’See you soon!?)
f.seek(0)
print (f.read())

5

abrakSee you soonladabra

> with open("plik.txt", "r+") as f:

a = f.seek(5)
print(a)
print(f.write(’See you soon!’))
print(f.read())
f.seek(0)
print (f.read())

5

13

adabra

abrakSee you soonladabra

20/86

Inne metody

> Metoda tell() zwraca biezaca pozycje pliku w strumieniu plikéw.

> Metoda readable() zwraca True, jesli plik jest czytelny, lub False w
przeciwnym razie.

> Metoda writable() zwraca True, jesli do pliku mozna zapisywa¢, lub False
W przeciwnym razie.

21/86

truncate()

» Metoda truncate() zmienia rozmiar pliku do podanej liczby bajtéw.

with open("plik.txt", "a") as f:
f.truncate(10)

#open and read the file after the truncate:
with open("plik.txt", "r") as f:
print (f.read())

abrakadabr

22/86

Przyktad

Zrédto:
https://www.flynerd.pl/2018/01/python-metody-typu-string.html

Wyobraz sobie, ze jeste$ bioinformatykiem i otrzymujesz kod genetyczny do
analizy w pliku tekstowym.

Kod DNA skfada si¢ z 4 zasad azotowych: adeniny(A), cytozyny(D),
guaniny(G), tyminy(T). Idealny kod DNA wyglada nastepujaco:

TGCACGATCATGTCTACTATCCTCTCTATGGTGGGGTT. ..

Zdarza sie, jednak, ze kod zawiera mate jak i duze litery. Kolejny problem to
maszyny sekwencjonujace nie s3 wolne od btedéw. W zaleznosci od maszyny
btedy sekwencjonowania moga zosta¢ zamienione na znak — czy litere N.

> weczytaj plik

> policz ile razy wystepuje w kodzie kazda zasada azotowa - adenina,
cytozyna, guanina, tymina.

23/86

https://www.flynerd.pl/2018/01/python-metody-typu-string.html

Przyktad: rozwigzanie

with open("DNA.txt", "r") as f:
seq0 = f.read()

seq = seq0.strip() .upper()
print(seq)
n = len(seq)
occurences ={}
for x in ’ACGT’:
occurences[x] = seq.count(x)

print (occurences)

24 /86

Przyktad dalej

W dokumentacji znajduje sie nastepujacy zapis:

gdy jakos¢ sekwencji nie pozwala doktadnie odczytaé rodzaju zasady azotowej
wstawiany jest znak ,-" Natomiast, gdy laser sczytujacy zeslizgnie sie,
wstawiane s3 litery ,N”, jednoczesnie ostatnia warto$¢ zasady jest ponownie
odczytywana bez ubytku zasady w tym miejscu.

Co za przydatna informacjal

» Oczys¢ DNA z btedéw typu N.

Policz wystapienia sekwencji GAGA

Znajdz miejsce (indeks) w fancuchu, gdzie wystepuje 7 guanin z rzedu
Znajdz miejsce (indeks) , gdzie od konca fancucha wystepuje 6 cytozyn

Policz ile razy w kodzie pojawita sie sekwencja CTGAAA

vVvYvyyvyy

W sekwencji CTGAAA czasem mutuje ostania litera A, wéwczas jakos¢
ostatniej litery moze by¢ watplia. lle sekwencji znajdziesz, jesli wezmiesz
pod uwage watpliwa, ostatnia adenine?

> Na podstawie czystej nici utwérz odpowiadajaca jej ni¢ RNA (ni¢ RNA w
miejscu tyminy bedzie mie¢ uracyl (U)). Nic RNA zapisz do nowego pliku
RNA. txt

25/86

Przyktad: rozwiazanie dalej

with open("DNA.txt", "r") as f:with open("DNA.txt", "r") as f:
seq0 = f.read()

seq = seq0.strip() .upper()

print(seq)

n = len(seq)

DNA = seq.replace("N", "")

GAGA = DNA.count ("GAGA")

print("Liczba wystagpiei sekw. GAGA", GAGA)

CTGAAA = DNA.count ("CTGAAA")
print("Liczba wystapiefi sekw. CTGAAA", CTGAAA)

CTGAA_ = DNA.count ("CTGAA-")
print("Liczba wystgpied sekw. CTGAAA i CTGAA-", CTGAAA + CTGAA_)

RNA = DNA.replace("T", "U")
with open("RNA.txt", "w") as f:
f.write(RNA)

26 /86

Czytanie i przetwarzanie plikéw tabelarycznych

Poniewaz python wczytuje dane w postaci pojedynczej zmiennej tekstowej,
jezeli wezytane dane zamierzamy podda¢ obliczeniom, nalezy je odpowiednio
przeksztafcié, najczesciej do postaci tabelarycznej oraz zmodyfikowa¢ typy
danych z tekstowych do numerycznych. Do tego celu stuza poznane juz funkcje
split() oraz funkcje konwersji zmiennych. Procedura czytania danych jest
nastepujaca:

> W pierwszysm kroku nawigzywane jest potaczenie z plikiem (zawartos¢

zostaje wyswietlona)

> Dane zostaja podzielone na liste tancuchéw tekstowych, wzgledem znaku
"\na nastepnie kazda linia zostaje podzielona na listy wewnetrzne na
podstawie przecinka lub srednika (separator w csv). Wynik zostaje
wyswietlony jako lista zagniezdzona

> Potaczenie zosaje zamknigte

v

Z listy zostaje usunieta 1 linia (nagtéwek)

> Z listy zostaje usunigta ostatnia pusta linia (z reguty wystepuje w plikach
tekstowych)

Punkty 1-3 faczac sie przy pomocy with

27 /86

Czytanie i przetwarzanie plikéw tabelarycznych

f = open("tab.csv") #1

dane = f.read() #

print(dane)

dane = dane.split(’\n’) #2 podziel po liniach

dane = [1.split(’;’) for 1 in dane] #2 podziel po wierszach
print (dane)

f.close() #3

header = dane.pop(0) #4 nagtdwek

dane.pop() #5 usuniecie ostatniego, pustego wiersza

Ulica;Nomer domu;Kod;Miejscowosc
Pasikonika ;20;81-098;Lubowo
Biedronki;15;81-789;Bobowo
Zuczka;10;61-874;Rabowo
Gasienicy;33;41-879;Warbowo

[['Ulica', '"Nomer domu’, 'Kod’, 'Miejscowosc’],
['Pasikonika ’, '20’, '81-098’, 'Lubowo’],
['Biedronki’, '15', '81-789", 'Bobowo'],
[[Zuczka', '10", '61-874", 'Rabowo’],
['Gasienicy’, '33’, '41-879’", "Warbowo'], [']

28 /86

Czytanie i przetwarzanie plikéw tabelarycznych:with

with open("tab.csv") as f:#1
dane = f.read() #

print (dane)

dane = dane.split(’\n’) #2 podziel po liniach

dane = [1l.split(’;’) for 1 in dane] #2 podziel po wierszach
print (dane)

header = dane.pop(0) #4 nagtdwek

dane.pop() #5 usuniecie ostatniego, pustego wiersza

Ulica;Nomer domu;Kod;Miejscowosc
Pasikonika ;20;81-098;Lubowo
Biedronki;15;81-789;Bobowo
Zuczka;10;61-874;Rabowo
Gasienicy;33;41-879;Warbowo

[['Vlica', '"Nomer domu’, 'Kod’, 'Miejscowosc’],
['Pasikonika ’, '20’, '81-098', 'Lubowo’]
['Biedronki’, '15', '81-789", 'Bobowo'],
[[Zuczka', '10", '61-874", 'Rabowo’],
['Gasienicy’, '33’, '41-879’", 'Warbowo'], [']

29/86

Transponowanie danych

Dane s3 przechowywane w postaci listy list, gdzie kazda lista zagniezdzona to
pojedynczy wiersz sktadajacy sie z danych réznego typu. Poniewaz operowanie
na wierszach zawierajacych dane réznego typu nie jest wygodne, mozna
przeksztafci¢ liste zagniezdzona do postaci kolumnowej (dokonaé transpozycji)
przy pomocy funkgji zip(), ktérg oméwimy za chwile. Dane przekazujemy z *
czyli rozwijamy przekazang liste do postaci: dane[0], dane[1],...,dane[n-1]
dane = zip(*dane)

trans = list(dane)

print (trans)

[('Pasikonika ’, 'Biedronki’, 'Zuczka', 'Gasienicy’), ('20’, '15’, '10', '33'),
('81-098', '81-789', '61-874", '41-879’), ('Lubowo’, 'Bobowo’, 'Rabowo’,
"Warbowo')]

30/86

Przeksztatcenie typéw danych

dane = zip(*dane)

trans = list(dane)

print (trans)

[('Pasikonika ’, 'Biedronki’, 'Zuczka', 'Gasienicy’), ('20’, '15’, '10', '33"),
('81-098', '81-789', '61-874’, '41-879'), ('Lubowo’, 'Bobowo’, 'Rabowo’,
"Warbowo')]

W ostatnim kroku mozemy przeksztatci¢ 2 i 3 linie do typu integer.

trans[1] = tuple(int(x) for x in tramns[1])
print(trans)

trans[2] = tuple(int(x[:2]1+x[3:]) for x in tramns[2])
print(trans)

31/86

Zasady pisania czystego kodu

Kod napisany w Pythonie musi by¢ pisany jak kod w Pythonie. Z
wykorzystaniem mechanizméw, ktére daje sam jezyk i zgodnie z jego
zatozeniami.

Poréwnuj

names = ["Kasia", "Marek", "Ania", "Bartosz"]
for i in range(len(names)):
name = names[i]

print("Hi " + name + "!")
oraz
names = ["Kasia", "Marek", "Ania", "Bartosz"]

for name in names:
print (£"Hi {namel}!")

32/86

Zen of Python

Zen of Python to lista zatozen w okét ktérych byt tworzony ten jezyk. Co

ciekawe, zasady te s3 dostepne z poziomu samego jezyka. Sprébuj uruchomié
taki plik:

import this

[Project @ main.py Ia

Run main

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
sinple is better than complex
Complex is better than conplicated.
Flat is better than nested.

sparse is better than dense.
Readability counts.

J

[

special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious uay to do it.
Although that way may not be obvious at finst unless you're Dutch.
Now is better than never.

Although never is often better than srightx nou.

If the implementation is hard to explain, it's a bad idea.

If the inplementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

o me v@e

> @ mainpy

o

4spaces Python 312 (pythonProject) (5)

33/86

Zen of Python 1

Pigkne jest lepsze niz brzydkie.

Wyrazone wprost jest lepsze niz domniemane.
Proste jest lepsze niz zlozone.

Z1ozone jest lepsze niz skomplikowane.

Ptaskie jest lepsze niz wielopoziomowe.

Rzadkie jest lepsze niz geste.

CzytelnoS¢ sie¢ liczy.

Sytuacje wyjatkowe nie sa na tyle wyjatkowe, aby Zamaé reguty.
Choé¢ praktycznoS¢ przewaza nad konsekwencja.
Bledy zawsze powinny by¢ sygnalizowane.

Chyba ze zostanag celowo ukryte.

W razie niejasnosci powstrzymaj pokuse zgadywania.

34/86

Zen of Python 2

Powinien by¢ jeden -- i najlepiej tylko jeden --
oczywisty sposdb na zrobienie danej rzeczy.
Cho¢ ten sposéb moze nie byé oczywisty jeSli nie jest sie¢ Holendrem.
Teraz jest lepsze niz nigdy.
Chociaz nigdy jest czesto lepsze niz natychmiast.
Jesli rozwigzanie jest trudno wyjasnié, to jest ono zilym pomystem.
Jesli rozwigzanie jest latwo wyjasni¢, to moze
ono byé dobrym pomystem.
Przestrzenie nazw to jeden z niesamowicie genialnych pomystow --
miejmy ich wiecej!

35/86

Odrézniaj!

Styl kodowania — im okresla sie nieformalne zbiory regut.

Standard kodowania — formalny dokument, wdrozony w konkretnym projekcie.
Wiekszos¢ standardéw kodowania zwigzana jest z odpowiadajagcym im jezykiem
programowania.

PEPS8 jest stylem kodowania ale moze by¢ wdrozony jako standard.
https://peps.python.org/pep-0008/

36 /86

https://peps.python.org/pep-0008/

Standardy kodowania jezykéw programowania jak i styl kodowania zazwyczaj
obejmuja takie aspekty kodu jak:

> Formatowanie kodu — szeroko$¢ wciecia, maksymalna dtugos¢ wiersza,
liczba pustych wierszy miedzy kolejnymi definicjami i deklaracjami funkcji
badz klas.

> Konwencje nazewnicze — schemat nazywania funkgji, klas, zmiennych,
modutéw, przestrzeni nazw, plikéw i tym podobnych.

» Komentowanie kodu — sposéb komentowania kodu, opisywania zmian,
koniecznos¢ udokumentowania algorytméw uzytych do rozwiazania
konkretnego fragmentu kodu.

> Konstrukcje programistyczne — zalezne od jezyka programowania,
obejmuja polecane i zabraniane konstrukcje, wynikajace na przyktad z
ograniczen platformy docelowej lub uzytych narzedzi programistycznych.

37 /86

Dlaczego potrzebne jest standard kodowania? - 1

Korzystanie ze standardéw kodowania:

> zmniejsza koszty zwigzane z konserwacja oprogramowania

> zwieksza jakos¢ kodu poprzez utatwianie jego zrozumienia przez bardziej

doswiadczonych deweloperéw

> przyspiesza proces jego restrukturyzacji

» umozliwia deweloperom na ptynniejsze korzystanie z narzedzi

automatyzacji ich pracy

Standardy kodowania szczegélnie wymagane sa podczas pracy w duzych
instytucjach i projektach programistycznych, w ktérych wystepuje czesta
rotacja kadr.

38/86

Dlaczego potrzebne jest standard kodowania? - 2

We wstepie do opisu konwencji kodowania dla jezyka Java, firma Sun
Microsystems wymienifa nastepujace fakty:

» 80% kosztéw oprogramowania wynosi jego utrzymanie,

> jedynie nieliczne systemy s3 rozwijane ciagle przez jeden, niezmienny
zespét programistéw,

» konwencje formatowania kodu zwiekszaja jego czytelnosé, pozwalajac na
szybsze wdrozenie nowych inzynieréw w prace nad rozwojem
oprogramowania,

> jesli sprzedajesz kod zrédtowy jako produkt, musisz upewni¢ sie, ze jest on
zaparkowany i czytelny tak, jak w przypadku innych produktéw.

39/86

Styl kodowania

Styl kodowania — mniej lub bardziej sformalizowany zestaw regut i zalecen
okreslajacy, jak powinien wygladaé kod zrédtowy programu od strony jego
czytelnosci i wygladu.

Styl kodowania NIE ma wptywu na sposéb interpretacji lub kompilacji
programu lecz jest bardzo wazne dla programistéw, ktérzy go rozwijaja.

Czytelnos$¢ poszczegdlnych zasad jest subiektywna, dlatego nie istnieje jedna,
uniwersalna konwencja.

Przyjete reguty zaleza od wybranego jezyka programowania.

40/86

Niektére wskazéwki do pisania czystego kodu w Pythonie 1

> Uzywaj f-napiséw:

print(f"You are a fantastic programmer, {first} {middle} {last}")
#You are a fantastic programmer, Sam Douglas Miller.

41/86

Niektére wskazéwki do pisania czystego kodu w Pythonie 2.1
> funkcje powinny robi¢ tylko jedna rzecz:
def print_page(banner_text, banner_images, content, footer_text):

Print banner

print("")

print ("Title:")

print (banner_text)

print("")

Do some image processing

for images in banner_images:
compress (banner_images)
height, width = banner_images["size"]
new_image = size(height, width)

Print banner image
render (new_image)
Print content
print("")
print("")
print(content)

42 /86

Niektére wskazéwki do pisania czystego kodu w Pythonie 2.2

Print footer
footer_length = len(footer_text)
for i in range(0, footer_length):

Porownaj z:

def print_page(banner_text, banner_images, content, footer_text):
print_banner (banner_text)
render_images (banner_images)
print_content (content)
print_footer (footer_text)

43 /86

Dtugos¢ linii

Poniewaz szeroko$¢ monitora jest ograniczona, tylko pewna liczba znakéw w
linii moze by¢ jednoczesnie widoczna dla programisty. Dlatego stosuje sie
ograniczenie dtugosci linii kodu. Popularne limity liczby znakéw w linii to 80,
78 lub 120.

44 /86

Nazewnictwo funkgcji i zmiennych 1

Kazda zmienna oraz funkcja w programie musi posiada¢ swoja nazwe, ktéra
bedzie pdzniej wykorzystywana przez programiste we wszystkich odwotaniach
do niej. Z tego powodu standardy kodowania poswiecaja duzo miejsca
ujednoliceniu zasad nazewnictwa. Rozpatrywane sg zaréwno kwestie wygladu,
jak i sensownosci poszczegdlnych nazw. Dominujacymi stylami zapisu sa:

> podkreslenia (snake case): to_jest_nazwa,

> camelCase: toJestNazwa,

> PascalCase: ToJestNazwa

> wielkie litery: TO_JEST_NAZWA.
Pojedynczy standard moze wykorzystywa¢ kilka styléw do oznaczania réznych
elementoéw.

45 /86

Nazewnictwo funkgji i zmiennych 2

PEP8 sugeruje snake_case dla funkgcji i zmiennych oraz CamelCase dla klaséw.
Nazwy znajdujace sie w duzych zakresach powinny by¢ w miare dtugie i
opisowe, np. vector, window_with_border czy department_number.
Natomiast nazwy nalezace do niewielkich zakreséw powinny by¢ krétkie i
konwencjonalne, np. x, i czy p. Pod wzgledem semantycznym reguty uznaja
przewaznie za niepoprawny kod, w ktérym nazwy zmiennych i funkcji nie méwia
nic o tym, do czego one stuza (np. a, b, ¢, oprécz oczywistych przypadkach).
Nazwy powinny by¢ krétkie, lecz znaczace, np. object_width. Ponadto
dobrze jest, gdy czesto uzywane nazwy sa krétkie, a rzadziej uzywane - dtuzsze.

Nazwa powinna odzwierciedla¢ znaczenie nazywanej jednostki, a nie jej

implementacje. Na przykfad nazwa phone_book jest lepsza niz
number_vector, nawet jesli numery telefoniczne s3 przechowywane w wektorze.

46 /86

Nazewnictwo funkcji i zmiennych 3

Nie nalezy do nazwy dodawaé informacji o typie, chociaz zwyczaj taki jest
pielegnowany w jezykach o dynamicznej i luznej kontroli typéw.
> Okreslenie typu w nazwie obniza poziom abstrakcji programu. W
szczegblnosci uniemozliwia programowanie ogélne (ktérego podstawa jest
mozliwos¢ odnoszenia sie nazw do jednostek réznych typéw).

» Kompilator lepiej radzi sobie z zapamietywaniem nazw niz cztowiek.

> Kazdy system skrétéw nazw typéw, jaki wymyslisz, stanie sie kula u nogi,
gdy zaczniesz uzywa¢ duzej liczby typéw do réznych celéw.
Cho¢ jezyk na ogét nie jest okreslany przez standardy kodowania, niepisana
reguty jest wykorzystanie angielskiego zamiast jezykéw narodowych.

Wybér wtasciwych nazw to sztuka.

47 /86

Python ma zarezerwowanych 35 stéw kluczowych

and del from None True
as elif global | nonlocal | try
assert else if not while
break except import | or with
class False in pass yield
continue | finally | is raise async
def for lambda | return await

48 /86

Komentarzy

Kazdy praktycznie stosowany jezyk programowania zezwala na tworzenie
komentarzy — fragmenty tekstu, ktére sa pomijane przez interpreter badz
kompilator.

» W komentarzach programista moze zapisa¢ stownie dodatkowe informacje
na temat dziafania czy zastosowania okreslonego kawatka kodu.

> Komentarze s3 powszechnie wykorzystywane przez narzedzia do
automatycznego generowania dokumentacji na podstawie kodu
zrédtowego. Analizuja one komentarze umieszczone nad funkcjami,
zmiennymi i klasami, wyciagajac z nich opis dziatania oraz dodatkowe
znaczniki zawierajace np. opisy argumentéw.

> Komentarze wykorzystuje sie réwniez do umieszczenia na poczatku
kazdego pliku informacji o prawach autorskich oraz licencji, ktéra objety
jest dany kod.
Komentarze moga zawieraé objasnienie, co robi dany fragment kodu, uwagi
dotyczace jego uzycia badz informacje techniczne dla innych programistéw (np.
o znalezionych btedach albo pozostatych do zaimplementowania funkcjach).

Pamietaj o docstringach!

49/86

Dokumentowanie kodu

» Podstawowym narzedziem opisywania dziatania kodu sa umieszczone w
nim komentarze ze stownym opisem w jezyku naturalnym, ktérych
zawarto$¢ jest ignorowana przez programy.

» Doktadniejsze dokumentacje maja posta¢ osobnych dokumentéw
szczegbtowo opisujacych wszystkie elementy kodu zrédtowego w pewien
ustandaryzowany sposéb. Opis kazdego elementu sporzadzony jest w
jezyku naturalnym, moze zawiera¢ odnosniki do powigzanych elementéw i
przyktady uzycia. Programista pragnacy uzy¢ danego elementu, moze go
szybko odnalez¢ w dokumentacji i zapozna¢ sie ze wszystkimi dostepnymi
na jego temat informacjami. Pozostate tematy zwiazane z budows i
dziataniem kodu zrédtowego opracowane s3 najczesciej w formie
klasycznych artykutéw.

Istnieje szereg wyspecjalizowanych narzedzi umozliwiajacych tworzenie
dokumentacji bezposrednio z istniejacego kodu zrédtowego, na przyktad
Doxygen. Dzieki znajomosci gramatyki jezyka programowania potrafia
automatycznie okresli¢ wiele zwigzkéw miedzy poszczegélnymi elementami.
Dodatkowe informacje oraz opis s3 importowane ze specjalnych komentarzy
umieszczonych nad kazdym elementem.

50/86

Operatory

» Operatory s3 otoczone zawsze spacjami;

» Mozna uzywa¢ nawiasy dla najlepszej czytelnosci

51/86

Zty przyktady 1

> apples, oranges, fruits = 4, 5, 6
Mozna uzywa¢ nprz, dla wspétrzednych:

i, j=3,5
(i, j) = (3, B) # same as above
n,m=1, 1

x, y = (0, 0) # parentheses are optional

» numbers = digits = [0,1,2]

52/86

Zty przyktady 2

> Nie uzywaj while zamiast for

i=0
while i < 10:
do_x()

Trzeba:
for i in range(10):
do_x()

» numbers = digits = [0,1,2]

53/86

Zty przyktady 3

» Nie naduzywaj try--except zamiast if--else

» Nie naduzywaj break w while

54 /86

Dobra wiadomosé

Nowoczesny Srodowiska (takie jak Visual Studio oraz PyCharm) pomagaja w

formatowaniu koda zrédtowego.
Astyle: https://astyle.sourceforge.net/
clang format: https://clang.llvm.org/docs/ClangFormat.html

itd.

55 /86

https://astyle.sourceforge.net/
https://clang.llvm.org/docs/ClangFormat.html

Na tym konczymy z szczeg6lnosciami Python i krotko oméwimy algorytmy, tzn
logika programowania.

56 /86

Ztozonos¢ algorytmu

Zasoby: pamiec i czas.

> Jesli znamy kilka algorytméw rozwigzujacych pewne zadanie, warto je
poréwnaé, aby wybraé najlepszy.

> Jednym z kryteriéw stuzacych do poréwnania algorytméw sa zasoby,
ktorych potrzebuja: ilos¢ pamieci komputera i czas dziatania.

> llos¢ pamieci (czasu) niezbednej do zrealizowania algorytmu nazywamy
jego ztozonoscia pamieciowa (czasowy).

57 /86

Z{ozonos¢ czasowa

» W jakich jednostkach nalezy mierzyé¢ czas?

v

Szybkos$é wykonania algorytmu nie moze zaleze¢ od komputeral

» Dlatego nie mozemy mierzy¢ czasu wykonania algorytmu w jednostkach
czasu, np. mikrosekundach.

> Od czego zalezy czas wykonania algorytmu, co jest niezalezne od szybkosci
komputera?

> Ztozonos¢ czasowa mierzymy liczba operacji potrzebnych do realizacji tego
algorytmu. W teorii ztozonosci nie staramy sie by¢ super dokfadni.
Dlatego w rachunkach uwzglednia sie tylko operacje dominujace.

> Operacje dominujace zaleza od problemu.

> Sortowanie liczb: poréwnanie dwéch elementéw
> Liczenie wartosci wielomianu: operacje arytmetyczne

58 /86

Rozmiar problemu

> Liczba operacji potrzebna do realizacji algorytmu zalezy od rozmiaru
problemu. (Uzycie algorytmu do posortowania 3 liczb wymaga mniej
operacji niz do posortowania 1000 liczb.)

> Z kazdym problemem wigzemy liczbe naturalna n reprezentujaca jego
rozmiar.

» Rozmiar problemu zalezy od jego natury:

> W problemie sortowania rozmiarem jest liczba liczb, ktére sortujemy.
» W problemie sprawdzenia, czy dana liczba jest liczba pierwsza rozmiar
definiuje sie jako liczbe cyfr badanej liczby

59 /86

Ztozonos¢ czasowa algorytmu

Ztozonoscig czasowq algorytmu nazywamy liczbe operacji dominujacych, ktére
trzeba wykona¢, aby rozwigza¢ problem o rozmiarze n. Zatem ztozonos¢
czasowa mozna traktowa¢ jako funkcje ze zbioru liczb naturalnych w zbiér liczb
naturalnych.

> T(n) = const (ztozonos¢ stata)

T(n) = log, n (ztozonos¢ logarytmiczna)
T(n) = 2% n+ 2 (ztozonos¢ liniowa)
T(n) = 2n* — 7 (ztozonos¢ kwadratowa)

T(n) = wielomian (ztozonos¢ wielomianowa)

vvyyvyyvyy

T(n) = 2" (ztozonos¢ wyktadnicza)

60 /86

Rzedy wielkosci funkcji 1

Niech f,g : N — N.
Méwimy, ze f jest co najwyzej rzedu g, co zapisujemy

f(n) = O(g(n))

jesli istniejg stata rzeczywista ¢ > 0 oraz stata naturalna no takie, ze
nieréwnos¢ f(n) < c * g(n) zachodzi dla kazdego n > no.

Na przyktad,
n* 4 2n = 0(n®),

bo n? 4+ 2n < 3n?, dla kazdego n.

61/86

Rzedy wielkosci funkgcji 2

Moéwimy, ze f jest doktadnie rzedu g, co zapisujemy f(n) = ©(g(n)) jesli
istnieja state rzeczywiste c1 i ¢, oraz stata naturalna ng, takie ze nieréwnosé¢
a1 *x g(n) < f(n) < c2 * g(n) zachodzi dla kazdego n > no.

Na przyktad, n® +2n = ©(ny), bo n* < n® +2n < 3n?, dla kazdego n > no.

Wielomian agn® + ax_1n* "t + - - + ayn+ ao, gdzie ax > 0 jest doktadnie rzedu

n*.

62/86

Ztozonos¢ srednia i pesymistyczna

> Ztozonos¢ srednia (oczekiwana) — okresla ztozonosé losowego przypadku.

> Ztozono$¢ pesymistyczna — okresla ztozonos¢ najgorszego przypadku.

63/86

Przyktad: problem wyszukiwania

Dany jest ciagg A liczb catkowitych i liczba catkowita x. Stwierdzi¢, czy x
nalezy do ciggu.

Mozliwosci: A jest posortowany, A nie jest posortowany.

Warianty tego problemu: Poda¢ adres w tablicy pierwszego wystapienia x. Jesli
X nie wystepuje zwréci¢ —1. Znalez¢ wszystkie wystapienia x w A.

64 /86

Wyszukiwanie liniowe Algorytm 1 (naiwny)

listA = [1,2,3,4,5,6,7,8,9,2,4,9,6,5,3,4,2,10,5,30]
znaleziono = False;

x = int(input("Co szukamy? "))

for i in listA:

if x==i: znaleziono = True

if znaleziono: print("tak")

else: print("nie")

Algorytm wykonuje n polecen.

65 /86

Wyszukiwanie liniowe Algorytm 2

listA = [1,2,3,4,5,6,7,8,9,2,4,9,6,5,3,4,2,10,5,30]
znaleziono = False;
x = int(input("Co szukamy? "))
for i in listA:
if x==i:

znaleziono = True

break
if znaleziono: print("tak")
else: print("nie")

Algorytm wykonuje n polece w pesymistycznym przypadku, ale wykonuje n/2
polecen srednie.

Czyli ztozonos¢ ©(n).

66 /86

Wyszukiwanie binarne (w uporzadkowanej tablice)

e e —

8 ‘10‘13‘14‘18‘19‘21‘24‘37‘40‘45‘71‘

67 /86

Wyszukiwanie binarne (w uporzadkowanej tablice)

listA = [1,2,3,4,5,6,7,8,9,10,12,13,

14,50,60,70,80,90,200,300,400]

i=0

j=len(listA)-1

znaleziono = False

x = int(input("Co szukamy?"))

while not znaleziono and j>=i:
k=(i+j)//2
if listA[k]==x: znaleziono = True
elif listA[k]<x: i=k+1
else: j=k-1

if znaleziono: print("tak")
else: print("nie")

68 /86

Ztozonos¢ (pesymistyczna) wyszukiwania binarnego

> Jaka jest maksymalna liczba poréwnan dla tablicy n-elementowej?
> Kazde poréwnanie skraca dtugosé tablicy o potowe.
> Proces ten konczy sie gdy znajdziemy element lub tablica jest pusta.

Pesymistyczna liczba poréwnan jest rzedu ©(logzn).

10 3

100 6
1000 9
1000000 19
1000000000 29
1018 59

69 /86

Czesto spotykane ztozonosci obliczeniowe

Stata ztozono$¢ obliczeniowa ©(1);
Ztozonos¢ liniowa ©(n);
Ztozonos¢ logarytmiczna ©(log n);

©(n x log n) (naprz. sortowanie przez faczenie);

vVvYyyvyy

Ztozonosé wielomianowa O(n*);

v

Ztozonos¢ wykfadnicza ©(k");
> O(n!).

70 /86

Czesto spotykane ztozonosci obliczeniowe

b

(a) Stata ztozonos¢
obliczeniowa ©(1)

/

(a) ©(n x log n)

(b) Ztozonos¢ liniowa ©(n)

4

10

(b) Ztozonos¢ wielomianowa

o(n*)

(c) Ztozonos¢ logarytmiczna
O(log n)

1o

(c) Ztozonos¢ wyktadnicza (9(7k1)86

Czesto spotykane ztozonosci obliczeniowe

/

2

o

(a) Ztozonosé wielomianowa

o(n")

0

(b) Ztozonos¢ wyktadnicza ©(k")

(c) ©(nl)

72/86

Zapotrzebowanie na czas

Funkcja N=10

N2 1/10000 1/2500 1/400 1/100 9/10
sekundy sekundy sekundy sekundy sekundy

NS 1/10 3.2 5.2 2.8 28.1
sekundy sekundy minuty godziny dnia

2N 1/1000 1 sekunda 35.7 400*10° 75-cyfrowa
sekundy lat stuleci liczba stuleci

NN 2.8 3.3 biliony 70-cyfrowa 185-cyfrowa 728-cyfrowa
godziny lat liczba stuleci liczba stuleci liczba stuleci

1 instrukcja = 1 milisekunda
0d wielkiego wybuchu mineto 15 miliardéw lat

73/86

Uktadanka

g
P Eﬂg

P]
I~

» Zaktadamy, ze mamy uktadanke 5 x 5

> Zaktadamy, ze kazdy kwadrat ma ustalony kierunek géra-dét i prawo-lewo,
zatem nie musimy kwadratéw obracaé¢.

> Chcemy stwierdzi¢, czy mozna utozy¢ dany zestaw 25 kwadratéw.

Rozwiazanie naiwne: sprawdzamy wszystkie mozliwe uktady. (Metoda ta
wymaga, posiadania procedury generowania kolejnych uktadéw, aby sie nie
powtarzaty).

74 /86

> lle wynosi liczba wszystkich mozliwych utozen 25 kwadratéw?
P 25 %24 %23 % ... x2* 1 = 25!
> Liczba 25 skfada sie z 26 cyfr.

> Jesli zatozymy, ze nasz komputer bedzie realizowat milion utozen na
sekunde, to przejrzenie wszystkich utozen zajmie ?

ponad 400 milionéw lat!!!

Znajdowanie szybszych algorytméw jest biezagcym tematem badawczym.

75 /86

Ztozonos¢ problemu

Ztozonos¢ problemu — ztozono$¢ algorytmu o minimalnej ztozonosci
rozwigzujacego ten problem

> Problem sortowania: ©(nlog, n)
> Problem wiezy z hanoi: ©(2")
Istnieje bardzo wiele probleméw, ktérych ztozonosé jest nieznanal
> Problemy tatwo rozwigzywalne — problemy o ztozonosci wielomianowej.

> Problemy trudno rozwigzywalne — problemy o ztozonosci
ponadwielomianowej.

Putapka — pewne problemy fatwo rozwigzywalne moga sie w praktyce okaza¢
gorsze niz trudno rozwiagzywalne (przynajmniej teoretycznie)!!

76 /86

Wiezy z hanoi

Wieze w Hanoi

A

Od lewej: stupek A z catg wieza,
pusty stupek B petnigcy role bufora
i pusty stupek docelowy C

Zadanie: Przeniesc krazki z A na C, postugujac sie stupkiem B. Nie wolno kias¢
wiekszego krazka na mniejszym.

77/86

Wiezy z hanoi: rozwigzanie rekurencyjne

> Przenies$ (rekurencyjnie) n — 1 krazkéw ze stupka A na stupek B,
postugujac sie stupkiem C.

> Przenies$ jeden krazek (najwigkszy) ze stupka A na stupek C.

> Przenies (rekurencyjnie) n — 1 krazkéw ze stupka B na stupek C,
postugujac sie stupkiem A.

Latwo obliczy¢ ztozonos¢ jako ©(2").

78 /86

Wiezy z hanoi: rozwiazanie iteracyjne

> Przenie$ najmniejszy krazek na kolejny (*) stupek.

» Wykonaj jedyny mozliwy do wykonania ruch, nie zmieniajac potozenia
krazka najmniejszego.

> Powtarzaj punkty 1 i 2, az do odpowiedniego utozenia wszystkich krazkéw.

Ztozonos¢ algorytmu ©(2") (bez dowodu).

(*)Kolejny stupek wyznaczany w zaleznosci od liczby krazkéw. Parzysta — po
prawej stronie, nie parzysta — po lewej.

79 /86

Liczby Fibonacc'ego

Rekurencyjne

def Fib(n):
if n < 2:
return n
else:
return Fib(n-1) + Fib(n-2)

/\/ /\

4 A
N\ 2/\/ 2 /\
&N 2 /Ny D
VAN
1 0

/\
{ %
Ztozonos¢ (dodawania): ©(2")

80/86

Liczby Fibonacc'ego

Iteracyjne
f0 =0
f1 =1

for i in range(2,n+1):

f =11
f1 = f1 + £0
f0 = £

Ztozonos¢ (dodawania): ©(n)

81/86

Klasy P oraz NP

Tutaj méwimy TYLKO o problemach decyzyjnych (TAK/NIE).

Teoria ztozonosci obliczeniowej kategoryzuje problemy decyzyjne w zaleznosci
od tego jak trudno jej rozwiaza¢ (najefektywniejszym algorytmem)

Problem P — problem decyzyjny, dla ktérego rozwigzanie mozna znalez¢ w
czasie wielomianowym.

Problem NP — problem decyzyjny, dla ktérego rozwigzanie TAK mozna
sprawdzi¢ w czasie wielomianowym.
Wszystkie problemy klasy P sa NP.

Problem milenijny: czy P = NP?

82/86

Problemy NP—zupetne

Tutaj méwimy TYLKO o problemach decyzyjnych (TAK/NIE).
Kazdy problem NP-zupetny charakteryzuje sie nastepujacymi wtasnosciami:

> Znane jest jego rozwigzanie wykfadnicze
> Nie wiadomo, czy istnieje rozwigzanie wielomianowe

> Jesli posiada rozwigzanie wielomianowe, to wszystkie inne problemy
NP-zupetne tez posiadaja takie rozwiazanie (jesli A i B sa dowolnymi
problemami NP-zupetnymi, to A mozna w czasie wielomianowym
sprowadzi¢ do B).

83/86

Problem komiwojazera (wersja decyzyjna)
Dany jest zbi6r n miast wraz z odlegtosciami miedzy nimi. Komiwojazer chce
odwiedzi¢ wszystkie miasta, kazde doktadnie raz, i powréci¢ do punktu wyjscia.
Dla danej liczby naturalnej k stwierdzi¢, czy istnieje trasa komiwojazera krétsza

od k.

iSieé drdég i minimalna droga
O~ 0 JeRse

3
8 104 4
O/ 5 3
o0 O 00
7 5/ , 7 5
) ©
Rysunek nie zachowuje Catkowity koszt: 28

roporgcji
proporcj 84 /86

Problem komiwojazera

> Nie jest znana ztozonos$¢ problemu komiwojazera.
» Znane algorytmy rozwigzujace ten problem maja ztozonos¢ wyktadnicza.

> Charakterystyczna wtasnoscia problemu komiwojazera jest tatwos¢
potwierdzenia rozwiazania: jesli odpowiedz brzmi ,tak”, fatwo jest o tym
kogos$ przekona¢ podajac potwierdzenie zawierajace dowdd tego faktu.

85/86

Ciekawostka

Problem Hamiltona i problem Eulera

> Sciezka Hamiltona — droga w grafie przechodzaca przez kazdy wierzchotek
(miasto) doktadnie raz. Problem Hamiltona — czy w danym grafie istnieje
$ciezka Hamiltona?
> Sciezka Eulera — droga w grafie przechodzaca przez kazda krawedz
doktadnie raz. Problem Eulera — czy w danym grafie istnieje $ciezka
Eulera?
Problem Hamiltona jest problemem NP—zupetnym. Problem Eulera posiada
algorytm wielomianowy (graf musi mie¢ 0 albo 2 wierzchotka parzystego
stopnia)!l!

86 /86

