
Wstęp do programowania
semestr zimowy 2025/2026

Dr Anna Muranova
UWM w Olsztynie

Wykład 9

1 / 86



Czytanie z plików
Proces czytania i zapisu danych do pliku to zadanie złożone. Python jak
większość języków programowania pozwala wczytywać dane ze zbiorów
zewnętrznych, jak i zapisywać dane do plików. Proces czytania można
zrealizowaćć przy pomocy funkcji wbudowanych -open(), read() i close()
lub – w przypadku danych o ustalonej strukturze – najczęściej tabelarycznej,
można skorzystać z gotowych funkcji wspierających ten proces.

Aby odczytać plik tekstowy należy wykonać trzy polecenia:
▶ open() aby nawiązać połączenie z plikiem (nic nie zostaje wczytane)
▶ read() aby wczytać całą zawartość pliku do jednej zmiennej jako tekst
▶ close() zamknąć plik po zakończeniu czytania

Dodatkowo proces czytania lub zapisu wymaga znalezienia właściwego pliku,
lub - w przypadku odczytu utworzenia nowego pliku.

Dalej używa się plik.txt z zawartością

abrakadabra
abra
kadabra

2 / 86



Czytanie z plików

Wczytanie niewielkiego pliku tekstowego znajdującego się w tym samym
katalogu co nasz skrypt

f = open("plik.txt")
zawartosc = f.read()
f.close()
print(zawartosc)

abrakadabra
abra
kadabra

Funkcja open() nawiązuje połączenie z plikiem, ale nie wczytuje danych.
Przypisuje jedynie do obiektu f wskaźnik do pliku. Wynika to z faktu że zbiór
danych może być bardzo duży i programista powinien zachować kontrolę nad
jego wczytywaniem. Funkcja read() wczytuje całą zawartość ze źródła f
(pliku) do zmiennej zawartość. Następnie źródło zostaje zamknięte.

3 / 86



Funkcja open()

Podstawowa składnia tej funkcji jest następująca:

file = open(’sciezka_do_pliku’, ’tryb’, encoding=None)

▶ ’r’ – tryb odczytu (domyślny), pozwala na czytanie zawartości pliku.
▶ ’r+’ – tryb odczytu i modyfikacji
▶ ’w’ – tryb zapisu, tworzy nowy plik lub nadpisuje istniejący.
▶ ’a’ – tryb dopisywania, dodaje nowe dane na końcu pliku bez nadpisywania

istniejącej zawartości.
▶ ’x’ – otwarte do wyłącznego tworzenia, kończy się niepowodzeniem, jeśli

plik już istnieje
▶ ’x+’ – otwarte do wyłącznego tworzenia z możliwością odczytywania

Każdy z tych trybów (oprócz ,b’) domyślnie otwiera plik do zapisu jako plik
tekstowy. Jeżeli chcemy zapisywać plik formie binarnej musimy uzupełnić
atrybut otwarcia o literę ‘b’, na przykład

4 / 86



Funkcja open()
▶ ’b’ – tryb binarny, używany do pracy z plikami binarnymi.

Zwykle pliki są otwierane w trybie tekstowym, co oznacza, ze odczytujesz i
zapisujesz z i do pliku ciągi znaków, które są zakodowane w określonym
kodowaniu. Jeśli kodowanie nie jest określone, domyślne jest zależne od
platformy. Ponieważ UTF-8 jest współczesnym standardem de facto, zaleca się
encoding=”utf-8”, chyba że wiesz, że musisz użyć innego kodowania. Dodanie
„b” do trybu otwiera plik w trybie binarnym. Dane w trybie binarnym są
odczytywane i zapisywane jako obiekty bajtów. Nie możesz określić kodowania
podczas otwierania pliku w trybie binarnym.

W trybie tekstowym, domyślnym ustawieniem podczas czytania jest konwersja
zakończeń wierszy specyficznych dla platformy (\n) w systemie Unix, \r, \n w
systemie Windows) na samo \n. Podczas pisania w trybie tekstowym,
domyślnym ustawieniem jest konwersja wystąpień \n z powrotem na
zakończenia wierszy specyficzne dla platformy. Ta modyfikacja danych pliku w
tle jest w porządku dla plików tekstowych, ale uszkodzi dane binarne, takie jak
te w plikach JPEG lub EXE. Należy zachować szczególną ostrożność podczas
korzystania z trybu binarnego podczas czytania i zapisywania takich plików.

5 / 86



Metoda close()

Metoda close() zamyka otwarty plik.
Zawsze powinieneś zamykać swoje pliki! W niektórych przypadkach, z powodu
buforowania, zmiany wprowadzone do pliku mogą nie być widoczne, dopóki nie
zamkniesz pliku.

6 / 86



with
Używanie with podczas pracy z obiektami plików należy do dobrych praktyk.
Zaletą tego podejścia jest to, że plik jest prawidłowo zamykany po zakończeniu
jego bloku, nawet jeśli w pewnym momencie zostanie zgłoszony wyjątek.
Użycie with jest również znacznie krótsze niż pisanie równoważnych bloków try
- finally:

with open(’plik.txt’, encoding="utf-8") as f:
read_data = f.read()
print(read_data)

# Możemy sprawdzić, że plik został automatycznie zamknięty.
print(f.closed)#True

Uwaga! Wywołanie f.write() bez użycia with lub f.close() może spowodować,
że argumenty f.write() nie zostaną w pełni zapisane na dysku, nawet jeśli
program zakończy się pomyślnie.

Po zamknięciu obiektu pliku, zarówno przez instrukcję with, jak i f.close(),
wszystkie próby użycia obiektu pliku automatycznie się nie powiodą.

7 / 86



Metody obiektów plików

Zakładamy, że obiekt pliku o nazwie f został już utworzony.

Aby odczytać zawartość pliku, należy wywołać polecenie f.read(size), które
odczytuje pewną ilość danych i zwraca je jako ciąg znaków (w trybie
tekstowym) lub obiekt bajtowy (w trybie binarnym). size jest opcjonalnym
argumentem numerycznym. Gdy size jest pominięty lub ujemny, zostanie
odczytana i zwrócona cała zawartość pliku. W przeciwnym razie odczytane i
zwrócone zostanie co najwyżej size znaków (w trybie tekstowym) lub size
bajtów (w trybie binarnym). Jeśli został osiągnięty koniec pliku, f.read() zwróci
pusty ciąg znaków (”).

8 / 86



Wczytywanie po linii

W przypadku dużych plików lepiej zastosować procedurę czytania linia po linii.
Czytanie linia po linii jest też operacją stosowaną, gdy chcemy odczytać z pliku
konkretne linie:

f = open("plik.txt")
text = f.readline()
print(text, end="*\n")
text = f.readline()
print(text, end="*\n")
text = f.readline()
print(text, end="*\n")
f.close()

abrakadabra
*
abra
*
kadabra*

9 / 86



Wczytywanie po linii – to samo z with

with open("plik.txt") as f:
text = f.readline()
print(text, end="*\n")
text = f.readline()
print(text, end="*\n")
text = f.readline()
print(text, end="*\n")

abrakadabra
*
abra
*
kadabra*

10 / 86



Wczytywanie linii do końca pliku w listą

f = open("plik.txt")
text = f.readlines()
print(text)
f.close()

[’abrakadabra\n’, ’abra\n’, ’kadabra’]

Lub przy pomocy pętli:

f = open("plik.txt")
text = 1
while text:

text = f.readline()
print(text, end=’*’)

f.close()

abrakadabra
*abra
*kadabra**

11 / 86



Wczytywanie linii do końca pliku w listą, to samo z with

with open("plik.txt") as f:
text = f.readlines()

print(text)

[’abrakadabra\n’, ’abra\n’, ’kadabra’]

Lub przy pomocy pętli:

with open("plik.txt") as f:
text = 1
while text:

text = f.readline()
print(text, end=’*’)

abrakadabra
*abra
*kadabra**

12 / 86



Jeszcze wczytywanie po linii w pętli

with open(’plik.txt’, ’r’) as file:
for line in file:

print(line.strip())

abrakadabra
abra
kadabra

Funkcja strip() usuwa znaki białe (takie jak spacje i nowe linie) z początku i
końca każdej linii, co jest przydatne do czyszczenia danych. Wszystkie użyte
funkcje są funkcjami systemowymi wbudowanymi w interpreter języka, zatem
nie musimy importować żadnych dodatkowych bibliotek.

Dalej zawsze będziemy używać with, a nie open()–close()

13 / 86



Zapisywanie danych do pliku

Zapis danych do pliku w Pythonie jest równie prosty jak ich odczyt. Aby
zapisać dane do pliku, musimy otworzyć plik w trybie zapisu (’w’) lub
dopisywania (’a’). Warto nie mylić tych dwóch trybów – w pierwszym z nich
jeżeli wskazany plik istnieje jego zawartość zostanie usunięta i zastąpiona przez
nową. W drugim przypadku nowe dane zostaną dodane na końcu pliku. W obu
przypadkach, jeżeli wskazany plik nie istnieje, zostanie on utworzony. Poniżej
przykładu kodu w obu trybach:
▶ with open(’output.txt’, ’w’) as file:

file.write(’To jest przykładowy tekst zapisany do pliku.’)
▶ with open(’output.txt’, ’a’) as file:

file.write(’\nDodajemy nową linię tekstu.’)

14 / 86



Zapisywanie danych do pliku ’x’

Jest jeszcze jeden warty uwagi a mało znany tryb zwany Exclusive creation. Za
jego pomocą otworzymy plik do zapisu, ale tylko jeśli plik nie istnieje. Jeśli plik
istnieje, Python zgłosi błąd FileExistsError.
▶ with open(’output1.txt’, ’x’) as file:

file.write(’To jest przykladowy tekst zapisany do pliku.’)
▶ with open(’plik.txt’, ’x’) as file:

file.write(’To jest przykladowy tekst zapisany do pliku.’)

15 / 86



writelines

Metoda writelines() zapisuje elementy listy do pliku.
Miejsce, w którym zostaną wstawione teksty, zależy od trybu pliku i pozycji
strumienia.
▶ ’a’ – Teksty zostaną wstawione w bieżącej pozycji strumienia pliku,

domyślnie na końcu pliku.
▶ ’w’ – Plik zostanie opróżniony przed wstawieniem tekstów w bieżącej

pozycji strumienia pliku, domyślnie 0.

with open("plik.txt", "a") as f:
f.writelines(["See you soon!", "Over and out."])

#open and read the file after the appending:
with open("plik.txt", "r") as f:

print(f.read())

16 / 86



Metoda seek()

Metoda seek() ustawia bieżącą pozycję pliku w strumieniu plików.

Metoda seek() zwraca również nową pozycję.
▶ with open("plik.txt", "r") as f:

a = f.seek(5)
print(a)
print(f.readline())

5
adabra

Metoda seekable() zwraca True, jeśli plik jest wyszukiwalny, False, jeśli nie.
Plik jest wyszukiwalny, jeśli umożliwia dostęp do strumienia plików, tzn metoda
seek().

17 / 86



Odczyt i zapis

Istnieją też tryby mieszane, które łączą tryby tekstowe z trybami binarnymi oraz
operacje zapisu i odczytu. Dzięki nim możemy wykonywać bardziej
zaawansowane operacje na plikach, które wymagają zarówno czytania, jak i
modyfikowania zawartości pliku bez konieczności zamykania i ponownego
otwierania go w innym trybie. Tryby mieszane są szczególnie przydatne w
scenariuszach, gdzie dane muszą być dynamicznie aktualizowane lub
weryfikowane, a następnie zapisywane z powrotem do tego samego pliku. Tryby
mieszane poznamy po tym, że w atrybutach ich otwarcia znajduje się znak ‘+’.
Przykładowo:

with open(’plik.txt’, ’r+’) as file:
content = file.read()
file.write(’Dopisana zawartosc.’)

Powyższe kod otwiera plik do odczytu i zapisu. Jeśli plik nie istnieje, Python
zgłosi błąd FileNotFoundError.

Po odczytywaniu wskaźnik jest na końcu plika, i treść do zapisywania zapisuje
się na koniec.

18 / 86



Gdzie się zapisujemy?

Porównaj z poprzednim:
▶ Treść do zapisywania zapisuje się na początku pliku.

with open(’plik.txt’, ’r+’) as file:
file.write(’Dopisana zawartosc.’)

▶ with open(’plik.txt’, ’r+’) as file:
file.seek(5)
file.write(’Dopisana zawartosc.’)

Metoda seek() ustawia bieżącą pozycję pliku w strumieniu plików.

19 / 86



Porownaj
▶ with open("plik.txt", "r+") as f:

a = f.seek(5)
print(a)
f.write(’See you soon!’)
f.seek(0)
print(f.read())

5
abrakSee you soon!adabra

▶ with open("plik.txt", "r+") as f:
a = f.seek(5)
print(a)
print(f.write(’See you soon!’))
print(f.read())
f.seek(0)
print(f.read())

5
13
adabra
abrakSee you soon!adabra

20 / 86



Inne metody

▶ Metoda tell() zwraca bieżącą pozycję pliku w strumieniu plików.
▶ Metoda readable() zwraca True, jeśli plik jest czytelny, lub False w

przeciwnym razie.
▶ Metoda writable() zwraca True, jeśli do pliku można zapisywać, lub False

w przeciwnym razie.

21 / 86



truncate()

▶ Metoda truncate() zmienia rozmiar pliku do podanej liczby bajtów.

with open("plik.txt", "a") as f:
f.truncate(10)

#open and read the file after the truncate:
with open("plik.txt", "r") as f:

print(f.read())

abrakadabr

22 / 86



Przykład

Źródło:
https://www.flynerd.pl/2018/01/python-metody-typu-string.html

Wyobraź sobie, że jesteś bioinformatykiem i otrzymujesz kod genetyczny do
analizy w pliku tekstowym.
Kod DNA składa się z 4 zasad azotowych: adeniny(A), cytozyny(D),
guaniny(G), tyminy(T). Idealny kod DNA wygląda następująco:

TGCACGATCATGTCTACTATCCTCTCTATGGTGGGGTT. . .

Zdarza się, jednak, że kod zawiera małe jak i duże litery. Kolejny problem to
maszyny sekwencjonujące nie są wolne od błędów. W zależności od maszyny
błędy sekwencjonowania mogą zostać zamienione na znak – czy literę N.
▶ wczytaj plik
▶ policz ile razy występuje w kodzie każda zasada azotowa - adenina,

cytozyna, guanina, tymina.

23 / 86

https://www.flynerd.pl/2018/01/python-metody-typu-string.html


Przykład: rozwiązanie

with open("DNA.txt", "r") as f:
seq0 = f.read()

seq = seq0.strip().upper()
print(seq)
n = len(seq)
occurences ={}
for x in ’ACGT’:

occurences[x] = seq.count(x)

print(occurences)

24 / 86



Przykład dalej

W dokumentacji znajduje się następujący zapis:
gdy jakość sekwencji nie pozwala dokładnie odczytać rodzaju zasady azotowej
wstawiany jest znak „-” Natomiast, gdy laser sczytujący ześlizgnie się,
wstawiane są litery „N”, jednocześnie ostatnia wartość zasady jest ponownie
odczytywana bez ubytku zasady w tym miejscu.
Co za przydatna informacja!
▶ Oczyść DNA z błędów typu N.
▶ Policz wystąpienia sekwencji GAGA
▶ Znajdź miejsce (indeks) w łańcuchu, gdzie występuje 7 guanin z rzędu
▶ Znajdź miejsce (indeks) , gdzie od końca łańcucha występuje 6 cytozyn
▶ Policz ile razy w kodzie pojawiła się sekwencja CTGAAA
▶ W sekwencji CTGAAA czasem mutuje ostania litera A, wówczas jakość

ostatniej litery może być wątplia. Ile sekwencji znajdziesz, jeśli weźmiesz
pod uwagę wątpliwą, ostatnią adeninę?

▶ Na podstawie czystej nici utwórz odpowiadającą jej nić RNA (nić RNA w
miejscu tyminy będzie mieć uracyl (U)). Nic RNA zapisz do nowego pliku
RNA.txt

25 / 86



Przykład: rozwiązanie dalej

with open("DNA.txt", "r") as f:with open("DNA.txt", "r") as f:
seq0 = f.read()

seq = seq0.strip().upper()
print(seq)
n = len(seq)
DNA = seq.replace("N", "")
GAGA = DNA.count("GAGA")
print("Liczba wystąpień sekw. GAGA", GAGA)

CTGAAA = DNA.count("CTGAAA")
print("Liczba wystąpień sekw. CTGAAA", CTGAAA)

CTGAA_ = DNA.count("CTGAA-")
print("Liczba wystąpień sekw. CTGAAA i CTGAA-", CTGAAA + CTGAA_)

RNA = DNA.replace("T", "U")
with open("RNA.txt", "w") as f:

f.write(RNA)

26 / 86



Czytanie i przetwarzanie plików tabelarycznych

Ponieważ python wczytuje dane w postaci pojedynczej zmiennej tekstowej,
jeżeli wczytane dane zamierzamy poddać obliczeniom, należy je odpowiednio
przekształcić, najczęściej do postaci tabelarycznej oraz zmodyfikować typy
danych z tekstowych do numerycznych. Do tego celu służą poznane już funkcje
split() oraz funkcje konwersji zmiennych. Procedura czytania danych jest
następująca:
▶ W pierwszysm kroku nawiązywane jest połączenie z plikiem (zawartość

zostaje wyświetlona)
▶ Dane zostają podzielone na listę łańcuchów tekstowych, względem znaku

"\ną następnie każda linia zostaje podzielona na listy wewnętrzne na
podstawie przecinka lub srednika (separator w csv). Wynik zostaje
wyświetlony jako lista zagnieżdżona

▶ Połączenie zosaje zamknięte
▶ Z listy zostaje usunięta 1 linia (nagłówek)
▶ Z listy zostaje usunięta ostatnia pusta linia (z reguły występuje w plikach

tekstowych)

Punkty 1-3 łącząc się przy pomocy with

27 / 86



Czytanie i przetwarzanie plików tabelarycznych
f = open("tab.csv") #1
dane = f.read() #
print(dane)
dane = dane.split(’\n’) #2 podziel po liniach
dane = [l.split(’;’) for l in dane] #2 podziel po wierszach
print(dane)
f.close() #3
header = dane.pop(0) #4 nagłówek
dane.pop() #5 usunięcie ostatniego, pustego wiersza

Ulica;Nomer domu;Kod;Miejscowosc
Pasikonika ;20;81-098;Lubowo
Biedronki;15;81-789;Bobowo
Zuczka;10;61-874;Rabowo
Gasienicy;33;41-879;Warbowo
[[’Ulica’, ’Nomer domu’, ’Kod’, ’Miejscowosc’],
[’Pasikonika ’, ’20’, ’81-098’, ’Lubowo’],
[’Biedronki’, ’15’, ’81-789’, ’Bobowo’],
[’Zuczka’, ’10’, ’61-874’, ’Rabowo’],
[’Gasienicy’, ’33’, ’41-879’, ’Warbowo’], [”]]

28 / 86



Czytanie i przetwarzanie plików tabelarycznych:with
with open("tab.csv") as f:#1

dane = f.read() #

print(dane)
dane = dane.split(’\n’) #2 podziel po liniach
dane = [l.split(’;’) for l in dane] #2 podziel po wierszach
print(dane)
header = dane.pop(0) #4 nagłówek
dane.pop() #5 usunięcie ostatniego, pustego wiersza

Ulica;Nomer domu;Kod;Miejscowosc
Pasikonika ;20;81-098;Lubowo
Biedronki;15;81-789;Bobowo
Zuczka;10;61-874;Rabowo
Gasienicy;33;41-879;Warbowo
[[’Ulica’, ’Nomer domu’, ’Kod’, ’Miejscowosc’],
[’Pasikonika ’, ’20’, ’81-098’, ’Lubowo’],
[’Biedronki’, ’15’, ’81-789’, ’Bobowo’],
[’Zuczka’, ’10’, ’61-874’, ’Rabowo’],
[’Gasienicy’, ’33’, ’41-879’, ’Warbowo’], [”]]

29 / 86



Transponowanie danych

Dane są przechowywane w postaci listy list, gdzie każda lista zagnieżdżona to
pojedynczy wiersz składający się z danych różnego typu. Ponieważ operowanie
na wierszach zawierających dane różnego typu nie jest wygodne, można
przekształcić listę zagnieżdżoną do postaci kolumnowej (dokonać transpozycji)
przy pomocy funkcji zip(), którą omówimy za chwile. Dane przekazujemy z *
czyli rozwijamy przekazaną listę do postaci: dane[0], dane[1],...,dane[n-1]

dane = zip(*dane)
trans = list(dane)
print(trans)

[(’Pasikonika ’, ’Biedronki’, ’Zuczka’, ’Gasienicy’), (’20’, ’15’, ’10’, ’33’),
(’81-098’, ’81-789’, ’61-874’, ’41-879’), (’Lubowo’, ’Bobowo’, ’Rabowo’,
’Warbowo’)]

30 / 86



Przekształcenie typów danych

dane = zip(*dane)
trans = list(dane)
print(trans)

[(’Pasikonika ’, ’Biedronki’, ’Zuczka’, ’Gasienicy’), (’20’, ’15’, ’10’, ’33’),
(’81-098’, ’81-789’, ’61-874’, ’41-879’), (’Lubowo’, ’Bobowo’, ’Rabowo’,
’Warbowo’)]

W ostatnim kroku możemy przekształcić 2 i 3 linię do typu integer.

trans[1] = tuple(int(x) for x in trans[1])
print(trans)

trans[2] = tuple(int(x[:2]+x[3:]) for x in trans[2])
print(trans)

31 / 86



Zasady pisania czystego kodu

Kod napisany w Pythonie musi być pisany jak kod w Pythonie. Z
wykorzystaniem mechanizmów, które daje sam język i zgodnie z jego
założeniami.
Porównuj

names = ["Kasia", "Marek", "Ania", "Bartosz"]
for i in range(len(names)):

name = names[i]
print("Hi " + name + "!")

oraz

names = ["Kasia", "Marek", "Ania", "Bartosz"]
for name in names:

print(f"Hi {name}!")

32 / 86



Zen of Python
Zen of Python to lista założeń w okół których był tworzony ten język. Co
ciekawe, zasady te są dostępne z poziomu samego języka. Spróbuj uruchomić
taki plik:

import this

33 / 86



Zen of Python 1

Piękne jest lepsze niż brzydkie.
Wyrażone wprost jest lepsze niż domniemane.
Proste jest lepsze niż złożone.
Złożone jest lepsze niż skomplikowane.
Płaskie jest lepsze niż wielopoziomowe.
Rzadkie jest lepsze niż gęste.
Czytelność się liczy.
Sytuacje wyjątkowe nie są na tyle wyjątkowe, aby łamać reguły.
Choć praktyczność przeważa nad konsekwencją.
Błędy zawsze powinny być sygnalizowane.
Chyba że zostaną celowo ukryte.
W razie niejasności powstrzymaj pokusę zgadywania.

34 / 86



Zen of Python 2

Powinien być jeden -- i najlepiej tylko jeden --
oczywisty sposób na zrobienie danej rzeczy.

Choć ten sposób może nie być oczywisty jeśli nie jest się Holendrem.
Teraz jest lepsze niż nigdy.
Chociaż nigdy jest często lepsze niż natychmiast.
Jeśli rozwiązanie jest trudno wyjaśnić, to jest ono złym pomysłem.
Jeśli rozwiązanie jest łatwo wyjaśnić, to może

ono być dobrym pomysłem.
Przestrzenie nazw to jeden z niesamowicie genialnych pomysłów --

miejmy ich więcej!

35 / 86



Odróżniaj!

Styl kodowania – im określa się nieformalne zbiory reguł.
Standard kodowania – formalny dokument, wdrożony w konkretnym projekcie.
Większość standardów kodowania związana jest z odpowiadającym im językiem
programowania.
PEP8 jest stylem kodowania ale może być wdrożony jako standard.
https://peps.python.org/pep-0008/

36 / 86

https://peps.python.org/pep-0008/


Standardy kodowania języków programowania jak i styl kodowania zazwyczaj
obejmują takie aspekty kodu jak:
▶ Formatowanie kodu – szerokość wcięcia, maksymalna długość wiersza,

liczba pustych wierszy między kolejnymi definicjami i deklaracjami funkcji
bądź klas.

▶ Konwencje nazewnicze – schemat nazywania funkcji, klas, zmiennych,
modułów, przestrzeni nazw, plików i tym podobnych.

▶ Komentowanie kodu – sposób komentowania kodu, opisywania zmian,
konieczność udokumentowania algorytmów użytych do rozwiązania
konkretnego fragmentu kodu.

▶ Konstrukcje programistyczne – zależne od języka programowania,
obejmują polecane i zabraniane konstrukcje, wynikające na przykład z
ograniczeń platformy docelowej lub użytych narzędzi programistycznych.

37 / 86



Dlaczego potrzebne jest standard kodowania? - 1

Korzystanie ze standardów kodowania:
▶ zmniejsza koszty związane z konserwacją oprogramowania
▶ zwiększa jakość kodu poprzez ułatwianie jego zrozumienia przez bardziej

doświadczonych deweloperów
▶ przyśpiesza proces jego restrukturyzacji
▶ umożliwia deweloperom na płynniejsze korzystanie z narzędzi

automatyzacji ich pracy

Standardy kodowania szczególnie wymagane są podczas pracy w dużych
instytucjach i projektach programistycznych, w których występuje częsta
rotacja kadr.

38 / 86



Dlaczego potrzebne jest standard kodowania? - 2

We wstępie do opisu konwencji kodowania dla języka Java, firma Sun
Microsystems wymieniła następujące fakty:
▶ 80% kosztów oprogramowania wynosi jego utrzymanie,
▶ jedynie nieliczne systemy są rozwijane ciągle przez jeden, niezmienny

zespół programistów,
▶ konwencje formatowania kodu zwiększają jego czytelność, pozwalając na

szybsze wdrożenie nowych inżynierów w prace nad rozwojem
oprogramowania,

▶ jeśli sprzedajesz kod źródłowy jako produkt, musisz upewnić się, że jest on
zaparkowany i czytelny tak, jak w przypadku innych produktów.

39 / 86



Styl kodowania

Styl kodowania – mniej lub bardziej sformalizowany zestaw reguł i zaleceń
określający, jak powinien wyglądać kod źródłowy programu od strony jego
czytelności i wyglądu.

Styl kodowania NIE ma wpływu na sposób interpretacji lub kompilacji
programu lecz jest bardzo ważne dla programistów, którzy go rozwijają.

Czytelność poszczególnych zasad jest subiektywna, dlatego nie istnieje jedna,
uniwersalna konwencja.

Przyjęte reguły zależą od wybranego języka programowania.

40 / 86



Niektóre wskazówki do pisania czystego kodu w Pythonie 1

▶ Używaj f-napisów:

print(f"You are a fantastic programmer, {first} {middle} {last}")
#You are a fantastic programmer, Sam Douglas Miller.

41 / 86



Niektóre wskazówki do pisania czystego kodu w Pythonie 2.1
▶ funkcje powinny robić tylko jedną rzecz:

def print_page(banner_text, banner_images, content, footer_text):
# Print banner
print("")
print("Title:")
print(banner_text)
print("")

# Do some image processing
for images in banner_images:

compress(banner_images)
height, width = banner_images["size"]
new_image = size(height, width)

# Print banner image
render(new_image)

# Print content
print("")
print("")
print(content)

42 / 86



Niektóre wskazówki do pisania czystego kodu w Pythonie 2.2

# Print footer
footer_length = len(footer_text)
for i in range(0, footer_length):

print("---------")
print(footer_text)

and so on.....

Porownaj z:

def print_page(banner_text, banner_images, content, footer_text):
print_banner(banner_text)
render_images(banner_images)
print_content(content)
print_footer(footer_text)

43 / 86



Długość linii

Ponieważ szerokość monitora jest ograniczona, tylko pewna liczba znaków w
linii może być jednocześnie widoczna dla programisty. Dlatego stosuje się
ograniczenie długości linii kodu. Popularne limity liczby znaków w linii to 80,
78 lub 120.

44 / 86



Nazewnictwo funkcji i zmiennych 1

Każda zmienna oraz funkcja w programie musi posiadać swoją nazwę, która
będzie później wykorzystywana przez programistę we wszystkich odwołaniach
do niej. Z tego powodu standardy kodowania poświęcają dużo miejsca
ujednoliceniu zasad nazewnictwa. Rozpatrywane są zarówno kwestie wyglądu,
jak i sensowności poszczególnych nazw. Dominującymi stylami zapisu są:
▶ podkreślenia (snake case): to_jest_nazwa,
▶ camelCase: toJestNazwa,
▶ PascalCase: ToJestNazwa
▶ wielkie litery: TO_JEST_NAZWA.

Pojedynczy standard może wykorzystywać kilka stylów do oznaczania różnych
elementów.

45 / 86



Nazewnictwo funkcji i zmiennych 2

PEP8 sugeruje snake_case dla funkcji i zmiennych oraz CamelCase dla klasów.
Nazwy znajdujące się w dużych zakresach powinny być w miarę długie i
opisowe, np. vector, window_with_border czy department_number.
Natomiast nazwy należące do niewielkich zakresów powinny być krótkie i
konwencjonalne, np. x, i czy p. Pod względem semantycznym reguły uznają
przeważnie za niepoprawny kod, w którym nazwy zmiennych i funkcji nie mówią
nic o tym, do czego one służą (np. a, b, c, oprócz oczywistych przypadkach).
Nazwy powinny być krótkie, lecz znaczące, np. object_width. Ponadto
dobrze jest, gdy często używane nazwy są krótkie, a rzadziej używane - dłuższe.

Nazwa powinna odzwierciedlać znaczenie nazywanej jednostki, a nie jej
implementację. Na przykład nazwa phone_book jest lepsza niż
number_vector, nawet jeśli numery telefoniczne są przechowywane w wektorze.

46 / 86



Nazewnictwo funkcji i zmiennych 3

Nie należy do nazwy dodawać informacji o typie, chociaż zwyczaj taki jest
pielęgnowany w językach o dynamicznej i luźnej kontroli typów.
▶ Określenie typu w nazwie obniża poziom abstrakcji programu. W

szczególności uniemożliwia programowanie ogólne (którego podstawą jest
możliwość odnoszenia się nazw do jednostek różnych typów).

▶ Kompilator lepiej radzi sobie z zapamiętywaniem nazw niż człowiek.
▶ Każdy system skrótów nazw typów, jaki wymyślisz, stanie się kulą u nogi,

gdy zaczniesz używać dużej liczby typów do różnych celów.

Choć język na ogół nie jest określany przez standardy kodowania, niepisaną
regułą jest wykorzystanie angielskiego zamiast języków narodowych.

Wybór właściwych nazw to sztuka.

47 / 86



Python ma zarezerwowanych 35 słów kluczowych

and del from None True
as elif global nonlocal try
assert else if not while
break except import or with
class False in pass yield
continue finally is raise async
def for lambda return await

48 / 86



Komentarzy

Każdy praktycznie stosowany język programowania zezwala na tworzenie
komentarzy – fragmenty tekstu, które są pomijane przez interpreter bądź
kompilator.
▶ W komentarzach programista może zapisać słownie dodatkowe informacje

na temat działania czy zastosowania określonego kawałka kodu.
▶ Komentarze są powszechnie wykorzystywane przez narzędzia do

automatycznego generowania dokumentacji na podstawie kodu
źródłowego. Analizują one komentarze umieszczone nad funkcjami,
zmiennymi i klasami, wyciągając z nich opis działania oraz dodatkowe
znaczniki zawierające np. opisy argumentów.

▶ Komentarze wykorzystuje się również do umieszczenia na początku
każdego pliku informacji o prawach autorskich oraz licencji, którą objęty
jest dany kod.

Komentarze mogą zawierać objaśnienie, co robi dany fragment kodu, uwagi
dotyczące jego użycia bądź informacje techniczne dla innych programistów (np.
o znalezionych błędach albo pozostałych do zaimplementowania funkcjach).

Pamiętaj o docstringach!

49 / 86



Dokumentowanie kodu

▶ Podstawowym narzędziem opisywania działania kodu są umieszczone w
nim komentarze ze słownym opisem w języku naturalnym, których
zawartość jest ignorowana przez programy.

▶ Dokładniejsze dokumentacje mają postać osobnych dokumentów
szczegółowo opisujących wszystkie elementy kodu źródłowego w pewien
ustandaryzowany sposób. Opis każdego elementu sporządzony jest w
języku naturalnym, może zawierać odnośniki do powiązanych elementów i
przykłady użycia. Programista pragnący użyć danego elementu, może go
szybko odnaleźć w dokumentacji i zapoznać się ze wszystkimi dostępnymi
na jego temat informacjami. Pozostałe tematy związane z budową i
działaniem kodu źródłowego opracowane są najczęściej w formie
klasycznych artykułów.

Istnieje szereg wyspecjalizowanych narzędzi umożliwiających tworzenie
dokumentacji bezpośrednio z istniejącego kodu źródłowego, na przykład
Doxygen. Dzięki znajomości gramatyki języka programowania potrafią
automatycznie określić wiele związków między poszczególnymi elementami.
Dodatkowe informacje oraz opis są importowane ze specjalnych komentarzy
umieszczonych nad każdym elementem.

50 / 86



Operatory

▶ Operatory są otoczone zawsze spacjami;
▶ Można używać nawiasy dla najlepszej czytelności

51 / 86



Zły przykłady 1

▶ apples, oranges, fruits = 4, 5, 6
Można używać nprz, dla współrzędnych:

i, j = 3, 5
(i, j) = (3, 5) # same as above
n, m = 1, 1
x, y = (0, 0) # parentheses are optional

▶ numbers = digits = [0,1,2]

52 / 86



Zły przykłady 2

▶ Nie używaj while zamiast for

i = 0
while i < 10:
do_x()

Trzeba:

for i in range(10):
do_x()

▶ numbers = digits = [0,1,2]

53 / 86



Zły przykłady 3

▶ Nie nadużywaj try–-except zamiast if–-else
▶ Nie nadużywaj break w while

54 / 86



Dobra wiadomość

Nowoczesny środowiska (takie jak Visual Studio oraz PyCharm) pomagają w
formatowaniu koda źródłowego.
Astyle: https://astyle.sourceforge.net/
clang format: https://clang.llvm.org/docs/ClangFormat.html
itd.

55 / 86

https://astyle.sourceforge.net/
https://clang.llvm.org/docs/ClangFormat.html


Na tym kończymy z szczególnościami Python i krotko omówimy algorytmy, tzn
logika programowania.

56 / 86



Złożoność algorytmu

Zasoby: pamięć i czas.
▶ Jeśli znamy kilka algorytmów rozwiązujących pewne zadanie, warto je

porównać, aby wybrać najlepszy.
▶ Jednym z kryteriów służących do porównania algorytmów są zasoby,

których potrzebują: ilość pamięci komputera i czas działania.
▶ Ilość pamięci (czasu) niezbędnej do zrealizowania algorytmu nazywamy

jego złożonością pamięciową (czasową).

57 / 86



Złożoność czasowa

▶ W jakich jednostkach należy mierzyć czas?
▶ Szybkość wykonania algorytmu nie może zależeć od komputera!
▶ Dlatego nie możemy mierzyć czasu wykonania algorytmu w jednostkach

czasu, np. mikrosekundach.
▶ Od czego zależy czas wykonania algorytmu, co jest niezależne od szybkości

komputera?
▶ Złożoność czasową mierzymy liczbą operacji potrzebnych do realizacji tego

algorytmu. W teorii złożoności nie staramy się być super dokładni.
Dlatego w rachunkach uwzględnia się tylko operacje dominujące.

▶ Operacje dominujące zależą od problemu.
▶ Sortowanie liczb: porównanie dwóch elementów
▶ Liczenie wartości wielomianu: operacje arytmetyczne

58 / 86



Rozmiar problemu

▶ Liczba operacji potrzebna do realizacji algorytmu zależy od rozmiaru
problemu. (Użycie algorytmu do posortowania 3 liczb wymaga mniej
operacji niż do posortowania 1000 liczb.)

▶ Z każdym problemem wiążemy liczbę naturalną n reprezentującą jego
rozmiar.

▶ Rozmiar problemu zależy od jego natury:
▶ W problemie sortowania rozmiarem jest liczba liczb, które sortujemy.
▶ W problemie sprawdzenia, czy dana liczba jest liczbą pierwszą rozmiar

definiuje się jako liczbę cyfr badanej liczby

59 / 86



Złożoność czasowa algorytmu

Złożonością czasową algorytmu nazywamy liczbę operacji dominujących, które
trzeba wykonać, aby rozwiązać problem o rozmiarze n. Zatem złożoność
czasową można traktować jako funkcję ze zbioru liczb naturalnych w zbiór liczb
naturalnych.
▶ T (n) = const (złożoność stała)
▶ T (n) = log2 n (złożoność logarytmiczna)
▶ T (n) = 2 ∗ n + 2 (złożoność liniowa)
▶ T (n) = 2n2 − 7 (złożoność kwadratowa)
▶ T (n) = wielomian (złożoność wielomianowa)
▶ T (n) = 2n (złożoność wykładnicza)

60 / 86



Rzędy wielkości funkcji 1

Niech f , g : N → N.
Mówimy, że f jest co najwyżej rzędu g , co zapisujemy

f (n) = O(g(n))

jeśli istnieją stała rzeczywista c > 0 oraz stała naturalna n0 takie, że
nierówność f (n) ≤ c ∗ g(n) zachodzi dla każdego n > n0.

Na przykład,
n2 + 2n = O(n2),

bo n2 + 2n ≤ 3n2, dla każdego n.

61 / 86



Rzędy wielkości funkcji 2

Mówimy, ze f jest dokładnie rzędu g , co zapisujemy f (n) = Θ(g(n)) jeśli
istnieją stałe rzeczywiste c1 i c2 oraz stała naturalna n0, takie że nierówność
c1 ∗ g(n) ≤ f (n) ≤ c2 ∗ g(n) zachodzi dla każdego n > n0.

Na przykład, n2 + 2n = Θ(n2), bo n2 ≤ n2 + 2n ≤ 3n2, dla każdego n ≥ n0.

Wielomian akn
k + ak−1n

k−1 + · · ·+ a1n+ a0, gdzie ak > 0 jest dokładnie rzędu
nk .

62 / 86



Złożoność średnia i pesymistyczna

▶ Złożoność średnia (oczekiwana) – określa złożoność losowego przypadku.
▶ Złożoność pesymistyczna – określa złożoność najgorszego przypadku.

63 / 86



Przykład: problem wyszukiwania

Dany jest ciąg A liczb całkowitych i liczba całkowita x . Stwierdzić, czy x
należy do ciągu.
Możliwości: A jest posortowany, A nie jest posortowany.
Warianty tego problemu: Podać adres w tablicy pierwszego wystąpienia x . Jeśli
x nie występuje zwrócić −1. Znaleźć wszystkie wystąpienia x w A.

64 / 86



Wyszukiwanie liniowe Algorytm 1 (naiwny)

listA = [1,2,3,4,5,6,7,8,9,2,4,9,6,5,3,4,2,10,5,30]
znaleziono = False;
x = int(input("Co szukamy? "))
for i in listA:
if x==i: znaleziono = True
if znaleziono: print("tak")
else: print("nie")

Algorytm wykonuje n poleceń.

65 / 86



Wyszukiwanie liniowe Algorytm 2

listA = [1,2,3,4,5,6,7,8,9,2,4,9,6,5,3,4,2,10,5,30]
znaleziono = False;
x = int(input("Co szukamy? "))
for i in listA:

if x==i:
znaleziono = True
break

if znaleziono: print("tak")
else: print("nie")

Algorytm wykonuje n poleceń w pesymistycznym przypadku, ale wykonuje n/2
poleceń średnie.

Czyli złożoność Θ(n).

66 / 86



Wyszukiwanie binarne (w uporządkowanej tablice)

67 / 86



Wyszukiwanie binarne (w uporządkowanej tablice)

listA = [1,2,3,4,5,6,7,8,9,10,12,13,
14,50,60,70,80,90,200,300,400]
i=0
j=len(listA)-1
znaleziono = False
x = int(input("Co szukamy?"))
while not znaleziono and j>=i:

k=(i+j)//2
if listA[k]==x: znaleziono = True
elif listA[k]<x: i=k+1
else: j=k-1

if znaleziono: print("tak")
else: print("nie")

68 / 86



Złożoność (pesymistyczna) wyszukiwania binarnego

▶ Jaka jest maksymalna liczba porównań dla tablicy n-elementowej?
▶ Każde porównanie skraca długość tablicy o połowę.
▶ Proces ten kończy się gdy znajdziemy element lub tablica jest pusta.

Pesymistyczna liczba porównań jest rzędu Θ(log2n).

69 / 86



Często spotykane złożoności obliczeniowe

▶ Stała złożoność obliczeniowa Θ(1);
▶ Złożoność liniowa Θ(n);
▶ Złożoność logarytmiczna Θ(log n);
▶ Θ(n ∗ log n) (naprz. sortowanie przez łączenie);
▶ Złożoność wielomianowa Θ(nk);

▶ Złożoność wykładnicza Θ(kn);
▶ Θ(n!).

70 / 86



Często spotykane złożoności obliczeniowe

(a) Stała złożoność
obliczeniowa Θ(1)

(b) Złożoność liniowa Θ(n) (c) Złożoność logarytmiczna
Θ(log n)

(a) Θ(n ∗ log n)
(b) Złożoność wielomianowa
Θ(nk )

(c) Złożoność wykładnicza Θ(kn)
71 / 86



Często spotykane złożoności obliczeniowe

(a) Złożoność wielomianowa
Θ(nk )

(b) Złożoność wykładnicza Θ(kn) (c) Θ(n!)

72 / 86



Zapotrzebowanie na czas

73 / 86



Układanka

▶ Zakładamy, że mamy układankę 5 × 5
▶ Zakładamy, że każdy kwadrat ma ustalony kierunek góra-dół i prawo-lewo,

zatem nie musimy kwadratów obracać.
▶ Chcemy stwierdzić, czy można ułożyć dany zestaw 25 kwadratów.

Rozwiązanie naiwne: sprawdzamy wszystkie możliwe układy. (Metoda ta
wymaga, posiadania procedury generowania kolejnych układów, aby się nie
powtarzały).

74 / 86



▶ Ile wynosi liczba wszystkich możliwych ułożeń 25 kwadratów?
▶ 25 ∗ 24 ∗ 23 ∗ . . . ∗ 2 ∗ 1 = 25!
▶ Liczba 25 składa się z 26 cyfr.
▶ Jeśli założymy, że nasz komputer będzie realizował milion ułożeń na

sekundę, to przejrzenie wszystkich ułożeń zajmie ?

ponad 400 milionów lat!!!

Znajdowanie szybszych algorytmów jest bieżącym tematem badawczym.

75 / 86



Złożoność problemu

Złożoność problemu – złożoność algorytmu o minimalnej złożoności
rozwiązującego ten problem
▶ Problem sortowania: Θ(n log2 n)

▶ Problem wieży z hanoi: Θ(2n)

Istnieje bardzo wiele problemów, których złożoność jest nieznana!
▶ Problemy łatwo rozwiązywalne – problemy o złożoności wielomianowej.
▶ Problemy trudno rozwiązywalne – problemy o złożoności

ponadwielomianowej.

Pułapka – pewne problemy łatwo rozwiązywalne mogą się w praktyce okazać
gorsze niż trudno rozwiązywalne (przynajmniej teoretycznie)!!

76 / 86



Wieży z hanoi

77 / 86



Wieży z hanoi: rozwiązanie rekurencyjne

▶ Przenieś (rekurencyjnie) n − 1 krążków ze słupka A na słupek B,
posługując się słupkiem C .

▶ Przenieś jeden krążek (największy) ze słupka A na słupek C .
▶ Przenieś (rekurencyjnie) n − 1 krążków ze słupka B na słupek C ,

posługując się słupkiem A.

Łatwo obliczyć złożoność jako Θ(2n).

78 / 86



Wieży z hanoi: rozwiązanie iteracyjne

▶ Przenieś najmniejszy krążek na kolejny (*) słupek.
▶ Wykonaj jedyny możliwy do wykonania ruch, nie zmieniając położenia

krążka najmniejszego.
▶ Powtarzaj punkty 1 i 2, aż do odpowiedniego ułożenia wszystkich krążków.

Złożoność algorytmu Θ(2n) (bez dowodu).

(*)Kolejny słupek wyznaczany w zależności od liczby krążków. Parzysta – po
prawej stronie, nie parzysta — po lewej.

79 / 86



Liczby Fibonacc’ego

Rekurencyjne

def Fib(n):
if n < 2:

return n
else:

return Fib(n-1) + Fib(n-2)

Złożoność (dodawania): Θ(2n)

80 / 86



Liczby Fibonacc’ego

Iteracyjne

f0 = 0
f1 = 1

for i in range(2,n+1):
f = f1
f1 = f1 + f0
f0 = f

Złożoność (dodawania): Θ(n)

81 / 86



Klasy P oraz NP

Tutaj mówimy TYLKO o problemach decyzyjnych (TAK/NIE).

Teoria złożoności obliczeniowej kategoryzuje problemy decyzyjne w zależności
od tego jak trudno jej rozwiązać (najefektywniejszym algorytmem)

Problem P – problem decyzyjny, dla którego rozwiązanie można znaleźć w
czasie wielomianowym.

Problem NP – problem decyzyjny, dla którego rozwiązanie TAK można
sprawdzić w czasie wielomianowym.
Wszystkie problemy klasy P są NP.

Problem milenijny: czy P = NP?

82 / 86



Problemy NP−zupełne

Tutaj mówimy TYLKO o problemach decyzyjnych (TAK/NIE).
Każdy problem NP-zupełny charakteryzuje się następującymi własnościami:
▶ Znane jest jego rozwiązanie wykładnicze
▶ Nie wiadomo, czy istnieje rozwiązanie wielomianowe
▶ Jeśli posiada rozwiązanie wielomianowe, to wszystkie inne problemy

NP-zupełne też posiadają takie rozwiązanie (jeśli A i B są dowolnymi
problemami NP-zupełnymi, to A można w czasie wielomianowym
sprowadzić do B).

83 / 86



Problem komiwojażera (wersja decyzyjna)
Dany jest zbiór n miast wraz z odległościami między nimi. Komiwojażer chce
odwiedzić wszystkie miasta, każde dokładnie raz, i powrócić do punktu wyjścia.
Dla danej liczby naturalnej k stwierdzić, czy istnieje trasa komiwojażera krótsza
od k.

84 / 86



Problem komiwojażera

▶ Nie jest znana złożoność problemu komiwojażera.
▶ Znane algorytmy rozwiązujące ten problem mają złożoność wykładniczą.
▶ Charakterystyczną własnością problemu komiwojażera jest łatwość

potwierdzenia rozwiązania: jeśli odpowiedź brzmi „tak”, łatwo jest o tym
kogoś przekonać podając potwierdzenie zawierające dowód tego faktu.

85 / 86



Ciekawostka

Problem Hamiltona i problem Eulera
▶ Ścieżka Hamiltona – droga w grafie przechodząca przez każdy wierzchołek

(miasto) dokładnie raz. Problem Hamiltona – czy w danym grafie istnieje
ścieżka Hamiltona?

▶ Ścieżka Eulera – droga w grafie przechodząca przez każdą krawędź
dokładnie raz. Problem Eulera – czy w danym grafie istnieje ścieżka
Eulera?

Problem Hamiltona jest problemem NP–zupełnym. Problem Eulera posiada
algorytm wielomianowy (graf musi mieć 0 albo 2 wierzchołka parzystego
stopnia)!!!

86 / 86


