
Wstęp do programowania
semestr zimowy 2025/2026

Dr Anna Muranova
UWM w Olsztynie

Wykład 8

1 / 24

Klasy

Pierwszym krokiem tworzenia własnych obiektów jest stworzenie klasy, która
jest czymś w rodzaju projektu, na podstawie którego tworzone są obiekty, które
są egzemplarzami klasy. Obiekty mogą przechowywać dane, a także wykonywać
kod, który jest umieszczony w metodach. Metody są funkcjami, które są
częściami klasy.
Klasa opisuje pewien typ obiektów. Jest więc czymś w rodzaju “projektu” na
podstawie którego tworzy się konkretne obiekty, które są osobnymi bytami. W
klasie możemy zdefiniować przechowywane przez obiekty rodzaje informacji, a
także operacje, które obiekty będą wykonywać. Najpierw więc tworzymy
projekt (klasę), a potem na jej podstawie konkretne obiekty.
Klasy można umieszczać w osobnych plikach (modułach), zwłaszcza jeśli są
bardzo rozbudowane, ale wiele klas może być także umieszczonych w jednym
module.

https://www.w3schools.com/python/python_classes.asp
https://kt.academy/pl/article/py-klasy
https://ggoralski.gitlab.io/python-wprowadzenie/czesc_i/
15-klasy_i_obiekty/

2 / 24

https://www.w3schools.com/python/python_classes.asp
https://kt.academy/pl/article/py-klasy
https://ggoralski.gitlab.io/python-wprowadzenie/czesc_i/15-klasy_i_obiekty/
https://ggoralski.gitlab.io/python-wprowadzenie/czesc_i/15-klasy_i_obiekty/

Pierwszy przykład

Zacznijmy od najprostszej opcji, czyli pustej klasy. Taka klasa nic nie będzie
zawierać, niemniej będzie miała swoją nazwę i będziemy mogli przy jej pomocy
stworzyć obiekt

class Cookie:
pass

cookie = Cookie()

Przy nazywaniu klas możemy używać tych samych znaków co w przypadku
zmiennych i funkcji: małych i dużych liter oraz znaku podkreślenia _.
Konwencja nazewnicza jest jednak inna. Dla funkcji i zmiennych używaliśmy
snake_case. W przypadku klas używamy PascalCase (lub UpperCamelCase),
czyli każde słowo zaczynamy wielką literą, nie używamy spacji ani znaków
podkreślenia.

3 / 24

Zmienne obiektu 1
Do obiektu możemy przypisać zmienną z określoną wartością. Taka wartość
dotyczyć będzie wyłącznie tego jednego obiektu. Aby odnieść się do zmiennej
w obiekcie, musimy wskazać zarówno obiekt, jak i zmienną, a oddzielamy ich
nazwy kropką. Dla przykładu, aby odnieść się do zmiennej type w obiekcie
cookie1, użyjemy cookie1.type. Zarówno do przypisania wartości, jak i do jej
pobrania.

class Cookie:
pass

cookie1 = Cookie()
cookie2 = Cookie()
cookie1.type = "Biscuit"
cookie1.color = "White"
cookie2.type = "Oreo"
print(cookie1.type) # Biscuit
print(cookie1.color) # White
print(cookie2.type) # Oreo
print(cookie2.color)

4 / 24

Konstruktor i inicjalizator 1
Nieczęsto tworzy się zmienne obiektu tak jak w powyższym przykładzie: poza
klasą. Często jest to wręcz uznawane za złą praktykę. Częściej tworzy się je w
obrębie metod, a zwłaszcza szczególnej metody zwanej inicjalizatorem.
Gdy tworzymy nowy obiekt, stawiamy nawias za nazwą klasy. Ten nawias to
wywołanie funkcji tworzącej obiekt, zwanej konstruktorem. Funkcja ta
przechodzi przez szereg kroków, niezbędnych do utworzenia obiektu, w tym
między innymi woła specjalną metodę o nazwie __init__ z naszej klasy. Ta
metoda zwana jest inicjalizatorem. W jej ciele określamy, co powinno się dziać
w czasie tworzenia obiektu. Najczęściej definiujemy w niej atrybuty obiektu.

class Cookie:
def __init__(self, type, color):

self.type = type
self.color = color

#pierwszym parametrem jest odniesienie do instancji obiektu,
#na którym tę metodę wywołamy

cookie1 = Cookie("Biscuit","White")
print(cookie1.type) # Biscuit
print(cookie1.color) # White

5 / 24

Konstruktor i inicjalizator 2
Liczba parametrów funkcji __init__ określa, ile argumentów powinno się
znaleźć w wywołaniu konstruktora (czyli nawiasie, który stawiamy za nazwą
klasy, gdy tworzymy obiekt). Jeśli więc w funkcji __init__ dodamy parametr
name, to przy tworzeniu obiektu nie możemy już zostawić pustego nawiasu.
Powinniśmy podać tam argument, który posłuży jako imię. Typowym dla
funkcji __init__ jest, że spodziewa się określonych parametrów, po czym
przypisuje je do obiektu jako atrybuty o takiej samej nazwie.

class Cookie:
def __init__(self, type, color = None):

self.type = type
self.color = color

cookie1 = Cookie("Biscuit","White")
cookie2 = Cookie("Oreo")
print(cookie1.type) # Biscuit
print(cookie1.color) # White
print(cookie2.type) # Oreo
print(cookie2.color) #None

6 / 24

Jeszcze przykład

class Player:
def __init__(self, name, surname):

self.name = name
self.surname = surname
self.full_name = f"{name} {surname}"
self.points = 0

player = Player("Michał", "Mazur")
print(player.name) # Michał
print(player.surname) # Mazur
print(player.full_name) # Michał Mazur
print(player.points) # 0

7 / 24

Metody
Wewnątrz klas możemy definiować funkcje. Takie funkcje nazywane są
metodami. Definiujemy je w ciele klasy, a ich pierwszym parametrem jest
odniesienie do instancji obiektu, na którym tę metodę wywołamy. Parametr ten
powinno nazywać się self. Gdy wywołujemy metodę, zaczynamy od obiektu,
następnie stawiamy kropkę, nazwę metody i nawias z argumentami.

class Position:
def __init__(self, x = 0.0, y = 0.0):

self.x = x
self.y = y

def step_right(self):
self.x += 1.0

def move_up(self, value):
self.y += value

pos = Position()
pos.step_right()
print(pos.x) # 1.0
pos.move_up(6.0)
print(pos.y) # 6.0
pos.move_up(3.0)
print(pos.y) # 9.0 8 / 24

Obiekty i zmienne 1

Każdy obiekt jest osobnym bytem. To, że wyglądają podobnie, nie znaczy, że
mają na siebie wpływ. Dlatego też w poniższym przykładzie zmiana name w
obiekcie user1 nie będzie miała żadnego wpływu na user2.

class User:
def __init__(self, name):

self.name = name

user1 = User("Rafał")
user2 = User("Rafał")

print(user1.name) # Rafał
print(user2.name) # Rafał

user1.name = "Bartek"

print(user1.name) # Bartek
print(user2.name) # Rafał

9 / 24

Obiekty i zmienne 1

Każdy obiekt jest osobnym bytem. To, że wyglądają podobnie, nie znaczy, że
mają na siebie wpływ. Dlatego też w poniższym przykładzie zmiana name w
obiekcie user1 nie będzie miała żadnego wpływu na user2.

class User:
def __init__(self, name):

self.name = name

user1 = User("Rafał")
user2 = User("Rafał")

print(user1.name) # Rafał
print(user2.name) # Rafał

user1.name = "Bartek"

print(user1.name) # Bartek
print(user2.name) # Rafał

10 / 24

Obiekty i zmienne 2
Z drugiej strony, jeśli mamy dwie zmienne wskazujące na jeden obiekt, to
możemy go zmienić przy użyciu dowolnej z nich. Po takim zabiegu, wartości
dla obu zmiennych ulegną zmianie, bo przecież przekształcone zostało coś, na
co obydwie wskazują.

user1 = User("Rafał")
user2 = user1

print(user1.name)
Rafał
print(user2.name)
Rafał

user1.name = "Bartek"

print(user1.name)
Bartek
print(user2.name)
Bartek

Rysunek: Źródło: https:
//kt.academy/pl/article/py-klasy

11 / 24

https://kt.academy/pl/article/py-klasy
https://kt.academy/pl/article/py-klasy

Obiekty i zmienne 3
Dwie zmienne wskazują na ten sam obiekt i właściwość tego obiektu zmienia
wartość.
Warto porównać to z przykładem, gdy dwa obiekty pokazywały na tą samą
wartość, a potem zmieniło się to, na co jedna z tych zmiennych wskazuje.
Wynik będzie inny.

user1 = User("Rafał")
user2 = user1

print(user1.name)
Rafał
print(user2.name)
Rafał

user1 = User("Bartek")

print(user1.name)
Bartek
print(user2.name)
Rafał

Rysunek: Źródło: https:
//kt.academy/pl/article/py-klasy

12 / 24

https://kt.academy/pl/article/py-klasy
https://kt.academy/pl/article/py-klasy

Metoda copy()

Dwie zmienne wskazują na ten sam obiekt i właściwość tego obiektu zmienia
wartość.

class User:
def __init__(self, name):

self.name = name

def copy(self):
return User(self.name)

user1 = User("Rafał")
user2 = user1.copy()
user1.name = "Bartek"
print(user1.name) # Bartek
print(user2.name) # Rafał
user2.name = "Marek"
print(user1.name) # Bartek
print(user2.name) # Marek

13 / 24

Metoda __str__()

class User:
def __init__(self, name):

self.name = name

def __str__(self):
return f’Username:{self.name}’

user1 = User("Rafał")
print(user1)

14 / 24

Przykład: klasa liczb rzymskich

Funkcja pierwsza:

def to_arabic(number):
roman_numerals = {’I’: 1, ’V’: 5, ’X’: 10, ’L’: 50, ’C’: 100,

’D’: 500, ’M’: 1000}
4 (IV) and 9 (IX), 40 (XL), 90 (XC), 400 (CD) and 900 (CM)
number = number.replace(’IV’, ’IIII’)
number = number.replace(’IX’, ’VIIII’)
number = number.replace(’XL’, ’XXXX’)
number = number.replace(’XC’, ’LXXXX’)
number = number.replace(’CD’, ’CCCC’)
number = number.replace(’CM’, ’DCCCC’)
return sum(roman_numerals[i] for i in number)

print(to_arabic(’MCDLXIV’))

15 / 24

Przykład: klasa liczb rzymskich

Funkcja druga:

def to_roman(n):
roman_numerals = {1000:’M’, 900: ’CM’, 500: ’D’, 400: ’CD’, 100:

’C’, 90:’XC’,50: ’L’, 40:’XL’,
10:’X’, 9:’IX’, 5: ’V’ ,4:’IV’, 1: ’I’}

s = ’’
for i in roman_numerals:

div = n // i
n %= i
while div:

s += roman_numerals[i]
div -= 1

return s

print(to_roman(1464))

16 / 24

Przykład: konstruktor

class Roman:
def __init__(self, n):

#two constructors are not allowed
if isinstance(n, str):

self.roman = n
roman_numerals = {’I’: 1, ’V’: 5, ’X’: 10, ’L’: 50,

’C’: 100, ’D’: 500, ’M’: 1000}

n = n.replace(’IV’, ’IIII’)
n = n.replace(’IX’, ’VIIII’)
n = n.replace(’XL’, ’XXXX’)
n = n.replace(’XC’, ’LXXXX’)
n = n.replace(’CD’, ’CCCC’)
n = n.replace(’CM’, ’DCCCC’)
self.arabic = sum(roman_numerals[i] for i in n)

17 / 24

Przykład: konstruktor dalej
elif isinstance(n, int):

if n<=0:
raise ValueError("Roman number should be positive")

self.arabic = n
romanian_numerals = {1000: ’M’, 900: ’CM’, 500: ’D’,

400: ’CD’, 100: ’C’, 90: ’XC’, 50: ’L’, 40: ’XL’,
10: ’X’, 9: ’IX’, 5: ’V’, 4: ’IV’, 1: ’I’}

s = ’’
for i in romanian_numerals:

div = n // i
n %= i
while div:

s += romanian_numerals[i]
div -= 1

self.roman = s

def __str__(self):
return self.roman

print(Roman(10))#X
print(Roman("XVI"))#XVI

18 / 24

Przykład: funkcja

class Roman:
def __init__(self, n):

...
def __str__(self):

...

r = Roman("XVI")
print(r.arabic)#16

19 / 24

Przykład: dodawanie i mnożenie

class Roman:
def __init__(self, n):

...
def __str__(self):

...

def __add__(self, other):
return Roman(self.arabic+other.arabic)

def __mul__(self, other):
return Roman(self.arabic*other.arabic)

r = Roman("XVI")
p = Roman("X")
print(r+p)#XXVI
print(r*p)#CLX

20 / 24

Przykład: odejmowanie i dzielenie

class Roman:
....

def __sub__(self, other):
return Roman(self.arabic-other.arabic)

def __truediv__(self,other):
if self.arabic%other.arabic == 0:

return Roman(self.arabic//other.arabic)
raise ValueError ("Roman number should be integer")

print(Roman(’X’)-Roman(’IX’))#I
print(Roman(’XX’)/Roman(’X’))#II

print(Roman(’X’)-Roman(’X’))#ValueError
print(Roman(’VIII’)/Roman(’X’))#ValueError

21 / 24

Dziedziczenie(inheritance)

class Person:
def __init__(self, fname, lname):

self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person):
pass

x = Person("John", "Doe")
x.printname()

x = Student("Mike", "Olsen")
x.printname()

22 / 24

Dziedziczenie(inheritance)
class Person:

def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person):
def __init__(self, fname, lname, number):

Person.__init__(self, fname, lname)
#super().__init__(fname, lname)
self.number = number

x = Person("John", "Doe")
x.printname()

x = Student("Mike", "Olsen", 1999)
x.printname()

23 / 24

Jeszcze przykład

class Fruit:

def __init__(self, name, sugar_content):
self.name = name
self.sugar_content = sugar_content

class Apple(Fruit):

def __init__(self):
super().__init__("apple", 2)

24 / 24

