Wstep do programowania
semestr zimowy 2025/2026

Dr Anna Muranova
UWM w Olsztynie

Wyktad 8

1/24



Klasy

Pierwszym krokiem tworzenia wtasnych obiektéw jest stworzenie klasy, ktéra
jest czyms$ w rodzaju projektu, na podstawie ktérego tworzone s3 obiekty, ktére
sg egzemplarzami klasy. Obiekty moga przechowywa¢ dane, a takze wykonywaé
kod, ktéry jest umieszczony w metodach. Metody sa funkcjami, ktére sa
czesciami klasy.

Klasa opisuje pewien typ obiektéw. Jest wiec czyms$ w rodzaju “projektu” na
podstawie ktérego tworzy sie konkretne obiekty, ktére sa osobnymi bytami. W
klasie mozemy zdefiniowa¢ przechowywane przez obiekty rodzaje informacji, a
takze operacje, ktére obiekty beda wykonywaé. Najpierw wiec tworzymy
projekt (klase), a potem na jej podstawie konkretne obiekty.

Klasy mozna umieszcza¢ w osobnych plikach (modutach), zwtaszcza jesli s3
bardzo rozbudowane, ale wiele klas moze by¢ takze umieszczonych w jednym
module.

https://www.w3schools.com/python/python_classes.asp
https://kt.academy/pl/article/py-klasy
https://ggoralski.gitlab.io/python-wprowadzenie/czesc_i/
15-klasy_i_obiekty/

2/24


https://www.w3schools.com/python/python_classes.asp
https://kt.academy/pl/article/py-klasy
https://ggoralski.gitlab.io/python-wprowadzenie/czesc_i/15-klasy_i_obiekty/
https://ggoralski.gitlab.io/python-wprowadzenie/czesc_i/15-klasy_i_obiekty/

Pierwszy przyktad

Zacznijmy od najprostszej opcji, czyli pustej klasy. Taka klasa nic nie bedzie
zawiera¢, niemniej bedzie miata swoja nazwe i bedziemy mogli przy jej pomocy
stworzy¢ obiekt

class Cookie:
pass

cookie = Cookie()

Przy nazywaniu klas mozemy uzywa¢ tych samych znakéw co w przypadku
zmiennych i funkgji: matych i duzych liter oraz znaku podkreslenia _.
Konwencja nazewnicza jest jednak inna. Dla funkcji i zmiennych uzywalismy
snake_case. W przypadku klas uzywamy PascalCase (lub UpperCamelCase),
czyli kazde stowo zaczynamy wielka litera, nie uzywamy spacji ani znakéw
podkreslenia.

3/24



Zmienne obiektu 1
Do obiektu mozemy przypisa¢ zmienng z okreslona wartoscia. Taka wartos¢
dotyczy¢ bedzie wytacznie tego jednego obiektu. Aby odnies¢ sie do zmiennej
w obiekcie, musimy wskaza¢ zaréwno obiekt, jak i zmienng, a oddzielamy ich
nazwy kropka. Dla przyktadu, aby odnies¢ sie do zmiennej type w obiekcie
cookiel, uzyjemy cookiel.type. Zaréwno do przypisania wartosci, jak i do jej
pobrania.

class Cookie:
pass

cookiel = Cookie()
cookie2 = Cookie()

cookiel.type = "Biscuit"
cookiel.color = "White"
cookie2.type = "Oreo"

print(cookiel.type) # Biscuit
print(cookiel.color) # White
print(cookie2.type) # Oreo

# print(cookie2.color)

a/2a



Konstruktor i inicjalizator 1

Nieczesto tworzy sie zmienne obiektu tak jak w powyzszym przyktadzie: poza
klasg. Czesto jest to wrecz uznawane za zta praktyke. Czesciej tworzy sie je w
obrebie metod, a zwtaszcza szczegélnej metody zwanej inicjalizatorem.

Gdy tworzymy nowy obiekt, stawiamy nawias za nazwa klasy. Ten nawias to
wywotanie funkcji tworzacej obiekt, zwanej konstruktorem. Funkcja ta
przechodzi przez szereg krokéw, niezbednych do utworzenia obiektu, w tym
miedzy innymi wota specjalng metode o nazwie __init__ z naszej klasy. Ta
metoda zwana jest inicjalizatorem. W jej ciele okreslamy, co powinno sie dzia¢
w czasie tworzenia obiektu. Najczesciej definiujemy w niej atrybuty obiektu.

class Cookie:
def __init__(self, type, color):
self.type = type
self.color = color
#pierwszym parametrem jest odniesienie do instancji obiektu,
#na ktorym te metode wywotamy

cookiel = Cookie("Biscuit","White")
print(cookiel.type) # Biscuit
print(cookiel.color) # White

5/24



Konstruktor i inicjalizator 2
Liczba parametréw funkeji __init__ okresla, ile argumentéw powinno sie
znalez¢ w wywotaniu konstruktora (czyli nawiasie, ktéry stawiamy za nazwa
klasy, gdy tworzymy obiekt). Jesli wiec w funkcji __init__ dodamy parametr
name, to przy tworzeniu obiektu nie mozemy juz zostawi¢ pustego nawiasu.
Powinnismy poda¢ tam argument, ktéry postuzy jako imie. Typowym dla
funkgji __init__ jest, ze spodziewa sie okreslonych parametréw, po czym
przypisuje je do obiektu jako atrybuty o takiej samej nazwie.

class Cookie:
def __init__(self, type, color = None):
self.type = type
self.color = color

cookiel = Cookie("Biscuit","White")
cookie2 = Cookie("Oreo")
print(cookiel.type) # Biscuit
print(cookiel.color) # White
print(cookie2.type) # Oreo
print(cookie2.color) #None

6/24



Jeszcze przyktad

class Player:
def __init__(self, name, surname):
self .name = name
self.surname = surname
self.full_name = f"{name} {surname}"
self.points = 0

player = Player("Michat", "Mazur")
print(player.name) # Michat
print(player.surname) # Mazur
print(player.full_name) # Michat Mazur
print(player.points) # 0

7/24



Metody

Wewnatrz klas mozemy definiowaé funkcje. Takie funkcje nazywane s3
metodami. Definiujemy je w ciele klasy, a ich pierwszym parametrem jest
odniesienie do instancji obiektu, na ktérym te metode wywotamy. Parametr ten
powinno nazywac sie self. Gdy wywotujemy metode, zaczynamy od obiektu,
nastepnie stawiamy kropke, nazwe metody i nawias z argumentami.

class Position:

def __init__(self, x = 0.0, y = 0.0):
self.x = x
self.y =y

def step_right(self):
self.x += 1.0

def move_up(self, value):
self.y += value

pos = Position()

pos.step_right()

print(pos.x) # 1.0

pos.move_up(6.0)

print(pos.y) # 6.0

pos.move_up(3.0)

print(pos.v) # 9.0 8/24



Obiekty i zmienne 1

Kazdy obiekt jest osobnym bytem. To, ze wygladaja podobnie, nie znaczy, ze
maja na siebie wptyw. Dlatego tez w ponizszym przyktadzie zmiana name w
obiekcie userl nie bedzie miata zadnego wptywu na user2.

class User:
def __init__(self, name):
self.name = name

userl = User("Rafail")
user2 = User("Rafait")

print (userl.name) # Rafat
print (user2.name) # Rafal

userl.name = "Bartek"

print (userl.name) # Bartek
print(user2.name) # Rafa?

9/24



Obiekty i zmienne 1

Kazdy obiekt jest osobnym bytem. To, ze wygladaja podobnie, nie znaczy, ze
maja na siebie wptyw. Dlatego tez w ponizszym przyktadzie zmiana name w
obiekcie userl nie bedzie miata zadnego wptywu na user2.

class User:
def __init__(self, name):
self.name = name

userl = User("Rafail")
user2 = User("Rafait")

print (userl.name) # Rafat
print (user2.name) # Rafal

userl.name = "Bartek"

print (userl.name) # Bartek
print(user2.name) # Rafa?

10/24



Obiekty i zmienne 2
Z drugiej strony, jesli mamy dwie zmienne wskazujace na jeden obiekt, to
mozemy go zmieni¢ przy uzyciu dowolnej z nich. Po takim zabiegu, wartosci
dla obu zmiennych ulegna zmianie, bo przeciez przeksztatcone zostato cos, na
co obydwie wskazuja.

User("Rafax")

user2 = userl v
userl o ser

P name "Rafat"”
print (userl.name) user2

# Rafat
print (user2.name)
# Rafat

useril

User
userl -
~

= n n T name "Rafat"”
userl.name = "Bartek -

user2 -
"Bartek"

print (userl.name)

# Bartek Rysunek: Zrédto: https:

print (user2.name) //kt .academy/pl/article/py-klasy

# Bartek

11/24


https://kt.academy/pl/article/py-klasy
https://kt.academy/pl/article/py-klasy

Obiekty i zmienne 3
Dwie zmienne wskazuja na ten sam obiekt i wtasciwos¢ tego obiektu zmienia
wartosc.
Warto poréwnac to z przyktadem, gdy dwa obiekty pokazywaty na ta sama
wartos¢, a potem zmienifo sie to, na co jedna z tych zmiennych wskazuje.
Wynik bedzie inny.

userl = User("Rafait")
User

user2 = userl userl \‘
= "Rafat"
-
print (userl.name) user2
# Rafat 7
print (user2.name) u
ser
# Rafat
name "Bartek"
userl = User("Bartek") wert < User

» "Rafat"

user2

print (userl.name)

# Bartek Rysunek: Zrédto: https:
print (user2.name) //kt.academy/pl/article/py-klasy
# Rafat

12/24


https://kt.academy/pl/article/py-klasy
https://kt.academy/pl/article/py-klasy

Metoda copy ()

Dwie zmienne wskazuja na ten sam obiekt i wiasciwo$¢ tego obiektu zmienia
wartosc.

class User:
def __init__(self, name):
self.name = name

def copy(self):
return User(self.name)

userl = User("Rafal")

user2 = userl.copy()
userl.name = "Bartek"

print (userl.name) # Bartek
print(user2.name) # Rafa?
user2.name = "Marek"
print(userl.name) # Bartek
print (user2.name) # Marek

13 /24



Metoda __str__()

class User:
def __init__(self, name):
self.name = name

def __str__(self):

return f’Username:{self.name}’

userl = User("Rafat")
print (userl)

14/24



Przyktad: klasa liczb rzymskich

Funkcja pierwsza:

def to_arabic(number):
roman_numerals = {’I’: 1, °V’: 5, ’°X’: 10, ’L’: 50, ’C’: 100,
’D’: 500, ’M’: 1000}

# 4 (IV) and 9 (IX), 40 (XL), 90 (XC), 400 (CD) and 900 (CM)
number = number.replace(’IV’, *IIII’)

number = number.replace(’IX’, ’VIIII’)

number = number.replace(’XL’, >XXXX’)

number = number.replace(’XC’, ’LXXXX’)

number = number.replace(’CD’, >CCCC’)

number = number.replace(’CM’, ’DCCCC’)

return sum(roman_numerals[i] for i in number)

print (to_arabic(’MCDLXIV’))

15 /24



Przyktad: klasa liczb rzymskich

Funkcja druga:

def to_roman(n):
roman_numerals = {1000:°M’, 900: °CM’, 500: ’D’, 400: °CD’, 100:
’C’, 90:°XC’,50: ’L’, 40:°XL’,
10:°X?, 9:°IX’, 5: VvV’ ,4:°IV’, 1: I’}
s=),
for i in roman_numerals:
div=n//1

n %= i
while div:
s += roman_numerals[i]
div -= 1
return s

print (to_roman(1464))

16 /24



Przyktad: konstruktor

class Roman:
def __init__(self, n):
#two constructors are not allowed
if isinstance(n, str):
self.roman = n
roman_numerals = {’I’: 1, °V’: 5, ’X’: 10, ’L’: 50,
’C’: 100, ’D’: 500, ’M’: 1000}

.replace(’IV’, ’IIII’)
.replace(’IX’, ’VIIII’)
.replace(’XL’, ’XXXX’)
.replace(’XC’, ’LXXXX’)
.replace(’CD’, ’CCCC’)
.replace(’CM’>, ’DCCCC?)
self.arabic = sum(roman_numerals[i] for i in n)

B BBBBB
]
B BBBBB

17 /24



Przyktad: konstruktor dale;j
elif isinstance(n, int):
if n<=0:
raise ValueError("Roman number should be positive")

self.arabic = n
romanian_numerals = {1000: °’M’, 900: °CM’, 500: ’D’,
400: °CD’, 100: ’C’, 90: ’XC’, 50: °L’, 40: ’XL’
10: °X’, 9: °IX’, 5: ’V’, 4: °IV’, 1: I’}

2

s =
for i in romanian_numerals:
div=n//1i
n %= 1i
while div:
s += romanian_numerals[i]
div -= 1

self.roman = s

def __str__(self):
return self.roman

18/24

print (Roman(10) ) #X



Przyktad: funkcja

class Roman:
def __init__(self, n):

def __str__(self):

r = Roman("XVI")
print(r.arabic)#16

19/24



Przyktad: dodawanie i mnozenie

class Roman:
def __init__(self, n):

def __str__(self):

def __add__(self, other):
return Roman(self.arabic+other.arabic)

def __mul__(self, other):
return Roman(self.arabic*other.arabic)

r = Roman("XVI")

p = Roman("X")

print (r+p)#XXVI

print (r*p)#CLX

20/24



Przyktad: odejmowanie i dzielenie

class Roman:

def __sub__(self, other):
return Roman(self.arabic-other.arabic)

def __truediv__(self,other):
if self.arabiclother.arabic ==
return Roman(self.arabic//other.arabic)
raise ValueError ("Roman number should be integer")

print (Roman(’X’)-Roman(’IX’))#I
print (Roman(’XX’) /Roman(’X’))#II

print (Roman(’X’)-Roman(’X’))#ValueError
print (Roman(’VIII’)/Roman(’X’))#ValueError

21/24



Dziedziczenie(inheritance)

class Person:
def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student(Person):
pass

x = Person("John", "Doe")
x.printname ()

x = Student("Mike", "Olsen")
x.printname ()

22/24



Dziedziczenie(inheritance)

class Person:
def __init__(self, fname, lname):
self.firstname = fname
self.lastname = lname

def printname(self):
print(self.firstname, self.lastname)

class Student (Person):
def __init__(self, fname, lname, number):
Person.__init__(self, fname, lname)
#super().__init__(fname, lname)
self .number = number

x = Person("John", "Doe")
x.printname ()

x = Student("Mike", "Olsen", 1999)
Xx.printname ()

23/24



Jeszcze przyktad

class Fruit:
def __init__(self, name, sugar_content):
self.name = name
self.sugar_content = sugar_content

class Apple(Fruit):

def __init__(self):
super () .__init__("apple", 2)

24/24



