
Matematyczne aspekty analizy danych
semestr zimowy 2025/2026

Dr Anna Muranova
UWM w Olsztynie

Wykład 14

1 / 53

Rozdział 12. Analiza skupień

2 / 53

Wprowadzenie do analizy skupień

Grupowanie (analiza skupień, klasteryzacja) (ang. data clustering) – metoda
tzw. klasyfikacji bez nadzoru (ang. unsupervised learning). Jest to metoda
dokonująca grupowania elementów według jednorodnych klasów. Podstawą
grupowania w większości algorytmów jest podobieństwo pomiędzy elementami
– wyrażone przy pomocy funkcji (metryki) podobieństwa.
Poprzez grupowanie można również rozwiązać problemy z gatunku odkrywania
struktury w danych oraz dokonywanie uogólniania. Grupowanie polega na
wyodrębnianiu grup (klasów, podzbiorów).

3 / 53

Wybrane cele dokonywania grupowania są następujące:

▶ uzyskanie jednorodnych przedmiotów badania, ułatwiających
wyodrębnienie ich zasadniczych cech,

▶ zredukowanie dużej liczby danych pierwotnych do kilku podstawowych
kategorii, które mogą być traktowane jako przedmioty dalszej analizy,

▶ zmniejszenie nakładu pracy i czasu analiz, których przedmiotem będzie
uzyskanie klasyfikacji obiektów typowych,

▶ odkrycie nieznanej struktury analizowanych danych, porównywanie
obiektów wielocechowych.

Grupowanie jako jedna z metod pozyskiwania wiedzy, a tym samym eksploracji
danych, jest ściśle uwarunkowana źródłem danych oraz oczekiwaną postacią
rezultatów.

4 / 53

Algorytmy analizy skupień dzieli się na kilka podstawowych kategorii:

▶ metody hierarchiczne – algorytm tworzy dla zbioru obiektów hierarchię
klasyfikacji, zaczynając od takiego podziału, w którym każdy obiekt
stanowi samodzielne skupienie, a kończąc na podziale, w którym wszystkie
obiekty należą do jednego skupienia.

▶ grupa metod k-średnich (ang. k-means), w której grupowanie polega na
wstępnym podzieleniu populacji na z góry założoną liczbę klas (tzw.
skupień). Następnie uzyskany podział jest poprawiany w ten sposób, że
niektóre elementy są przenoszone do innych klas, tak, aby uzyskać
minimalną wariancję wewnątrz każdej z nich – dąży się do zapewnienia jak
największego podobieństwa elementów w ramach każdego ze skupień, przy
jednoczesnej maksymalnej różnicy pomiędzy samymi klasami
(skupieniami).

▶ metody rozmytej analizy skupień (ang. fuzzy clustering). Metody rozmytej
analizy skupień mogą przydzielać element do więcej niż jednej kategorii. Z
tego powodu algorytmy rozmytej analizy skupień są stosowane w zadaniu
kategoryzacji (przydziału jednostek do jednej lub wielu kategorii).

5 / 53

Analiza skupień używa się nie tylko w eksploracji danych, ale tez ma inne
zastosowania:

▶ wstępna analiza danych, polegająca na wyodrębnieniu jednorodnych grup
(subpopulacji), które podlegają osobnej dalszej analizie statystycznej lub
ekonometrycznej;

▶ wyszukiwanie informacji (ang. information retrieval), mająca za zadanie
uporządkowanie i uproszczenie dostępu do informacji. Do klasycznych
zastosowań należy klasyfikacja dokumentów tekstowych: książek, czy stron
internetowych;
▶ np.: w wyszukiwarkach internetowych – wykorzystywane do

automatycznego wyodrębnienia jednolitych grup i przydziału elementów
wyników do poszczególnych z nich;

▶ segmentacja obrazu (ang. image segmentation), czyli podział obrazu na
regiony homogeniczne pod względem pewnej własności obrazu (kolor,
tekstura, intensywność). Taki uproszczony obraz jest prostszy do obróbki
np. przez algorytmy rozpoznawania obrazu;

▶ grupowanie zadań w problemie harmonogramowania tak, by zadania
intensywnie ze sobą komunikujące się trafiły do tej samej grupy. Taka
grupa zostanie w następnym kroku przypisana do wykonania na jednym
procesorze (bądź kilku procesorach połączonych szybkimi kanałami
komunikacyjnymi).

6 / 53

Grupowanie hierarchiczne
Grupowanie hierarchiczne (hierarchiczna analiza skupień, klasteryzacja
hierarchiczna, klastrowanie hierarchiczne) – metoda analizy skupień, która ma
na celu zbudowanie hierarchii klastrów. Służy do dzielenia obserwacji na grupy
(klastry) bazując na podobieństwach między nimi. W przeciwieństwie do wielu
algorytmów służących do klastrowania w tym wypadku nie jest konieczne
wstępne określenie liczby tworzonych klastrów. Strategie tworzenia klastrów
hierarchicznych dzielą się zasadniczo na dwa typy:
▶ metody aglomeracyjne (ang. agglomerative) – każda obserwacja tworzy na

początku jednoelementowy klaster. Następnie pary klastrów są scalane, w
każdej iteracji algorytmu łączone są z sobą dwa najbardziej zbliżone
klastry. Tworzone są tak zwane aglomeracje. W tym typie podczas
tworzenia klastrów idzie się w górę hierarchii.

▶ metody deglomeracyjne (ang. divisive) – początkowo wszystkie obserwacje
znajdują się w jednym klastrze. W następnych krokach klastry dzielone są
na mniejsze i bardziej jednorodne. Podziały wykonywane są rekursywnie.
W czasie tworzenia klastrów idzie się w dół hierarchii.

Algorytmy grupowania hierarchicznego charakteryzują się złożonością
obliczeniową O(n3) oraz wymagają O(n2) pamięci, co czyni je mało
efektywnymi. Wyniki hierarchicznego grupowania stanowią zestaw
zagnieżdżonych klastrów, które są zwykle prezentowane w dendrogramie.

7 / 53

Dendrogram

Definition
Dendrogram – diagram w kształcie drzewa ukazujący związki pomiędzy
wybranymi elementami na podstawie przyjętego kryterium.

Rysunek: Dane i dendrogram. Źródło: https:
//towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8

8 / 53

https://towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8
https://towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8

Odległość

Stosując algorytmy grupowania hierarchicznego, konieczne jest dokonanie
pomiaru odległości między punktami. Głównym celem jest to, aby odległości
między obserwacjami tego samego klastra były możliwie jak najmniejsze,
natomiast odległości między klastrami były jak największe. W hierarchicznym
grupowaniu istnieją dwa bardzo ważne parametry: metryka odległości i metoda
połączenia.
Zdefiniowanie sposobu określania odległości między obserwacjami jest jednym z
najważniejszych aspektów tego algorytmu. Może zdarzyć się, że
niedostosowanie odpowiedniej metryki do danych spowoduje otrzymanie
bezsensownych wyników klastrowania.

9 / 53

Główne miary odległości są następujące:

▶ Odległość Euklidesowa: ∥a− b∥2 =

√∑
i

(ai − bi)2

▶ Kwadratowa odległość Euklidesowa: ∥a− b∥2
2 =

∑
i

(ai − bi)
2

▶ Odległość Manhattan: ∥a− b∥1 =
∑
i

|ai − bi |

▶ Maksymalna odległość : ∥a− b∥∞ = max
i

|ai − bi |

10 / 53

Metody połączenia

Metody połączenia określają, jak definiowana jest odległość między dwoma
klastrami. Ważne jest, aby w danym eksperymencie wypróbować kilka metod
łączenia oraz porównać ich wyniki. W zależności od zbioru danych, niektóre
metody mogą działać lepiej. Poniżej znajduje się lista najczęściej występujących
metod połączeni (dla klastrów A i B):

11 / 53

Metody połączenia 1
▶ Pojedyncze połączenie – odległość między dwoma klastrami jest

minimalną odległością między obserwacją w jednym klastrze a obserwacją
w innym klastrze. Sprawdza się, gdy klastry są wyraźnie oddzielone:

min
a∈A, b∈B

d(a, b)

.
▶ Kompletne połączenie – odległość między dwoma klastrami jest

maksymalną odległością między obserwacją w jednym klastrze a
obserwacją w innym klastrze. Może być wrażliwy na występowanie
outlier’ów.

max
a∈A, b∈B

d(a, b).

▶ Średnie połączenie – odległość między dwoma klastrami jest średnią
odległością między obserwacją w jednym klastrze a obserwacją w innym
klastrze:

1
|A| · |B|

∑
a∈A

∑
b∈B

d(a, b).,

▶ Min-max połączenie – odległość między dwoma klastrami jest:

min
x∈A∪B

max
y∈A∪B

d(x , y)

12 / 53

Metody połączenia 2

▶ Połączenie centroidalne – odległość między dwoma klastrami jest
odległością pomiędzy centroidami klastra:

∥µA − µB∥2,

gdzie µA oraz µB są centroidami klasterów A i B (średnią arytmetyczną
pozycji wszystkich elementów odpowiedniego klastra)

▶ Połączenie Ward’a – odległość między dwoma klastrami jest sumą
kwadratów odchyleń od punktów do centroidów. Ten sposób dąży do
zminimalizowania sumy kwadratów wewnątrz klastra:

|A| · |B|
|A ∪ B| ∥µA − µB∥2 =

∑
x∈A∪B

∥x − µA∪B∥2 −
∑
x∈A

∥x − µA∥2 −
∑
x∈B

∥x − µB∥2

▶ Połączenie według minimalnego błędu sumy kwadratów – odległość
między dwoma klastrami jest sumą kwadratów odchyleń od punktów do
wspólnego centroida: ∑

x∈A∪B

∥x − µA∪B∥2

13 / 53

Metody połączenia 3

▶ Połączenie według minimalnego wzrost wariancje – odległość między
dwoma klastrami jest różnica pomiędzy wspólną wariancje a wariancjami
klastrów:

1
|A ∪ B|

∑
x∈A∪B

∥x − µA∪B∥2 − 1
|A|

∑
x∈A

∥x − µA∥2 − 1
|B|

∑
x∈B

∥x − µB∥2

= Var(A ∪ B)− Var(A)− Var(B)

▶ Połączenie według minimalnej wariancji – odległość między dwoma
klastrami jest wspólną wariancją:

1
|A ∪ B|

∑
x∈A∪B

∥x − µA∪B∥2 = Var(A ∪ B)

14 / 53

Metoda aglomeracyjna

Aglomeracyjne grupowanie działa w sposób „oddolny” (ang. bottom-up). Na
początku algorytmu każda obserwacja jest traktowana jako pojedynczy klaster.
Następnie pary klastrów są sukcesywnie łączone, aż do momentu gdy wszystkie
klastry zostaną scalone w jeden duży klaster zawierający wszystkie obiekty.

Przebieg algorytmu metody aglomeracyjnej można przedstawić następująco:

1. Wyszukiwane są dwa najbliższe punkty w zbiorze danych

2. Znalezione punkty są łączone – od tego momentu będą traktowane jako
jeden punkt

3. Proces rozpoczyna się od nowa. Od teraz wykorzystywany jest nowy zbiór
obserwacji utworzony w poprzednich krokach

Decyzja o połączeniu dwóch klastrów w jedne jest nieodwracalna – tego klastra
nie można rozdzielić już w następnej iteracji algorytmu.

15 / 53

Przykład
(Źródło przykładu i obrazków: Wikipedia
https://pl.wikipedia.org/wiki/Grupowanie_hierarchiczne) Na
rysunkach przedstawiono przebieg procesu grupowania aglomeracyjnego. Na
rysunku 2 jest zbiór danych, który zostanie poddany klasteryzacji.

Rysunek: Przykładowe dane do klasteryzacji. 16 / 53

https://pl.wikipedia.org/wiki/Grupowanie_hierarchiczne

Przykład

Takim czynem, mamy sześć elementów a, b, c, d , e, f . Pierwszym krokiem
działania algorytmu jest określenie, które elementy należy połączyć do jednego
w klastra. Zwykle chcemy wziąć dwa najbliższe sobie elementy, zgodnie z
wybraną odległością. W przykładzie wybór podejmowany jest na podstawie
odległości Euklidesowej, najbardziej intuicyjnej. Jedną z możliwości
porównywania odległości między sobą jest zbudowanie macierzy odległości na
tym etapie, gdzie liczba w i-tym wierszu j-tej kolumny jest odległością między
i-tym i j-tym elementem. Następnie, w miarę rozwoju klastrów, wiersze i
kolumny macierzy są scalane, w momencie gdy scalane są klastry. Odległości
powinny być wtedy aktualizowane.
Łatwo zauważyć, że najbliżej siebie znajdują się elementy b i c oraz d i e. W
pierwszej fazie działania algorytmu połączyliśmy dwa najbliższe elementy b i c.
Od teraz mamy następujące klastry {a}, {b, c}, {d}, {e} i {f }. Naszym celem
jest ich dalsze scalanie. Aby to zrobić, musimy określić odległość między
klastrem {b, c}, a pozostałymi klastrami (które stanowią na razie pojedyncze
obserwacje). Następnym etapem będzie połączenie elementów {d} i {e}.
Kolejne iteracje będą wykonywane aż do momentu gdy wszystkie sześć
elementów znajdzie się w jednym klastrze.

17 / 53

Przykład
Na rysunku 3 przedstawiono dendrogram, który przedstawia rezultat działania
algorytmu grupowania hierarchicznego.

Rysunek: Dendrogram po klasteryzacji.

18 / 53

Metoda deglomeracyjna

Podstawową zasadę klasteryzacji deglomeracyjnej opublikowano jako algorytm
DIANA (ang. DIvisive ANAlysis clustering, [?]). DIANA wybiera obiekt o
maksymalnej średniej odmienności, a następnie przenosi do tego skupienia
wszystkie obiekty, które są bardziej podobne do nowego skupienia niż do
pozostałych.
Nieformalnie DIANA to nie tyle proces „dzieleni”, co „wydrążania”: w każdej
iteracji wybierany jest istniejący klaster (np. początkowy klaster całego zbioru
danych), aby utworzyć w nim nowy klaster. Obiekty stopniowo przenoszą się do
tego zagnieżdżonego klastra i opróżniają istniejący klaster. Ostatecznie
wszystko, co pozostaje w klastrze, to zagnieżdżone klastry, które tam wyrosły,
same w sobie nie posiadające żadnych luźnych obiektów.

19 / 53

Formalnie algorytm DIANA może być opisany jako kolejność następujących
kroków:

1. Niech I = {1 . . . n} będzie zbiorem wszystkich n indeksów obiektów oraz C
– zbiorem wszystkich utworzonych do tej pory klastrów.

2. Następne kroki trzeba powtarzać dopóki |C| ≠ n.
2.1 Znajdź bieżący klaster zawierający 2 lub więcej obiektów o największej

średnicy:
A∗ = argmax

A∈C
max
a,b∈A

d(a, b).

2.2 Znajdź obiekt w tym klastrze najbardziej różniący się od reszty klastra:

a∗ = arg max
a∈A∗

1
|A∗| − 1

∑
b∈A∗\{a}

(.a, b)

2.3 Wyjąć a∗ ze starego klastra i zrobić dla niego nowy klaster (splinter
group/grupa odłamków) Anew = {a∗}.

2.4 Dopóki A∗ nie jest pusty, kontynuuj migrację obiektów z A∗ do Anew . Aby
wybrać obiekty do migracji, nie tylko weź pod uwagę różnicą od A∗, ale
także dostosuj pod kątem odmienności od A∗: niech

a∗ = argmax
a∈A

D(a),

gdzie

D(a) =
1

|A∗| − 1

∑
b∈A∗\{a}

d(a, b)−
1

|Anew |
∑

b∈Anew

d(a, b)

2.5 Dodaj Anew do C. 20 / 53

Algorytm DIANA

Intuicyjnie, D(a) mierze, jak bardzo obiekt chce opuścić swój obecny klaster.
Jeżeli obiekt nie pasuje tak samo do nowego klastra, to prawdopodobnie za
kilka kroków on założę własne klaster.
Dendrogram DIANA można skonstruować, pozwalając za każdym razem
nowemy klastru być dzieckiem klastru A∗. Konstruuje to drzewo z C0 jako
korzeniem i n unikalnymi klastrami pojedynczych obiektów jako liśćmi.

21 / 53

Przykład

Niech mamy obiekty z rysunku 2 do klasteryzacje. Na początku mamy jeden
klaster A = {a, b, c, d , e, f }.
▶ A∗ = {a, b, c, d , e, f }, a∗ = a, Anew = {a}. Wszystkie elementy są bliżej

do pozostałych niż do a, dlatego na końcu tej iteracji mamy klastry {a} i
{b, c, d , e, f }

▶ A∗ = {b, c, d , e, f }, a∗ = f , Anew = {f }. Przynosimy do Anew elementy d
i e i na końcu tej iteracji mamy klastry {a}, {b, c}, {d , e, f }.

▶ A∗ = {d , e, f }, a∗ = f , Anew = {f }. Do Anew nic nie przynosimy i na
końcu tej iteracji mamy klastry {a}, {b, c}, {d , e}, {f }.

▶ A∗ = {b, c}, a∗ = b, Anew = {b}. Do Anew nic nie przynosimy i na końcu
tej iteracji mamy klastry {a}, {b}, {c}, {d , e}, {f }.

▶ A∗ = {d , e}, a∗ = d , Anew = {d}. Do Anew nic nie przynosimy i na końcu
tej iteracji mamy klastry {a}, {b}, {c}, {d}, {e}, {f }.

Dendrogram będzie taki sam jak na rysunku 3.

22 / 53

Grupowanie hierarchiczne w Pythonie
import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]
y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

plt.scatter(x, y)
plt.show()

Źródło https:
//www.w3schools.com/python/python_ml_hierarchial_clustering.asp 23 / 53

https://www.w3schools.com/python/python_ml_hierarchial_clustering.asp
https://www.w3schools.com/python/python_ml_hierarchial_clustering.asp

Grupowanie hierarchiczne w Pythonie
Metoda aglomeracyjna: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.cluster.hierarchy.linkage.html

import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]
y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

data = list(zip(x, y))

linkage_data = linkage(data, method=’ward’, metric=’euclidean’)
#method decyduje jak obliczamy dystans pomiędzy klastrami
dendrogram(linkage_data)
plt.show()

Źródło https:
//www.w3schools.com/python/python_ml_hierarchial_clustering.asp

24 / 53

 https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
 https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://www.w3schools.com/python/python_ml_hierarchial_clustering.asp
https://www.w3schools.com/python/python_ml_hierarchial_clustering.asp

Grupowanie hierarchiczne w Pythonie

Źródło danych:
https://pmagunia.com/dataset/r-dataset-package-cluster-animals

25 / 53

https://pmagunia.com/dataset/r-dataset-package-cluster-animals

Grupowanie hierarchiczne w Pythonie: kod

import pandas as pd
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.preprocessing import scale

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)
linkage_data = linkage(newdata, method=’ward’, metric=’euclidean’)
dendrogram(linkage_data,labels = newdata.index)

plt.show()

26 / 53

Grupowanie hierarchiczne w Pythonie: obrazek

27 / 53

Grupowanie hierarchiczne w Pythonie: cut_tree
Jednym z problemów związanych z hierarchicznym grupowaniem jest to, że
wynikiem nie jest informacja na ile klastrów należy podzielić obserwacje lub
gdzie można przeciąć dendrogram w celu utworzenia klastrów. Możliwe jest
przecięcie drzewa na określonej wysokości służy do tego funkcja cut_tree().
Zwraca ona wektor zawierający numer klastra każdej z obserwacji.

import pandas as pd
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree
from sklearn.preprocessing import scale

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)
linkage_data = linkage(newdata, method=’ward’, metric=’euclidean’)
dendrogram(linkage_data,labels = newdata.index)
cutree = cut_tree(linkage_data, n_clusters=3)
print(pd.DataFrame(cutree, index=data.index,))
plt.show()

28 / 53

Grupowanie hierarchiczne w Pythonie: truncate_mode

truncate_mode pozwala na rysowanie mnie liście na obrazku.

import pandas as pd
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree
from sklearn.preprocessing import scale

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)
linkage_data = linkage(newdata, method=’ward’, metric=’euclidean’)
dendrogram(linkage_data, truncate_mode = ’lastp’, p=3)
cutree = cut_tree(linkage_data, n_clusters=3)
print(pd.DataFrame(cutree, index=data.index,))

plt.show()

29 / 53

Grupowanie hierarchiczne w Pythonie: truncate_mode

ant 0 chi 1 ele 1 man 1
bee 0 cow 1 fly 0 rab 1
cat 1 duc 2 her 0 wha 1
cpl 0 eag 2 liz 0

30 / 53

Klasteryzacja metodą k-średnich: wprowadzenie

Grupowanie k-średnich to metoda kwantyzacji wektorów, która ma na celu
podzielenie n obserwacji na k klastrów, w których każda obserwacja należy do
klastra o najbliższej średniej (centra lub centroida klastrów), służąc jako
prototyp klastra. Klasteryzacja metodą k-średnich minimalizuje wariancje
wewnątrz skupień (kwadrat odległości euklidesowych), ale nie regularne
odległości euklidesowe, co byłoby trudniejsze.
Mając zbiór obserwacji (X1,X2, . . . ,Xn), gdzie każda obserwacja jest
m-wymiarowym wektorem rzeczywistym, grupowanie k-średnich ma na celu
podzielenie n obserwacji na (k ≤ n) zbiorów S = {S1, S2, . . . , Sk}, aby
zminimalizować sumę kwadratów wewnątrz skupienia (WCSS) (tj. wariancję).

31 / 53

Klasteryzacja metodą k-średnich: wprowadzenie
Formalnie celem jest znalezienie:

argmin
S

k∑
i=1

∑
X∈Si

∥X − µi∥2 = argmin
S

k∑
i=1

|Si |Var Si

gdzie µi jest średnią (zwaną także centroidą) punktów w Si , tj.

µi =
1
|Si |

∑
X∈Si

X ,

gdzie |Si | jest rozmiarem Si jest typową L2-normą. Jest to równoważne
minimalizacji odchyleń kwadratów parami punktów w tym samym klastrze:

argmin
S

k∑
i=1

1
|Si |

∑
X ,Y∈Si

∥X − Y ∥2.

Równoważność wynika z tożsamości:

1
2

∑
X ,Y∈Si

∥X − Y ∥2 = |Si |
∑
X∈Si

∥X − µi∥2

32 / 53

Standardowy algorytm klasteryzacji metodą k-średnich
Najpopularniejszy algorytm wykorzystuje technikę iteracyjnego udoskonalania.
Ze względu na swoją wszechobecność często nazywany jest „algorytmem
k-średnich”; jest on również nazywany algorytmem Lloyda, szczególnie w
społeczności informatycznej. Czasami nazywa się to również „naiwnymi
k-średnimi”, ponieważ istnieją znacznie szybsze alternatywy.

Źródło: https:
//www.gatevidyalay.com/k-means-clustering-algorithm-example/

33 / 53

https://www.gatevidyalay.com/k-means-clustering-algorithm-example/
https://www.gatevidyalay.com/k-means-clustering-algorithm-example/

Standardowy algorytm klasteryzacji metodą k-średnich
1. Inicializacja. Powszechnie stosowanymi metodami inicjalizacji są Metoda

losowego podziału (Random Partition) oraz Metoda Forgy’ego. Metoda
losowego podziału najpierw losowo przypisuje klaster do każdej obserwacji,
a następnie przechodzi do etapu aktualizacji, obliczając w ten sposób
początkową średnią stanowiącą centroid (środek ciężkości) losowo
przypisanych punktów klastra. Metoda Forgy’ego losowo wybiera k
obserwacji ze zbioru danych i wykorzystuje je jako średnie początkowe

2. Iteracje. Mając początkowy zestaw k-średnich µ1, . . . , µk , algorytm
wykonuje naprzemiennie dwa kroki:
2.1 Krok przypisywania: przypisz każdą obserwację do klastra z najbliższym

centroidem (tzn z tej o najmniejszej kwadratowej odległości euklidesowej):

S
(t)
i = {Xp : ∥Xp − µ

(t)
i ∥2 ≤ ∥Xp − µ

(t)
j ∥2 ∀j , 1 ≤ j ≤ k},

gdzie każdy Xp jest przypisany dokładnie do jednego S(t), nawet jeśli
mógłby być przypisany do dwóch lub więcej z nich.

2.2 Krok aktualizacji: ponowne obliczenie centroidow obserwacji przypisanych
do każdego klastra:

µ
(t+1)
i =

1

|S(t)
i |

∑
Xj∈S

(t)
i

Xj

Algorytm osiągnął zbieżność, jeżeli przypisania już się nie zmieniają.
Algorytm nie gwarantuje znalezienia optymalnego przypisania.

34 / 53

Obrazki

Typowy przykład zbieżności k-średnich do minimum lokalnego. W tym
przykładzie wynik grupowania k-średnich (po prawej stronie) jest sprzeczny z
oczywistą strukturą skupień zbioru danych. Małe kółka to punkty danych,
cztery gwiazdy promieniste to centroidy (średnie). Początkowa konfiguracja
znajduje się na lewym rysunku. Algorytm osiąga zbieżność po pięciu iteracjach
przedstawionych na rysunkach, od lewej do prawej, z góry w dol, źródło:
https://en.wikipedia.org/wiki/K-means_clustering

35 / 53

https://en.wikipedia.org/wiki/K-means_clustering

Przykład 1
Niech mamy cztery punkty: A = (2, 3),B = (6, 1),C = (1, 2),D = (3, 0).
Losowo dzielimy ich na dwa klastry (metoda Random Partition): {A,B} oraz
{C ,D}.
▶ Centroidy: µAB = (4, 2), µCD = (2, 1).
▶ Odległość (kwadrat Euklidesowej!) punktów od centroidow:

A B C D
µAB 5 5 9 5
µCD 4 16 2 2

▶ Ponieważ ∥A− µAB∥2 > ∥A− µCD∥2, przenosimy A do drugiego klastra.
Mamy teraz klastry {B} oraz {A,C ,D} z centroidami: µB = (6, 1) oraz

µACD =
1
3
(2 + 1 + 3, 3 + 2 + 0) = (2, 1.67)

▶ Odległość (kwadrat Euklidesowej!) punktów od centroidow:
A B C D

µB 20 0 26 10
µACD 1.78 16.44 1.11 3.78

▶ Nic nie potrzebuje przenoszenia, koniec. Mamy klastry {B} oraz
{A,C ,D}.

36 / 53

Przykład 2
Niech mamy cztery punkty: A = (1, 1),B = (2, 1),C = (4, 3),D = (5, 4).
Losowo bierzemy dwa klastra (metoda Forgy’ego): µ1 = A oraz µ2 = B.
▶ Centroidy: µ1 = (1, 1), µ2 = (2, 1).
▶ Odległość (kwadrat Euklidesowej!) punktów od centroidow:

A B C D
µ1 0 1 13 25
µ2 1 0 8 18

▶ Dodajemy C i D do drugiego klastra. Mamy teraz klastry {A} oraz
{B,C ,D} z centroidami: µ1 = (1, 1) oraz µ2 = (3.67, 2.67)

▶ Odległość (kwadrat Euklidesowej!) punktów od centroidow:
A B C D

µ1 0 1 13 25
µ2 9.91 5.58 0.21 3.54

▶ Przenosimy B do pierwszego klastra. Mamy teraz klastry {A,B} oraz
{C ,D} z centroidami: µ1 = (1.5, 1) oraz µ2 = (4.5, 3.5)

▶ Odległość (kwadrat Euklidesowej!) punktów od centroidow:
A B C D

µ1 0.25 0.25 10.24 21.25
µ2 18.5 12.58 0.5 0.5

▶ Nic nie potrzebuje przenoszenia, koniec. Mamy dwa klastra {A,B} oraz
{C ,D}. 37 / 53

Przykład 2 w Python

import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering

x = [1,2,4,5]
y = [1,1,3,4]

data = list(zip(x, y))

hierarchical_cluster = AgglomerativeClustering(n_clusters=2, metric=’euclidean’, linkage=’ward’)
labels = hierarchical_cluster.fit_predict(data)

plt.scatter(x, y, c=labels)
plt.show()

38 / 53

Przykład 2 w Python: obrazek

39 / 53

Przykład w Python: animals

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import scale
from sklearn.decomposition import PCA
from sklearn.cluster import AgglomerativeClustering

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)

hierarchical_cluster = AgglomerativeClustering(n_clusters=3,
metric=’euclidean’, linkage=’ward’)

labels = hierarchical_cluster.fit_predict(newdata)

40 / 53

Przykład w Python animals: obrazek na dwóch składowych

pca = PCA(n_components=2)
pca.fit(newdata)
print(pca.components_)#e.v
print(sum(pca.explained_variance_ratio_))#%of information
data2 = pca.transform(newdata).round(2)
print(data2)

x, y = data2[:,0], data2[:,1]
plt.scatter(x,y, c=labels)

for i, txt in enumerate(data.index):
plt.annotate(txt, (x[i], y[i]))

plt.show()

41 / 53

Przykład w Python animals: obrazek

42 / 53

Przykład w Python 2 składowych
Uwaga! Można tez zrobić odwrotnie: na początku dwie składowych, potem –
klasteryzacja!

import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import scale
from sklearn.decomposition import PCA
from sklearn.cluster import AgglomerativeClustering

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)

print(newdata)
pca = PCA(n_components=2)
pca.fit(newdata)
print(pca.components_)#e.v
print(sum(pca.explained_variance_ratio_))#%of information
data2 = pca.transform(newdata).round(2) 43 / 53

Przykład w Python 2 składowych: klasteryzacja

hierarchical_cluster = AgglomerativeClustering(n_clusters=3,
metric=’euclidean’, linkage=’ward’)

labels = hierarchical_cluster.fit_predict(data2)
x, y = data2[:,0], data2[:,1]
plt.scatter(x,y, c=labels)

for i, txt in enumerate(data.index):
plt.annotate(txt, (x[i], y[i]))

plt.show()

44 / 53

Przykład w Python 2 składowych: obrazek

45 / 53

Metody rozmytej analizy skupień: wprowadzenie

Klasterowanie rozmyte (nazywane również klasterowaniem miękkim lub
miękkimi k-średnimi) to forma klasterowania, w której każdy punkt danych
może należeć do więcej niż jednego klastra.
W klastrowanie nierozmytem (znane również jako klastrowanie twarde) dane są
dzielone na odrębne klastry, przy czym każdy punkt danych może należeć tylko
do dokładnie jednego klastra. W klastrach rozmytych punkty danych mogą
potencjalnie należeć do wielu klastrów. Na przykład jabłko może być czerwone
lub zielone (grupowanie twarde), ale jabłko może być również czerwone ORAZ
zielone (grupowanie rozmyte). Tutaj jabłko może być do pewnego stopnia
czerwone i do pewnego stopnia zielone. Zamiast jabłka należącego do zielonego
[zielony = 1] i nie czerwonego [czerwony = 0], jabłko może należeć do
zielonego [zielony = 0,5] i czerwonego [czerwony = 0,5]. Wartości te są
normalizowane w zakresie od 0 do 1; jednakże nie reprezentują one
prawdopodobieństw, więc te dwie wartości nie muszą sumować się do 1.
Do każdego z punktów danych (tagów) przypisane są stopnie członkostwa. Te
stopnie członkostwa wskazują stopień, w jakim punkty danych należą do
każdego klastra. Zatem punkty na krawędzi klastra, o niższych stopniach
przynależności, mogą znajdować się w klastrze w mniejszym stopniu niż punkty
w centrum klastra.

46 / 53

Metoda FCM
Jednym z najczęściej stosowanych algorytmów grupowania rozmytego jest
algorytm grupowania rozmytego C-średniego (angl. Fuzzy C-means clustering,
FCM). Klastrowanie rozmytych C-średnich (FCM) zostało opracowane przez
J.C. Dunna w 1973 r.
Algorytm rozmyty c-średnich jest bardzo podobny do algorytmu k-średnich:

1. Wybierz liczbę klastrów l i liczba m ∈ (1,∞), charakteryzującą na ile
rozmyty będą klastry (m = 1 – nie rozmyty klastry).

2. Wybierz losowo centry klastrów c1, . . . , cl .
3. Powtarzaj, aż algorytm osiągnie zbieżność (tzn. zmiana współczynników

pomiędzy dwiema iteracjami nie będzie większa niż ε – zadany próg
czułości):
3.1 Oblicz współczynnik ze Xi należy do klastra z centroidem cj :

wij =
1∑l

k=1

(
∥Xi−cj∥
∥Xi−ck∥

) 2
m−1

.

3.2 Oblicz środek ciężkości dla każdego klastra.

ck =

∑
x wk (X)mX∑
x wk (X)m

.

47 / 53

Metoda FCM

FCM ma na celu zminimalizowanie funkcji:

J(W ,C) =
n∑

i=1

l∑
j=1

wm
ij ∥Xi − cj∥2

FCM metoda jest bardzo ważnym narzędziem do przetwarzania obrazu w
grupowaniu obiektów na obrazie. Funkcje przynależności mają na celu opisanie
kolorów zgodnie z ludzką intuicją identyfikacji kolorów.

48 / 53

Metoda FCM
Aby lepiej zrozumieć FCM metodą, poniżej na rysunku przedstawiono klasyczny
przykład danych jednowymiarowych na osi x , :

Rysunek: Punkty na osi x , źródło: Wikipedia

Ten zbiór danych można tradycyjnie podzielić na dwa klastry. Wybierając próg
na osi x , dane są rozdzielane na dwa klastry. Powstałe klastry są oznaczone
jako A i B, jak widać na rysunku poniżej. Każdy punkt należący do zbioru
danych miałby zatem współczynnik przynależności 1 lub 0. Ten współczynnik
przynależności każdego odpowiedniego punktu danych jest reprezentowany
przez włączenie osi y .

Rysunek: Punkty na osi x oraz próg klasteryzacji, źródło: Wikipedia 49 / 53

Metoda FCM

W klastrach rozmytych każdy punkt danych może należeć do wielu klastrów.
Po rozluźnieniu definicji współczynników przynależności od ściśle 1 lub 0,
wartości te mogą mieścić się w zakresie od dowolnej wartości od 1 do 0.
Rysunek ponizej przedstawia zestaw danych z poprzedniego grupowania, ale
teraz zastosowano rozmyte grupowanie C-średnich. W pierwszej kolejności
można wygenerować nową wartość progową definiującą dwa klastry. Następnie
generowane są nowe współczynniki przynależności dla każdego punktu danych
na podstawie centroid klastrów, a także odległości od każdego centroidu

klastrów. Punkty na osi x klasteryzowane
metodą C-średnich, źródło: Wikipedia. Jak widać, środkowy punkt danych
należy do klastra A i klastra B. Wartość 0.3 to współczynnik przynależności
tego punktu danych do klastra A.

50 / 53

Obrazki

Żywioły, podzielony na 3 rozmytych klastra w R-ze- W Pythonie wizualizacja
nie jest łatwa.

51 / 53

Obrazki
Pingwiny podzielone na 3 rozmytych klastra według szerokości i długości

dzióby.
Pingwiny według szerokości i długości dzióby: pleć i gatunek.

52 / 53

Przykłady

▶ Punkty (1, 2), (2, 2), (4, 7), (3, 4) podziel na dwa klastry na karteczce i w
Pythonie.

▶ Punkty (2, 3), (6, 1), (1, 2), (3, 0), (4, 2), (2, 7), (4, 9) podziel na dwa klastry
w Pythonie.

▶ Zrób dendragram na zestawie danych „mtcars”.

https://gist.github.com/seankross/a412dfbd88b3db70b74b

Podziel samochody na 5 grup. Narysuj odpowiedni dendrogram.
▶ Zrób klasteryzacją „iris” (tylko dane liczbowe!) metodą k-średnich na 3 i 6

klastrówi narysuj obrazek dla dwóch składowych głównych.
▶ Zrób klasteryzacją „pingwinów” (tylko dane liczbowe!) metodą k-średnich

na 3 klastrowi narysuj obrazek dla dwóch składowych głównych i porównaj
z gatunkami.

53 / 53

https://gist.github.com/seankross/a412dfbd88b3db70b74b

