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Rozdziat 12. Analiza skupien
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Woprowadzenie do analizy skupien

Grupowanie (analiza skupien, klasteryzacja) (ang. data clustering) — metoda
tzw. klasyfikacji bez nadzoru (ang. unsupervised learning). Jest to metoda
dokonujaca grupowania elementéw wedtug jednorodnych klaséw. Podstawa
grupowania w wiekszosci algorytméw jest podobienstwo pomiedzy elementami
— wyrazone przy pomocy funkgji (metryki) podobienstwa.

Poprzez grupowanie mozna réwniez rozwiaza¢ problemy z gatunku odkrywania
struktury w danych oraz dokonywanie uogélniania. Grupowanie polega na
wyodrebnianiu grup (klaséw, podzbioréw).
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Wybrane cele dokonywania grupowania s3 nastepujace:

uzyskanie jednorodnych przedmiotéw badania, ufatwiajacych
wyodrebnienie ich zasadniczych cech,
zredukowanie duzej liczby danych pierwotnych do kilku podstawowych
kategorii, ktére moga by¢ traktowane jako przedmioty dalszej analizy,
zmniejszenie nakfadu pracy i czasu analiz, ktérych przedmiotem bedzie
uzyskanie klasyfikacji obiektéw typowych,
odkrycie nieznanej struktury analizowanych danych, poréwnywanie
obiektéw wielocechowych.
Grupowanie jako jedna z metod pozyskiwania wiedzy, a tym samym eksploracji
danych, jest scisle uwarunkowana zrédtem danych oraz oczekiwang postacia
rezultatow.
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Algorytmy analizy skupien dzieli sie na kilka podstawowych kategorii:

metody hierarchiczne — algorytm tworzy dla zbioru obiektéw hierarchie
klasyfikacji, zaczynajac od takiego podziatu, w ktérym kazdy obiekt
stanowi samodzielne skupienie, a kofczac na podziale, w ktérym wszystkie
obiekty naleza do jednego skupienia.

grupa metod k-$rednich (ang. k-means), w ktérej grupowanie polega na
wstepnym podzieleniu populacji na z géry zatozong liczbe klas (tzw.
skupien). Nastepnie uzyskany podziat jest poprawiany w ten sposéb, ze
niektére elementy s3 przenoszone do innych klas, tak, aby uzyskaé
minimalna wariancje wewnatrz kazdej z nich — dazy sie do zapewnienia jak
najwiekszego podobiefistwa elementéw w ramach kazdego ze skupien, przy
jednoczesnej maksymalnej r6znicy pomiedzy samymi klasami
(skupieniami).

metody rozmytej analizy skupien (ang. fuzzy clustering). Metody rozmytej
analizy skupie moga przydziela¢ element do wiecej niz jednej kategorii. Z
tego powodu algorytmy rozmytej analizy skupien sa stosowane w zadaniu
kategoryzacji (przydziatu jednostek do jednej lub wielu kategorii).
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Analiza skupien uzywa sie nie tylko w eksploracji danych, ale tez ma inne
zastosowania:

wstepna analiza danych, polegajaca na wyodrebnieniu jednorodnych grup
(subpopulacji), ktére podlegaja osobnej dalszej analizie statystycznej lub
ekonometrycznej;

wyszukiwanie informacji (ang. information retrieval), majaca za zadanie
uporzadkowanie i uproszczenie dostepu do informacji. Do klasycznych
zastosowan nalezy klasyfikacja dokumentéw tekstowych: ksiazek, czy stron
internetowych;

np.: w wyszukiwarkach internetowych — wykorzystywane do
automatycznego wyodrebnienia jednolitych grup i przydziatu elementéw
wynikéw do poszczegdlnych z nich;
segmentacja obrazu (ang. image segmentation), czyli podziat obrazu na
regiony homogeniczne pod wzgledem pewnej wtasnosci obrazu (kolor,
tekstura, intensywnos¢). Taki uproszczony obraz jest prostszy do obrébki
np. przez algorytmy rozpoznawania obrazu;

grupowanie zadah w problemie harmonogramowania tak, by zadania
intensywnie ze sobg komunikujace sie trafity do tej samej grupy. Taka
grupa zostanie w nastepnym kroku przypisana do wykonania na jednym
procesorze (badz kilku procesorach potaczonych szybkimi kanatami
komunikacyjnymi).
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Grupowanie hierarchiczne
Grupowanie hierarchiczne (hierarchiczna analiza skupien, klasteryzacja
hierarchiczna, klastrowanie hierarchiczne) — metoda analizy skupien, ktéra ma
na celu zbudowanie hierarchii klastréw. Stuzy do dzielenia obserwacji na grupy
(klastry) bazujac na podobienstwach miedzy nimi. W przeciwienstwie do wielu
algorytméw stuzacych do klastrowania w tym wypadku nie jest konieczne
wstepne okreslenie liczby tworzonych klastréw. Strategie tworzenia klastréow
hierarchicznych dzielg sie zasadniczo na dwa typy:
metody aglomeracyjne (ang. agglomerative) — kazda obserwacja tworzy na
poczatku jednoelementowy klaster. Nastepnie pary klastréw s3 scalane, w
kazdej iteracji algorytmu taczone s3 z sobg dwa najbardziej zblizone
klastry. Tworzone s3 tak zwane aglomeracje. W tym typie podczas
tworzenia klastréw idzie sie w gére hierarchii.
metody deglomeracyjne (ang. divisive) — poczatkowo wszystkie obserwacje
znajduja sie w jednym klastrze. W nastepnych krokach klastry dzielone sa
na mniejsze i bardziej jednorodne. Podziaty wykonywane sa rekursywnie.
W czasie tworzenia klastréw idzie sie w dét hierarchii.
Algorytmy grupowania hierarchicznego charakteryzuja sie ztozonoscia
obliczeniowa O(n®) oraz wymagaja O(n?) pamieci, co czyni je mato
efektywnymi. Wyniki hierarchicznego grupowania stanowia zestaw

zagniezdzonych klastréw, ktére sa zwykle prezentowane w dendrogramie.
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Dendrogram

Dendrogram — diagram w ksztatcie drzewa ukazujacy zwiazki pomiedzy
wybranymi elementami na podstawie przyjetego kryterium.
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Dane i dendrogram. Zrédto: https:
//towardsdatascience.com/hierarchical-clustering-explained-e59b13846da8
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Odlegtosc

Stosujac algorytmy grupowania hierarchicznego, konieczne jest dokonanie
pomiaru odlegtosci miedzy punktami. Gtéwnym celem jest to, aby odlegtosci
miedzy obserwacjami tego samego klastra byty mozliwie jak najmniejsze,
natomiast odlegtosci miedzy klastrami byty jak najwieksze. W hierarchicznym
grupowaniu istnieja dwa bardzo wazne parametry: metryka odlegtosci i metoda
potaczenia.

Zdefiniowanie sposobu okreslania odlegtosci miedzy obserwacjami jest jednym z
najwazniejszych aspektéw tego algorytmu. Moze zdarzy¢ sie, ze
niedostosowanie odpowiedniej metryki do danych spowoduje otrzymanie
bezsensownych wynikéw klastrowania.
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Gtoéwne miary odlegtosci s3 nastepujace:

Odlegtos¢ Euklidesowa: ||a — bl = /Z(ai — bj)?

Kwadratowa odlegtos¢ Euklidesowa: |la — b||3 = Z(a,- — b)?

Odlegtos¢ Manhattan: ||a— blls = _ |ai — by

Maksymalna odlegtos¢ : ||a — b|lcc = max|a; — bj]
1

10/53



Metody potaczenia

Metody pofaczenia okreslaja, jak definiowana jest odlegtos¢ miedzy dwoma
klastrami. Wazne jest, aby w danym eksperymencie wyprébowa¢ kilka metod
faczenia oraz poréwnac ich wyniki. W zaleznosci od zbioru danych, niektére
metody moga dziata¢ lepiej. Ponizej znajduje sie lista najczesciej wystepujacych
metod potaczeni (dla klastréw A i B):
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Metody potaczenia 1
Pojedyncze potfaczenie — odlegto$¢ miedzy dwoma klastrami jest
minimalna odlegtoscia miedzy obserwacja w jednym klastrze a obserwacja
w innym klastrze. Sprawdza sig, gdy klastry s3 wyraznie oddzielone:

aETIl?GB d(a’ b)

Kompletne potaczenie — odlegtosé miedzy dwoma klastrami jest
maksymalna odlegtoscia miedzy obserwacja w jednym klastrze a
obserwacja w innym klastrze. Moze by¢ wrazliwy na wystepowanie
outlier'éw.

max d(a, b).

acA, beB

Srednie potaczenie — odlegtos¢ miedzy dwoma klastrami jest érednia
odlegtoscia miedzy obserwacja w jednym klastrze a obserwacja w innym

klastrze:
Z > d(a,b).

aeA beB
Min-max potaczenie — odleg’{oé(: miedzy dwoma klastrami jest:

min_ max_d(x,y)
xEAUB y€AUB
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Metody potaczenia 2

Potaczenie centroidalne — odlegtos¢ miedzy dwoma klastrami jest
odlegtoscia pomiedzy centroidami klastra:

llea — pel?,
gdzie pa oraz pg sa centroidami klasteréw A i B ($rednig arytmetyczng
pozycji wszystkich elementéw odpowiedniego klastra)

Potaczenie Ward'a — odlegtos¢ miedzy dwoma klastrami jest suma
kwadratéw odchylern od punktéw do centroidéw. Ten sposéb dazy do
zminimalizowania sumy kwadratéw wewnatrz klastra:

Al-|B
i iE lea = sl = 3 = pavel = Sl = el = Xl ol

x€AUB xXEA xEB

Potaczenie wedtug minimalnego btedu sumy kwadratéw — odlegtosé
miedzy dwoma klastrami jest suma kwadratéw odchylen od punktéw do

wspélnego centroida:
D lx = pavell?
x€EAUB
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Metody potaczenia 3

Potaczenie wedtug minimalnego wzrost wariancje — odlegto$¢ miedzy
dwoma klastrami jest r6znica pomiedzy wspélng wariancje a wariancjami
klastréw:

1
|AU B| Z ”X /‘LAUB” |A| Z”X lu‘A” |B| Z”X - /“LB”

xEAUB xEB
= Var(AU B) — Var(A) — Var(B)

Potaczenie wedtug minimalnej wariancji — odlegtos¢ miedzy dwoma

klastrami jest wspélna wariancja:

1

[AUB| Z lIx = pavgl|* = Var(AU B)

x€EAUB
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Metoda aglomeracyjna

Aglomeracyjne grupowanie dziata w sposéb ,,oddolny” (ang. bottom-up). Na
poczatku algorytmu kazda obserwacja jest traktowana jako pojedynczy klaster.
Nastepnie pary klastréw sa sukcesywnie taczone, az do momentu gdy wszystkie
klastry zostana scalone w jeden duzy klaster zawierajacy wszystkie obiekty.

Przebieg algorytmu metody aglomeracyjnej mozna przedstawi¢ nastepujaco:
Wyszukiwane s3 dwa najblizsze punkty w zbiorze danych

Znalezione punkty s3 taczone — od tego momentu beda traktowane jako
jeden punkt

Proces rozpoczyna sie od nowa. Od teraz wykorzystywany jest nowy zbioér
obserwacji utworzony w poprzednich krokach

Decyzja o potaczeniu dwéch klastréw w jedne jest nieodwracalna — tego klastra
nie mozna rozdzieli¢ juz w nastepnej iteracji algorytmu.
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Przyktad
(Zrédto przyktadu i obrazkéw: Wikipedia
https://pl.wikipedia.org/wiki/Grupowanie_hierarchiczne) Na
rysunkach przedstawiono przebieg procesu grupowania aglomeracyjnego. Na
rysunku 2 jest zbiér danych, ktéry zostanie poddany klasteryzacji.

@
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Przyktad

Takim czynem, mamy sze$¢ elementéw a, b, c, d, e, f. Pierwszym krokiem
dziatania algorytmu jest okreslenie, ktére elementy nalezy potaczy¢ do jednego
w klastra. Zwykle chcemy wzig¢ dwa najblizsze sobie elementy, zgodnie z
wybrana odlegtoscia. W przyktadzie wybér podejmowany jest na podstawie
odlegtosci Euklidesowej, najbardziej intuicyjnej. Jedna z mozliwosci
poréwnywania odlegtosci miedzy soba jest zbudowanie macierzy odlegtosci na
tym etapie, gdzie liczba w i-tym wierszu j-tej kolumny jest odlegtoscia miedzy
i-tym i j-tym elementem. Nastepnie, w miare rozwoju klastréw, wiersze i
kolumny macierzy sg scalane, w momencie gdy scalane s3 klastry. Odlegtosci
powinny by¢ wtedy aktualizowane.

tatwo zauwazyé¢, ze najblizej siebie znajduja sie elementy bicoraz die. W
pierwszej fazie dziatania algorytmu pofaczylismy dwa najblizsze elementy b i c.
Od teraz mamy nastepujace klastry {a}, {b, c}, {d}, {e} i {f}. Naszym celem
jest ich dalsze scalanie. Aby to zrobi¢, musimy okresli¢ odlegtos¢ miedzy
klastrem {b, c}, a pozostatymi klastrami (ktére stanowia na razie pojedyncze
obserwacje). Nastepnym etapem bedzie potaczenie elementéw {d} i {e}.
Kolejne iteracje beda wykonywane az do momentu gdy wszystkie szes¢
elementéw znajdzie sie w jednym klastrze.
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Przyktad

Na rysunku 3 przedstawiono dendrogram, ktéry przedstawia rezultat dziatania

algorytmu grupowania hierarchicznego

@

abcdef

Dendrogram po klasteryzacji.
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Metoda deglomeracyjna

Podstawowa zasade klasteryzacji deglomeracyjnej opublikowano jako algorytm
DIANA (ang. Dlvisive ANAlysis clustering, [? ]). DIANA wybiera obiekt o
maksymalnej $redniej odmiennosci, a nastepnie przenosi do tego skupienia
wszystkie obiekty, ktére s3 bardziej podobne do nowego skupienia niz do
pozostatych.

Nieformalnie DIANA to nie tyle proces ,dzieleni”, co ,wydrazania™: w kazdej
iteracji wybierany jest istniejacy klaster (np. poczatkowy klaster catego zbioru
danych), aby utworzy¢ w nim nowy klaster. Obiekty stopniowo przenoszj sie do
tego zagniezdzonego klastra i oprézniaja istniejacy klaster. Ostatecznie
wszystko, co pozostaje w klastrze, to zagniezdzone klastry, ktére tam wyrosty,
same w sobie nie posiadajace zadnych luznych obiektéw.
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Formalnie algorytm DIANA moze by¢ opisany jako kolejno$¢ nastepujacych
krokow:

Niech | = {1...n} bedzie zbiorem wszystkich n indekséw obiektéw oraz C
— zbiorem wszystkich utworzonych do tej pory klastréw.
Nastepne kroki trzeba powtarza¢ dopéki |C| # n.
Znajdz biezacy klaster zawierajacy 2 lub wiecej obiektéw o najwiekszej
$rednicy:

A, = arg max max d(a, b).
AEC a,bEA

Znajdz obiekt w tym klastrze najbardziej rézniacy sie od reszty klastra:

1
* = — 5 b
2 = arg max beg{a} (a, b)

Wyja¢ a. ze starego klastra i zrobi¢ dla niego nowy klaster (splinter
group/grupa odtamkéw) Anew = {ax}.

Dopdki Ax nie jest pusty, kontynuuj migracje obiektéw z A, do Apew. Aby
wybraé obiekty do migracji, nie tylko wez pod uwage réznica od A, ale
takze dostosuj pod katem odmiennosci od A.: niech

= D
3. = arg max (a),

gdzie

D(a) = ! > d(a,b) - ! > d(a,b)

Ad =1 A Anew| Eam.,
Dodaj Anew do C. 20/53



Algorytm DIANA

Intuicyjnie, D(a) mierze, jak bardzo obiekt chce opusci¢ swéj obecny klaster.
Jezeli obiekt nie pasuje tak samo do nowego klastra, to prawdopodobnie za
kilka krokéw on zatoze wtasne klaster.

Dendrogram DIANA mozna skonstruowaé, pozwalajac za kazdym razem
nowemy klastru by¢ dzieckiem klastru A.. Konstruuje to drzewo z Gy jako
korzeniem i n unikalnymi klastrami pojedynczych obiektéw jako lisémi.
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Przyktad

Niech mamy obiekty z rysunku 2 do klasteryzacje. Na poczatku mamy jeden
klaster A= {a, b,c,d, e, f}.
A.={a,b,c,d, e, f}, a. = a, Anew = {a}. Wszystkie elementy s3 blizej
do pozostatych niz do a, dlatego na koncu tej iteracji mamy klastry {a} i
{b,c,d,e, f}
A.={b,c,d,e, f}, a. =f, Anew = {f}. Przynosimy do Ape, elementy d
i e ina koncu tej iteracji mamy klastry {a}, {b,c},{d, e, f}.
A.={d,e,f}, ax. =f, Apew = {f}. Do Asen nic nie przynosimy i na
koncu tej iteracji mamy klastry {a}, {b,c},{d, e}, {f}.
Ai ={b,c}, ax = b, Apew = {b}. Do Asew nic nie przynosimy i na koncu
tej iteracji mamy klastry {a}, {b},{c},{d, e}, {f}.
A. ={d, e}, a. = d, Apew = {d}. Do Apen nic nie przynosimy i na koncu
tej iteracji mamy klastry {a}, {b}, {c},{d},{e}, {f}.
Dendrogram bedzie taki sam jak na rysunku 3.
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Grupowanie hierarchiczne w Pythonie
import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]
y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

plt.scatter(x, y)
plt.show()

Zrédto https:

//www.u3schools.com/python/python_ml_hierarchial_clustering.asp ,3,s3


https://www.w3schools.com/python/python_ml_hierarchial_clustering.asp
https://www.w3schools.com/python/python_ml_hierarchial_clustering.asp

Grupowanie hierarchiczne w Pythonie
Metoda aglomeracyjna: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.cluster.hierarchy.linkage.html

import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage

[4, 5, 10, 4, 3, 11, 14 , 6, 10, 12]
[21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

X

y

data = list(zip(x, y))

linkage_data = linkage(data, method=’ward’, metric=’euclidean’)
#method decyduje jak obliczamy dystans pomiedzy klastrami
dendrogram(linkage_data)

plt.show()
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https://www.w3schools.com/python/python_ml_hierarchial_clustering.asp

Grupowanle hierarchiczne w Pythonie
N T PR
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B [ e ] D | E [ F
warm blooded canfly vertebrate endangered live in groups have hair
1 1 1 1 2 1_

| 3 | bee 1 2 1 1 2 2
o L cat 2 1 2 1 1 2
5 ol 1 1 1 1 1 2
' 6 [chi 2 1 2 2 2 2
% 7 |cow 2 1 2 1 2 2
| 8 lduc 2 2 2 1 2 1
| 9 leag 2 2 2 2 1 1
10 Jele 2 1 2 2 2 1
11 iy 1 2 1 1 1 1
12 [fro 1 1 2 2NA 1
it 13 |her 1 1 2 1 2 1
14 Jlio 2 1 2NA 2 2
15 |liz 1 1 2 1 1 1
16 |lob 1 1 1 1NA 1
17 man 2 1 2 2 2 2
| 18 |rab 2 1 2 1 2 2
19 [sal 1 1 2 1NA 1
20 |spi 1 1 1NA 1 2
4 21 wha 2 1 2 2 2 1
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Zrédto danych:

https://pmagunia.com/dataset/r-dataset-package-cluster-animals 28 /63
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Grupowanie hierarchiczne w Pythonie: kod

import pandas as pd

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.preprocessing import scale

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)

linkage_data = linkage(newdata, method=’ward’, metric=’euclidean’)

dendrogram(linkage_data,labels = newdata.index)

plt.show()

26 /53



Grupowanie hierarchiczne w Pythonie: obrazek

ant her liz cpl bee fly duceag cat cowrab chiman ele wha
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Grupowanie hierarchiczne w Pythonie: cut tree
Jednym z probleméw zwigzanych z hierarchicznym grupowaniem jest to, ze
wynikiem nie jest informacja na ile klastréw nalezy podzieli¢ obserwacje lub
gdzie mozna przecia¢ dendrogram w celu utworzenia klastréw. Mozliwe jest
przeciecie drzewa na okreslonej wysokosci stuzy do tego funkcja cut_tree().
Zwraca ona wektor zawierajacy numer klastra kazdej z obserwacji.

import pandas as pd

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree
from sklearn.preprocessing import scale

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)

linkage_data = linkage(newdata, method=’ward’, metric=’euclidean’)
dendrogram(linkage_data,labels = newdata.index)

cutree = cut_tree(linkage_data, n_clusters=3)

print (pd.DataFrame(cutree, index=data.index,))

plt.show()
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Grupowanie hierarchiczne w Pythonie: truncate mode

truncate_mode pozwala na rysowanie mnie liscie na obrazku.

import pandas as pd

import matplotlib.pyplot as plt

from scipy.cluster.hierarchy import dendrogram, linkage, cut_tree
from sklearn.preprocessing import scale

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)

linkage_data = linkage(newdata, method=’ward’, metric=’euclidean’)
dendrogram(linkage_data, truncate_mode = ’lastp’, p=3)

cutree = cut_tree(linkage_data, n_clusters=3)

print (pd.DataFrame(cutree, index=data.index,))

plt.show()
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Grupowanie hierarchiczne w Pythonie: truncate mode

(6) (2) @)
ant O chi 1 ele 1 man 1
bee O cow 1 fly 0 rab 1
cat 1 duc 2 her O wha 1
cpl O eag 2 liz O
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Klasteryzacja metodg k-srednich: wprowadzenie

Grupowanie k-$rednich to metoda kwantyzacji wektoréw, ktéra ma na celu
podzielenie n obserwacji na k klastréw, w ktérych kazda obserwacja nalezy do
klastra o najblizszej sredniej (centra lub centroida klastréw), stuzac jako
prototyp klastra. Klasteryzacja metoda k-srednich minimalizuje wariancje
wewnatrz skupien (kwadrat odlegtosci euklidesowych), ale nie regularne
odlegtosci euklidesowe, co bytoby trudniejsze.

Majac zbiér obserwacji (X1, Xz, ..., X»), gdzie kazda obserwacja jest
m-wymiarowym wektorem rzeczywistym, grupowanie k-$rednich ma na celu
podzielenie n obserwacji na (k < n) zbioréw S = {51, 5>, ..., Sk}, aby
zminimalizowa¢ sume kwadratéw wewnatrz skupienia (WCSS) (tj. wariancje).
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Klasteryzacja metoda k-$rednich: wprowadzenie
Formalnie celem jest znalezienie:

arg min Z Z X — pwill> = arg min Z |Si| Var S;
i=1 XeS;
gdzie p; jest $rednig (zwang takze centroidq) punktéw w S;, tj.
pi= 5 Z X,
1515

gdzie |S;| jest rozmiarem S; jest typowa L?-norma. Jest to réwnowazne
minimalizacji odchylefi kwadratéw parami punktéw w tym samym klastrze:

argmlnz Z X —YI|>.

X,YES;
Réwnowaznos¢ wynika z tozsamosci:

1
5 2 IX=YIP=1si1 > I1X = pill?

X,Y€ES; XeS;

l
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Standardowy algorytm klasteryzacji metoda k-srednich

Najpopularniejszy algorytm wykorzystuje technike iteracyjnego udoskonalania.
Ze wzgledu na swoja wszechobecnosé czesto nazywany jest ,algorytmem
k-$rednich”; jest on réwniez nazywany algorytmem Lloyda, szczegélnie w
spofecznosci informatycznej. Czasami nazywa sie to réwniez ,,naiwnymi
k-Srednimi”, poniewaz istnieja znacznie szybsze alternatywy.

A A
e o
L]
* L
L]
L] L]
[ ] L]
L L] L]
eoe L
L] [ ]
> >
> »

Before K-Means After K-Means

Zrédto: https:
//www.gatevidyalay.com/k-means-clustering-algorithm-example/
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Standardowy algorytm klasteryzacji metoda k-srednich

Inicializacja. Powszechnie stosowanymi metodami inicjalizacji s3 Metoda
losowego podziatu (Random Partition) oraz Metoda Forgy'ego. Metoda
losowego podziatu najpierw losowo przypisuje klaster do kazdej obserwacji,
a nastepnie przechodzi do etapu aktualizacji, obliczajagc w ten sposéb
poczatkowa Srednig stanowigca centroid (Srodek ciezkosci) losowo
przypisanych punktéw klastra. Metoda Forgy'ego losowo wybiera k
obserwacji ze zbioru danych i wykorzystuje je jako srednie poczatkowe
Iteracje. Majac poczatkowy zestaw k-$rednich g1, ..., pk, algorytm
wykonuje naprzemiennie dwa kroki:

Krok przypisywania: przypisz kazda obserwacje do klastra z najblizszym

centroidem (tzn z tej o najmniejszej kwadratowej odlegtosci euklidesowej):

5 = (X 1 X — w2 < [1Xp — ul2 W, 1 < < K},
gdzie kazdy X, jest przypisany doktadnie do jednego S nawet jesli

mégtby by¢ przypisany do dwéch lub wiecej z nich.
Krok aktualizacji: ponowne obliczenie centroidow obserwacji przypisanych

do kazdego klastra:
(t+1) _ 1 T X
Hi - S(t) )<J

1591 250

Algorytm osiagnat zbieznos¢, jezeli przypisania juz sie nie zmieniaja.
Algorytm nie gwarantuje znalezienia optymalnego przypisania.
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Obrazki
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Typowy przyktad zbieznosci k-srednich do minimum lokalnego. W tym
przyktadzie wynik grupowania k-srednich (po prawej stronie) jest sprzeczny z
oczywista strukturg skupien zbioru danych. Mate kétka to punkty danych,
cztery gwiazdy promieniste to centroidy (Srednie). Poczatkowa konfiguracja
znajduje sie na lewym rysunku. Algorytm osiaga zbiezno$¢ po pieciu iteracjach
przedstawionych na rysunkach, od lewej do prawej, z géry w dol, zrédto:
https://en.wikipedia.org/wiki/K-means_clustering
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Przyktad 1
Niech mamy cztery punkty: A= (2,3),B =(6,1),C =(1,2),D = (3,0).
Losowo dzielimy ich na dwa klastry (metoda Random Partition): {A, B} oraz
{C,D}.

Centroidy: pag = (4,2), ueo = (2,1).
Odlegtos¢ (kwadrat Euklidesowej!) punktéw od centroidow:

A| B |C|D

pag | 5| 5 | 9|5

Hco 4 16 2 2

Poniewaz ||A — pag||® > ||A — pepl|?, przenosimy A do drugiego klastra.
Mamy teraz klastry {B} oraz {A, C, D} z centroidami: ug = (6,1) oraz

1
HACD = §(2+1+373+2+0) =(2,1.67)
Odlegtos¢ (kwadrat Euklidesowej!) punktéw od centroidow:
A B C D
I 20 0 26 10
paco | 1.78 | 16.44 | 1.11 | 3.78

Nic nie potrzebuje przenoszenia, koniec. Mamy klastry {B} oraz
{A, C,D}.
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Przyktad 2
Niech mamy cztery punkty: A= (1,1),B =(2,1),C = (4,3),D = (5,4).
Losowo bierzemy dwa klastra (metoda Forgy'ego): 1 = A oraz u2 = B.

Centroidy: p1 = (1,1), u2 = (2,1).
Odlegtos¢ (kwadrat Euklidesowej!) punktéw od centroidow:

A|lB| C D
g |0 |1 |13]25
2| 1]0] 8 |18

Dodajemy C i D do drugiego klastra. Mamy teraz klastry {A} oraz

{B, C, D} z centroidami: p1 = (1,1) oraz > = (3.67,2.67)

Odlegtos¢ (kwadrat Euklidesowej!) punktéw od centroidow:

A B C D
| 0 1 | 13 | 25
p2 | 9.91 | 558 | 0.21 | 3.54

Przenosimy B do pierwszego klastra. Mamy teraz klastry {A, B} oraz

{C, D} z centroidami: pu1 = (1.5,1) oraz u> = (4.5,3.5)

Odlegtos¢ (kwadrat Euklidesowej!) punktéw od centroidow:

A B C D

p1 | 0.25 0.25 10.24 | 21.25

w2 | 185 | 12.58 0.5 0.5

Nic nie potrzebuje przenoszenia, koniec. Mamy dwa klastra {A, B} oraz
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Przyktad 2 w Python

import matplotlib.pyplot as plt
from sklearn.cluster import AgglomerativeClustering

x = [1,2,4,5]
y = [1:1:3s4]

data = list(zip(x, y))

hierarchical_cluster = AgglomerativeClustering(n_clusters=2, metric=’eu
labels = hierarchical_cluster.fit_predict(data)

plt.scatter(x, y, c=labels)
plt.show()
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Przyktad 2 w Python: obrazek

154

1.0+

10 15 2.0 2.5 3.0 35 4.0 4.5 5.0
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Przyktad w Python: animals

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.preprocessing import scale

from sklearn.decomposition import PCA

from sklearn.cluster import AgglomerativeClustering

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)

hierarchical_cluster = AgglomerativeClustering(n_clusters=3,
metric=’euclidean’, linkage=’ward’)
labels = hierarchical_cluster.fit_predict(newdata)
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Przyktad w Python animals: obrazek na dwéch sktadowych

pca = PCA(n_components=2)

pca.fit(newdata)

print(pca.components_)#e.v

print (sum(pca.explained_variance_ratio_))#)of information
data2 = pca.transform(newdata) .round(2)

print(data2)

x, y = data2[:,0], data2[:,1]
plt.scatter(x,y, c=labels)
for i, txt in enumerate(data.index):

plt.annotate(txt, (x[i]l, y[il))
plt.show()
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Przyktad w Python animals:

obrazek
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Przyktad w Python 2 sktadowych
Uwaga! Mozna tez zrobi¢ odwrotnie: na poczatku dwie skftadowych, potem —
klasteryzacja!
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import scale
from sklearn.decomposition import PCA
from sklearn.cluster import AgglomerativeClustering

data = pd.read_csv("animals.csv").dropna()

newdata = pd.DataFrame(scale(data), index=data.index,
columns=data.columns)

print (newdata)

pca = PCA(n_components=2)

pca.fit(newdata)

print (pca.components_)#e.v

print (sum(pca.explained_variance_ratio_))#%of information

data?2 = pca.transform(newdata) .round(2) 43 /53



Przyktad w Python 2 sktadowych: klasteryzacja

hierarchical_cluster = AgglomerativeClustering(n_clusters=3,
metric=’euclidean’, linkage=’ward’)

labels = hierarchical_cluster.fit_predict(data2)

x, y = data2[:,0], data2[:,1]

plt.scatter(x,y, c=labels)

for i, txt in enumerate(data.index):

plt.annotate(txt, (x[i], y[i]))
plt.show()
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Przyktad w Python 2 sktadowych: obrazek
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Metody rozmytej analizy skupien: wprowadzenie

Klasterowanie rozmyte (nazywane réwniez klasterowaniem miekkim lub
miekkimi k-srednimi) to forma klasterowania, w ktérej kazdy punkt danych
moze naleze¢ do wiecej niz jednego klastra.

W klastrowanie nierozmytem (znane réwniez jako klastrowanie twarde) dane sa
dzielone na odrebne klastry, przy czym kazdy punkt danych moze nalezeé¢ tylko
do doktadnie jednego klastra. W klastrach rozmytych punkty danych moga
potencjalnie naleze¢ do wielu klastréw. Na przykfad jabtko moze byé czerwone
lub zielone (grupowanie twarde), ale jabtko moze by¢ réwniez czerwone ORAZ
zielone (grupowanie rozmyte). Tutaj jabtko moze by¢ do pewnego stopnia
czerwone i do pewnego stopnia zielone. Zamiast jabtka nalezacego do zielonego
[zielony = 1] i nie czerwonego [czerwony = 0], jabtko moze naleze¢ do
zielonego [zielony = 0,5] i czerwonego [czerwony = 0,5]. Wartosci te s3
normalizowane w zakresie od 0 do 1; jednakze nie reprezentuja one
prawdopodobienstw, wiec te dwie wartosci nie musza sumowac sie do 1.

Do kazdego z punktéw danych (tagéw) przypisane s3 stopnie cztonkostwa. Te
stopnie cztonkostwa wskazuja stopien, w jakim punkty danych naleza do
kazdego klastra. Zatem punkty na krawedzi klastra, o nizszych stopniach
przynaleznosci, moga znajdowac¢ sie w klastrze w mniejszym stopniu niz punkty
w centrum klastra.
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Metoda FCM

Jednym z najczesciej stosowanych algorytméw grupowania rozmytego jest

algorytm grupowania rozmytego C-Sredniego (angl. Fuzzy C-means clustering,

FCM). Klastrowanie rozmytych C-érednich (FCM) zostato opracowane przez

J.C. Dunna w 1973 r.

Algorytm rozmyty c-$rednich jest bardzo podobny do algorytmu k-srednich:
Wybierz liczbe klastréw / i liczba m € (1, 00), charakteryzujaca na ile
rozmyty beda klastry (m = 1 — nie rozmyty klastry).

Wybierz losowo centry klastréw ci, ..., c.
Powtarzaj, az algorytm osiagnie zbieznos¢ (tzn. zmiana wspétczynnikéw
pomiedzy dwiema iteracjami nie bedzie wieksza niz € — zadany prog
czutosci):
Oblicz wspétczynnik ze X; nalezy do klastra z centroidem ¢;:
1

= =
/ [[Xi=gll ) ™2
2= (fo—ckn
Oblicz $rodek ciezkosci dla kazdego klastra.

2 wik(X)"X
S w(X)™

wij

Ck =
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Metoda FCM

FCM ma na celu zminimalizowanie funkgji:
n !
JW,0) = wi |IXi—gl?
i=1 j=1

FCM metoda jest bardzo waznym narzedziem do przetwarzania obrazu w
grupowaniu obiektéw na obrazie. Funkcje przynaleznosci maja na celu opisanie
koloréw zgodnie z ludzka intuicja identyfikacji koloréw.
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Metoda FCM

Aby lepiej zrozumie¢ FCM metoda, ponizej na rysunku przedstawiono klasyczny
przyktad danych jednowymiarowych na osi x, :

— %
@eee 000e s 00 oomee oo

Punkty na osi x, zrédto: Wikipedia

Ten zbiér danych mozna tradycyjnie podzieli¢ na dwa klastry. Wybierajac prég
na osi x, dane s3 rozdzielane na dwa klastry. Powstate klastry s3 oznaczone
jako A i B, jak wida¢ na rysunku ponizej. Kazdy punkt nalezacy do zbioru
danych miatby zatem wspdétczynnik przynaleznosci 1 lub 0. Ten wspétczynnik
przynaleznosci kazdego odpowiedniego punktu danych jest reprezentowany
przez wiaczenie osi y.

m  (membership)

1

A B

Punkty na osi x oraz prég klasteryzacji, zrédto: Wikipedia 49/53



Metoda FCM

m  (membership)

1

A B

W klastrach rozmytych kazdy punkt danych moze naleze¢ do wielu klastréw.
Po rozluznieniu definicji wspétczynnikéw przynaleznosci od scisle 1 lub 0,
wartosci te moga miesci¢ sie w zakresie od dowolnej wartosci od 1 do 0.
Rysunek ponizej przedstawia zestaw danych z poprzedniego grupowania, ale
teraz zastosowano rozmyte grupowanie C-érednich. W pierwszej kolejnosci
mozna wygenerowa¢ nowa wartos¢ progowa definiujaca dwa klastry. Nastepnie
generowane s3 nowe wspofczynniki przynaleznosci dla kazdego punktu danych
na podstawie centroid klastréw, a takze odlegtosci od kazdego centroidu

m  (membership)

03
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Obrazki

Cluster plot

cluster

Dim?2 (20.8%)

-4 -2 0 2
Dim?1 (40.2%)

Zywioty, podzielony na 3 rozmytych klastra w R-ze- W Pythonie wizualizacja
nie jest tatwa.
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Obrazki

Pingwiny podzielone na 3 rozmytych klastra wedtug szerokosci i dtugosci

Cluster plot
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Przyktady

Punkty (1,2),(2,2),(4,7),(3,4) podziel na dwa klastry na karteczce i w
Pythonie.

Punkty (2,3),(6,1),(1,2),(3,0),(4,2),(2,7),(4,9) podziel na dwa klastry
w Pythonie.

Zréb dendragram na zestawie danych ,mtcars”.
https://gist.github.com/seankross/a412dfbd88b3db70b74b

Podziel samochody na 5 grup. Narysuj odpowiedni dendrogram.

Zréb klasteryzacja ,iris” (tylko dane liczbowe!) metoda k-srednich na 3 6
klastréwi narysuj obrazek dla dwéch sktadowych gtéwnych.

Zréb klasteryzacja ,,pingwinéw” (tylko dane liczbowe!) metoda k-$rednich
na 3 klastrowi narysuj obrazek dla dwéch sktadowych gtéwnych i poréwnaj
z gatunkami.
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