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Egzamin zerowy bedzie tylko ustny. Uprawniony student, ktory go nie zda, nie otrzymuje oceny
niedostatecznej, tylko moze przystapi¢ do I-go terminu egzaminu, ktéry sktada sie z pisemnego
testu 1 egzaminu ustnego.

Kazde pytanie na egzaminie ustnym zawieralo bedzie nieucigzliwy rachunkowo przyktad, ktérego
wczesniej nie udostepniam.

Kazdy zestaw bedzie zawieral 4 pytania z roznych dziatow.

Brak odpowiedzi na dwa pytania, to nieunikniona ocena ndst.

. W przypadku braku odpowiedzi na jedno z pytan student otrzyma pytanie dodatkowe z dziatu

powiazanego z tym pytaniem. Brak odpowiedzi, to nieunikniona ocena ndst.
Kazdy student bedzie mial minimum 15 minut na przygotowanie odpowiedzi.

Bezposrednio po przejrzeniu zestawu bedzie mozna wymieni¢ go na inny. Po skorzystaniu z tej
mozliwosci bedzie mozna uzyskaé¢ z egzaminu najwyzej ocene dst.

Lista os6b dopuszczonych do egzaminu ustnego zostanie udostepniona w przeddzien wieczorem. Na
egzamin nalezy przychodzi¢ w kolejnosci zgodnej z ta lista (studenci z konca listy moga przyjsé¢ poz-
niej unikajac dlugiego oczekiwania). Dopuszczalne sg zamiany pomiedzy poszezegolnymi osobami,
ktore porozumiejg sie w tej sprawie.

Do egzaminu ustnego dopuszcza 35% punktow uzyskanych z testu jak juz podano w sylabusie.
Ponad 65% punktéw z testu gwarantuje ocene dst+. W tym przypadku student moze zrezygnowaé
ze zdawania egzaminu ustnego lub przystapi¢ do niego, jesli chce uzyska¢ ocene wyzsza niz po
tescie.

Test bedzie zawieral pytania teoretyczne i praktyczne. Nalezato bedzie tylko zaznaczy¢ litere T
(od TAK) jesli zdanie jest prawdziwe i N (od NIE) jesli jest falszywe. Odpowiedz prawidtowa daje
1 pkt, nieprawidtowa -1 pkt, a brak odpowiedzi 0 pkt.

Pytania egzaminacyjne z metod algebry liniowej w informatyce, Data Science
and Artificial Intelligence 2026.

1.

Definicja grupy i grupy abelowej. Poda¢ przyktady zbioréw liczbowych, ktore tworzg grupy abelowe
z dziataniami dodawania lub mnozenia. Zbada¢ czy dany zbiér z danym dziataniem jest grupa.

Definicja grupy i podgrupy. Podaé¢ przyktad grupy nieprzemiennej i jej podgrupy. Wyznaczy¢ w
grupie nieprzemiennej element z z danego réwnania.

. Definicja ciata. Przyktady cial.

Cialo liczb zespolonych. Rozwiaza¢ w liczbach zespolonych rownanie liniowe.

Modut, argument, posta¢ trygonometryczna i wyktadnicza liczby zespolonej. Zaznaczy¢ na ptasz-
czyznie zbior liczb spetniajacych dane warunki.

Wzory Moivre’a na potege i pierwiastki z liczby zespolonej. Zastosowac.

Zasadnicze twierdzenie algebry i twierdzenie o sprzezonych pierwiastkach wielomianu o wspotczyn-
nikach rzeczywistych. Rozwigza¢ w C rownanie stopnia > 2.

Definicja przestrzeni liniowej nad dowolnym cialem oraz przestrzeni wektorowej R". Wtasnosci
dzialan. Kombinacja liniowa wektorow.

Definicja podprzestrzeni przestrzeni liniowej. Poda¢ przyktad. Sprawdzi¢, czy dany zbior jest
podprzestrzenia przestrzeni R”
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Wektory liniowo zalezne i liniowo niezalezne. Definicja i twierdzenie podajace warunek jej réwno-
wazny. Podaé¢ przyktady. Sprawdzié¢ czy dane wektory sa liniowo zalezne.

Definicja bazy i wymiaru przestrzeni i podprzestrzeni. Poda¢ przyklady. Sprawdzi¢, czy dany zbior
wektoréow jest baza.

Suma i czes¢é wspolna podprzestrzeni liniowych. Zwiazek pomiedzy ich wymiarami.

Definicja macierzy. Dzialania na macierzach. Rozstrzygnaé¢, czy mozna wykonaé¢ dane dziatanie.
Wykonag¢, jesli jest to mozliwe.

Przedstawienie iloczynu macierzy w postaci sumy iloczynéw kolumn przez wiersze.

Transpozycja macierzy. Wzor na transpozycje iloczynu macierzy. Definicja macierzy symetryczne;j.
Sprawdzi¢, czy dany wzor jest prawdziwy.

Przestrzenie wierszy i kolumn macierzy oraz ich wymiary. Rzad macierzy i metoda eliminacji
Gaussa jego wyznaczania. Wyznaczy¢ rzad danej macierzy.

Posta¢ schodkowa i zredukowana posta¢ schodkowa. Wyznaczy¢ dla danej macierzy.

Rozktad A = C'R macierzy, gdzie kolumny macierzy C' sg baza przestrzeni kolumn macierzy A, a
R jest zredukowana macierza schodkows.

Macierze elementarne i macierze permutacji oraz ich zwigzki z operacjami na wierszach i kolumnach
macierzy.

Rozktad macierzy A = LU na iloczyn macierzy trojkatnej dolnej i trojkatnej gornej. Wyznaczy¢
dla danej macierzy.

Indukeyjna definicja wyznacznika. Rozwiniecie i twierdzenie Laplace’a. Zastosowac.

Wtasnosci wyznacznika. Metody jego obliczania. Obliczy¢ wyznacznik danej macierzy.
Twierdzenie Cauchy’ego o wyznaczniku iloczynu macierzy. Sprawdzi¢ na przyktadzie.

Macierze osobliwe i nieosobliwe. Macierz odwrotna. Wyznaczy¢ macierz odwrotna danej macierzy.
Twierdzenie Kroneckera-Capellego. Zastosowaé¢ do danego uktadu.

Omowié metode eliminacji Gaussa rozwigzywania ukladéw réwnan liniowych. Rozwigzaé¢ dany
uktad.

Ukltady Cramera rownan linowych. Wzory Cramera. Sprawdzi¢, czy dany uklad rownan jest
uktadem Cramera.

Jednorodne uklady réownan liniowych. Posta¢ rozwigzania. Sprawdzi¢, czy rozwiazaniem danego
uktadu jest prosta.

Grupa permutacji S,,. Permutacje parzyste i nieparzyste. Cykl i transpozycja. Rozklad permutacji
na cykle rozlaczne. Rozlozy¢ dana permutacje na cykle roztaczne i okresli¢ jej znak.

Permutacyjna definicja wyznacznika. Okresli¢ znak danego sktadnika wyznacznika.
Definicja przeksztalcenia liniowego. Sprawdzi¢, czy dane przeksztalcenie jest liniowe.
Definicja macierzy przeksztalcenia liniowego. Podaé¢ macierz danego przeksztatcenia.

Jadro i obraz przeksztalcenia liniowego. Zwiazek pomiedzy ich wymiarami. Wyznaczy¢ jadro i
obraz danego przeksztalcenia.

[zomorfizm i automorfizm liniowy, jego macierz, jadro i obraz. Grupa GL(n,R). Sprawdzi¢, czy
dane przeksztalcenie jest automorfizmem.
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Definicja podprzestrzeni niezmienniczej przeksztalcenia liniowego. Sprawdzi¢, czy dana jednowy-
miarowa podprzestrzen jest niezmiennicza.

Definicja wektora wlasnego i wartosci wlasnej przeksztaltcenia liniowego. Sposob ich wyznaczania.
Wyznaczy¢ dla danego przeksztalcenia.

Twierdzenie o liniowej niezaleznosci wektoréw wtasnych. Postaé przeksztatcenia liniowego w bazie
wektorow wlasnych. Sprawdzié, czy dane przeksztalcenie ma baze wektorow wtasnych.

Definicja macierzy przejScia z bazy kanonicznej do dowolnej bazy. Zwiazek miedzy macierzami
przeksztalcenia w r6znych bazach. Wyznaczy¢ macierz przejscia z bazy kanonicznej do danej.

Definicja macierzy podobnych. Warunki konieczne podobienstwa macierzy. Sprawdzié¢, czy dane
macierze sg podobne.

Definicja macierzy diagonalizowalnej. Zwiazek z bazg wektoréw wlasnych. Rozklad A = PAP™!,
gdzie A jest macierzg diagonalng. Sprawdzié¢, czy dana macierz jest diagonalizowalna.

lNloczyn skalarny i norma wektora. Definicja wektoréow ortogonalnych i kata pomiedzy wektorami.
Dopelnienie ortogonalne podprzestrzeni. Iloczyn wektorowy w E? i jego zastosowania.
Rzuty ortogonalne na podprzestrzenie i ich macierze. Wyznaczy¢ dla danej podprzestrzeni.

Najlepsze przyblizone rozwiazanie uktadu réwnani. Réwnanie normalne i metoda najmniejszych
kwadratow. Zastosowa¢ dla danego sprzecznego uktadu réwnarn.

Zastosowanie metody najmniejszych kwadratéw do wyznaczania prostej regresji.

Ortogonalna baza przestrzeni i podprzestrzeni. Omoéwié¢ metode ortogonalizacji Grama-Schmidta i
zastosowaé do danego uktadu wektoréow.

Definicja przeksztalcenia i macierzy ortogonalnej. Podaé¢ przyklad w E? i w E3. Grupy O(n) i

SO(n).

Rozktad A = QR dowolnej nieosobliwej macierzy A na iloczyn macierzy ortogonalnej @) i trojkatne;
gornej R. Wyznaczy¢ dla danej macierzy.

Twierdzenie spektralne dla rzeczywistych macierzy symetrycznych. Rozktad A = QAQT i rozklad
spektralny. Wyznaczy¢ dla danej macierzy symetrycznej Asyo.

Rozktad Choleskiego dodatnio okre$lonych macierzy symetrycznych.

Roktad SVD (A = UXVT). Wartosci i wektory osobliwe. Sposob wyznaczania.



