Parametrization

1. Find parametric equation for the line parallel to the vector $[2,3,4]$ and through the point $(1,5,7)$.
2. Find the points at which the line $x=t, y-2 t, z=1+t$ pierces the sphere of radius 10 centered at the origin.
3. Two particles move through space, with equations $\overrightarrow{r_{1}}(t)=[t, 1+2 t, 3-2 t]$ and $\overrightarrow{r_{2}}(t)=[-2-2 t, 1-2 t, 1+t]$. Do the particles ever collide? Do their paths cross?
4. Are the lines $x=-1+t, y=1+2 t, z=5-t$ and $x=2+2 t, y=4_{t}, z=3+t$ parallel? Do they intersect?
5. Show that the following two lines are the same:

$$
\vec{r}=[-1,-1,1]+t[3,6,-3] \quad \vec{r}=[1,3,-1]+t[-1,-2,1] .
$$

6. Find parametric equations for:
(a) The line in the direction of the vector $[1,2,-1]$ and through the point $(3,0,-4)$.
(b) The line parallel to the z-axis passing through the point $(1,0,0)$.
(c) The line through the points $(1,5,2)$ and $(5,0,-1)$.
(d) The line intersecting the x-axis at $x=3$ and the z-axis at $z=-5$.
(e) The circle of radius 3 in the $x y$-plane, centered at the origin, counterclockwise.
(f) The circle of radius 3 parallel to the $x y$-plane, centered at the point $(0,0,2)$.
7. Find the velocity and acceleration vectors:
(a) $x=t, y=t^{3}-t$,
(b) $x=3 \cos \left(t^{2}\right), y=3 \sin \left(t^{2}\right), z=t^{2}$,
8. Find the velocity $\vec{v}(t)$ and the speed $|\vec{v}(t)|$. Find any times at witch the particle stops.
(a) $x=5 t^{2}, y=t^{3}+1$,
(b) $x=3 \sin \left(t^{2}\right)-1, y=3 \cos \left(t^{2}\right)$.
9. Find the length of the following curves. Explain your answer.
(a) $x=3+5 t, y=1+4 t, z=3-t$ for $1 \leq t \leq 2$.
(b) $x=\cos \left(e^{t}\right), y=\sin \left(e^{t}\right)$ for $0 \leq t \leq 1$.
(c) $x=\cos 3 t, y=\sin 5 t$ for $0 \leq t \leq 2 \pi$.
