1. Determine and draw an area of the following functions

(a)
$$f(x,y) = \frac{\sqrt{4-x^2-y^2}}{x^2+y^2-1}$$

(b) $f(x,y) = \ln(3-\sqrt{x+y})$
(c) $f(x,y) = \sqrt{x \sin y}$
(d) $f(x,y) = \arcsin(\sqrt{y-\sqrt{x}})$
(e) $f(x,y) = \frac{3x}{2x-5y}$
(f) $f(x,y,z) = \sqrt{x} + \sqrt{y-1} + \sqrt{z-2}$
(g) $f(x,y,z) = \arcsin(x^2+y^2+z^2-2)$

2. Draw a contour diagram for the following functions and relate it to their graphs

(a)
$$f(x, y) = 2 - x^2 - y^2$$

(b) $f(x, y) = \frac{1}{1 + x^2 + y^2}$
(c) $f(x, y) = -\sqrt{9 - y^2}$
(d) $f(x, y) = \sqrt{x^2 + y^2}$
(e) $f(x, y) = \sin y$

3. Find the limits of the following functions as $(x, y) \longrightarrow (0, 0)$.

(a)
$$f(x, y) = e^{-x-y}$$
;
(b) $g(x, y) = x^2 + y^2$;
(c) $h(x, y) = \frac{x}{x^2+1}$;
(d) $i(x, y) = \frac{x+y}{2+\sin y}$;
(e) $j(x, y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$
(f) $k(x, y) = \frac{x^2}{x^2+y^2}$
(g) $l(x, y) = \frac{\sin xy}{x}$ as $(x, y) \longrightarrow (0, a)$

4. Are the following functions continuous at all points in the given regions?

(a)
$$f(x,y) = \begin{cases} \sqrt{x^2 + y^2}, & x \ge 0\\ 2, & x < 0 \end{cases}$$
,
(b) $f(x,y) = \begin{cases} \sin x, & x \in R, y \ge 0\\ 1, & x \in R, y < 0 \end{cases}$.
(c) $\frac{1}{x^2 + y^2}$ on the square $-1 \le x \le 1, -1 \le y \le 1$;
(d) $\frac{1}{x^2 + y^2}$ on the square $1 \le x \le 2, 1 \le y \le 2$;
(e) $\frac{y}{x^2 + 2}$ on the disk $x^2 + y^2 \le 1$;
(f) $\operatorname{tg}(xy)$ on the square $-2 \le x \le 2, -2 \le y \le 2$;
(g) $\sqrt{2x - y}$ on the disk $x^2 + y^2 \le 4$.