1. Compute
(a) $\int_{0}^{1}\left(\int_{0}^{1}(x+y) d y\right) d x$,
(b) $\int_{0}^{4}\left(\int_{4}^{12} x y d y\right) d x$,
(c) $\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{2}(4+z) d z d y d x$,
(d) $\int_{0}^{1} \int_{0}^{\sqrt{x}} \int_{1-x}^{2-2 x} y d z d y d x$,
2. Evaluate the integrals by reversing the order of integration
(a) $\int_{0}^{2}\left(\int_{x}^{2 x} d y\right) d x$,
(b) $\int_{1}^{2}\left(\int_{2-x}^{\sqrt{2 x-x^{2}}} d y\right) d x$,
(c) $\int_{0}^{1}\left(\int_{x^{3}}^{x^{2}} d y\right) d x$,
(d) $\int_{1}^{e}\left(\int_{0}^{\ln x} d y\right) d x$,
(e) $\int_{-2}^{1}\left(\int_{y^{2}}^{4} d x\right) d y$,
(f) $\int_{0}^{1}\left(\int_{x}^{2-x^{2}} q d y\right) d x$,
(g) $\int_{1}^{2}\left(\int_{\frac{1}{y}}^{y} z d x\right) d y$.
3. Find integrals of the function over the region A :
(a) $f(x, y)=x \cdot y$ and A is the rectangle bounded by curves $x=0, x=a, y=0, y=b$,
(b) $f(x, y)=2 x+y-1$ and A is the traingle with corners $A(1,1), B(5,3), C(5,5)$,
(c) $f(x, y)=\sin (x+y)$ and A is the region bounded by $y=0, y=x, x+y=\frac{\pi}{2}$,
(d) $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$ and $A=\left\{(x, y) \in R^{2}, a^{2}<x^{2}+y^{2} \leq b^{2} a>0, b>0\right\}$,
(e) $f(x, y)=x^{2}+y^{2}-a^{2}$ and $A=\left\{(x, y) \in R^{2}, x^{2}+y^{2} \leq a x, a>0\right\}$,
(f) $f(x, y)=y \sqrt{x^{2}+y^{2}}$ and $A=\left\{(x, y) \in R^{2}, x^{2}+y^{2}<9, x<0\right\}$,
(g) $f(x, y, z)=\frac{1}{1-x-y}$ and A is the region bounded by $x+y+z=1, x=0, y=0, z=0$,
(h) $f(x, y, z)=\left(18 x^{2}+8 y^{2}\right) e^{z}$ and $A=\left\{(x, y, z) \in R^{3} ; \frac{x^{2}}{4}+\frac{y^{2}}{9}<1,|z|<2\right\}$,
(i) $f(x, y, z)=2 x+3 y-z$, and A is the rectangular box bounded by $x=0, y=0, z=0, z=3, x+y=$ 2 ,
(j) $f(x, y, z)=z \sin \left(x^{2}+y^{2}\right)$ and A is the region bounded by $x=0, y=0, z=0, z=1, x^{2}+y^{2}=1$,
(k) $f(x, y, z)=z e^{-\frac{9 x^{2}+4 y^{2}}{2}}$ and $A=\left\{(x, y, z) \in R^{3}, \frac{x^{2}}{4}+\frac{v^{2}}{9} \leq 1,0 \leq z \leq 1\right\}$,
(l) $f(x, y, z)=x y z$ and A is the region bounded by $x^{2}+y^{2}+z^{2}=1, x=0, y=0, z=0$.
4. Find the area bounded by the curves
(a) $y^{2}=x, x^{2}=8 y$,
(b) $3 x^{2}=25 y, 5 y^{2}=9 x$.
(c) $y=x^{2}-2 x+2$, the tangent at $(3,5), O Y$-axes and $O X$-axes,
5. Find the volume of the solid bounded by the following surfaces
(a) $x^{2}+y^{2}+z^{2}=x$,
(b) $\frac{x^{2}}{4}+\frac{y^{2}}{9}+z^{2}=1$,
(c) $x=0, x=1, y=2, y=5, z=2, z=4$,
(d) $x+y+z=1, x=0, y=0, z=0$,
(e) $\frac{x^{2}}{4}+\frac{y^{2}}{9}<1,|z|<2$,
(f) $x=0, y=0, z=0, z=1, x^{2}+y^{2}-2 y=3$,
(g) $x^{2}+y^{2}+z^{2}=1, x \geq 0, y \leq 0, z \in R$.
