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Parametrization-examples Motion, velocity, and acceleration

Polar coordinates

α

(x , y)

x

y

R

Let A := {(x , y); x2 + y2 ≤ R}. Then, to compute
∫

A f dA we
can use polar coordinates{

x = r cosα
y = r sinα r ∈ [0,R], α ∈ [0,2π), dA = rdrdα,

Thus, ∫
A

f (x , y) dA =

∫ 2π

0

∫ R

0
f (x , y) r dr dα.
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Polar coordinates

In particular,
If A := {(x , y) ∈ R2; (x − a)2 + (y − b)2 = R2}, then we
use the following change of coordinates:{

x = a + r cosα
y = b + r sinα r ∈ [0,R], α ∈ [0,2π), dA = r dr dα,

If A := {(x , y) ∈ R2; x2

a2 + y2

b2 = 1}, then we use the
following change of coordinates:{

x = a r cosα
y = b r sinα r ∈ [0,1], α ∈ [0,2π), dA = abr dr dα,
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Cylindrycal coordinates

Let the set A will be a cylinder:
z

R

c

d

x

y

then, to compute
∫

A f dA we can use cylindycal coordinates
x = r cosα
y = r sinα
z = z r ∈ [0,R], α ∈ [0,2π), z ∈ [c,d ] dA = rdrdαdz,
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Cylindrycal coordinates

In particular,
If base of a cylider is a circle with a center at (a,b), then
we use the following change of coordinates:

x = a + r cosα
y = b + r sinα
z = z, r ∈ [0,R], α ∈ [0,2π), z ∈ [c,d ] dA = rdrdαdz,

If base of a cylider is an ellipse x2

a2 + y2

b2 = 1, then we use
the following change of coordinates:

x = a r cosα
y = b r sinα
z = z, r ∈ [0,1], α ∈ [0,2π), z ∈ [c,d ] dA = abrdrdαdz,
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Spherical coordinates

R

R

β

α
r ∈ [0,R]

α ∈ [0, π]

β ∈ [0, 2π)

Let A := {(x , y); x2 + y2 + z2 ≤ R}. Then, to compute
∫

A f dA
we can use spherical coordinates

x = r sinα cosβ
y = r sinα sinβ
z = r cosα dA = r2 sinαdrdαdβ,
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The velocity vector

Definition

The velocity vector of a moving object is a vector −→v such that:
1 The magnitude of −→v is the speed of the object.
2 The direction of −→v is the direction of motion.

Thus the speed of the object is ||−→v || and the velocity vector is
tangent to the object’s path.

Exercise 6.7 A child is sitting on a ferris wheel of diameter 10
meters, making one revolution every 2 minutes. Find the speed of the
child and draw velocity vectors at two different times.
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5m

5m

velocity
15.7m/min

velocity
15.7m/min

Solution. One revolution around a circle of radius 5 is a distance of
10π, so the child’s speed is 10π

2 = 5π ≈ 15.7m/min. The direction
of motion is tangent to the circle, and hence perpendicular to the
radius at that point.
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Computing the velocity

−→
r ′ (t)

∆
−→r =

−→r (t + ∆t)−−→r (t)

−→r (t + ∆t)

−→r (t)

Definition
The velocity vector,

−→v (t) = lim
∆t→0

∆
−→r (t)
∆t

= lim
∆t→0

∆
−→r (t + ∆t)−−→r (t)

∆t
,

whenever the limit exists. We use the notation −→v = d−→r
dt =

−→
r ′ (t).
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The components of the velocity vector

If we represent a curve parametrically by x = f (t), y = g(t),
z = h(t), then we can write its position vector as:

−→r (t) = [f (t),g(t),h(t)].

In this situation,
∆
−→r (t + ∆t)−−→r (t)

∆t
=

=
[ f (t + ∆t)− f (t)

∆t
,
g(t + ∆t)− g(t)

∆t
,
h(t + ∆t)− h(t)

∆t

]
.

In the limit as ∆t goes to zero we can see that the components
of the velocity vector of a particle moving in space with position
vector −→r (t) at time t are given by

−→v (t) = [f ′(t),g′(t),h′(t)].
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Exercise 8.8

Find the components of the velocity vector for the child on the
ferris wheel in Exercise 6.7 using a coordinate system which
has its origin at the center of the ferris wheel and which makes
the rotation counterclockwise.

Solution. The motion is parameterized by the equation of the form

−→r (t) = [5 cos(ωt),5 sin(ωt)],

where ω is chosen to make the period 2 minutes, so 2π
ω = 2 that is

ω = π.
Thus, the motion is described by the equation

−→r (t) = [5 cos(πt),5 sin(πt)],

where t is in minutes.
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The velocity is given by

−→v (t) =
[
− 5π sin(πt),5π cos(πt)

]
.

To check, we calculate the magnitude of −→v :

||−→v || = 5π ≈ 15.7.

To see that the direction is correct we compute that

−→v · −→r = 0

So the velocity vector, −→v , is perpendicular to −→r and hence
tangent to the circle.
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The acceleration vector

−→v (t)

−→v (t + ∆t)

−→v (t)

∆
−→v =

−→v (t + ∆t)−−→v (t)−→v (t + ∆t)

Figure. Computing the difference between two velocity vectors

Definition

The acceleration vector of an object moving with velocity −→v (t)
at time t is

−→a (t) = lim
∆t→0

=
∆
−→v

∆t
= lim

∆t→0

−→v (t + ∆t)−−→v (t)
∆t

,

if a limit exists. We use the notation −→a = d−→v
dt = d2−→r

dt2 =
−→r ′′(t).
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The components of the acceleration vector

If we represent a curve in space parametrically by

x = f (t), y = g(t), z = h(t),

we can express the acceleration in components.

Remind, that
the velocity vector is given by

−→v (t) = [f ′(t),g′(t),h′(t)].

So, from the definition of the acceleration vector, we can
compute that

−→a (t) = [f ′′(t),g′′(t),h′′(t)].
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Exercise 8.9

Find the acceleration vector for the child on the ferris wheel in
Exercises 8.6 and 8.8.

Solution. The child’s position vector is given by

−→r (t) = [5 cos(πt),5 sin(πt)],

and the velocity vector is

−→v (t) =
[
− 5π sin(πt),5π cos(πt)

]
.

Thus, the acceleration vector is

−→a (t) =
[
− 5π2 cos(πt),−5π2 sin(πt)

]
.

Notice, that −→a (t) = −π2−→r (t). Thus, the acceleration vector is a
multiple of −→r (t) and points toward the origin.
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Fact
Uniform circular motion: For a particle whose motion is
described by

−→r (t) = [R cos(ωt),R sin(ωt)]

1 Motion is in the circle of radius R with period 2π
ω .

2 Velocity, −→v (t), is tangent to the circle and speed is
constant ||−→v (t)|| = ωR.

3 Accelaration, −→a (t), points toward the center of the circle
with ||−→a (t)|| = ||−→v (t)||2/R.
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Exercise 8.10

Consider the motion given by the vector equation
−→r (t) =

−→r0 + f (t)−→v0,

where −→r0 = [2,6,0], f (t) = t3 + t and −→v0 = [4,3,1]. Show that
this is straight line motion in the direction of the vector [4,3,1]
and relate the acceleration vector to the velocity vector.

Fact
Motion in a straight line: For a particle whose motion is
described by

−→r (t) =
−→r0 + f (t)−→v0

1 Motion is along the straight line through the point with
position vector −→r0 parallel to −→v0.

2 Velocity, −→v , and acceleration, −→a , are parallel to the line.
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The length of curve

The speed of a particle is the magnitude of its velocity vector:

Speed = ||−→v || =

√(
dx
dt

)
+

(
dy
dt

)
+

(
dz
dt

)
.

Thus,

distance traveled =

∫ b

a
||−→v (t)||dt .

Theorem
If the curve C is given parametrically for a ≤ t ≤ b by smooth
functions and if the velocity vector −→v is not

−→
0 for a < t < b,

then

Length of C =

∫ b

a
||−→v (t)||dt .
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Exercise 8.11

Find the circumference of the ellipse given by the parametric
equations

x = 2 cos t , y = sin t , 0 ≤ t ≤ 2π.

Solution.

Circumference =

∫ 2π

0

√(
dx
dt

)
+

(
dy
dt

)
dt =

∫ 2π

0

√
4 sin2 t + cos2 t dt = 9.69.
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