Mathematics. Multivariable Calculus

Faculty of Mathematics and Computer Science University of Warmia and Mazury in Olsztyn

May 20, 2014

Polar coordinates

Let $A:=\left\{(x, y) ; x^{2}+y^{2} \leq R\right\}$. Then, to compute $\int_{A} f d A$ we can use polar coordinates

$$
\left\{\begin{array}{l}
x=r \cos \alpha \\
y=r \sin \alpha
\end{array} \quad r \in[0, R], \quad \alpha \in[0,2 \pi), \quad d A=r d r d \alpha,\right.
$$

Polar coordinates

Let $A:=\left\{(x, y) ; x^{2}+y^{2} \leq R\right\}$. Then, to compute $\int_{A} f d A$ we can use polar coordinates

$$
\left\{\begin{array}{c}
x=r \cos \alpha \\
y=r \sin \alpha
\end{array} \quad r \in[0, R], \quad \alpha \in[0,2 \pi), \quad d A=r d r d \alpha,\right.
$$

Thus,

$$
\int_{A} f(x, y) d A=\int_{0}^{2 \pi} \int_{0}^{R} f(x, y) r d r d \alpha .
$$

Polar coordinates

In particular,

- If $A:=\left\{(x, y) \in R^{2} ; \quad(x-a)^{2}+(y-b)^{2}=R^{2}\right\}$, then we use the following change of coordinates:

$$
\left\{\begin{array}{c}
x=a+r \cos \alpha \\
y=b+r \sin \alpha
\end{array} \quad r \in[0, R], \quad \alpha \in[0,2 \pi), \quad d A=r d r d \alpha\right.
$$

Polar coordinates

In particular,

- If $A:=\left\{(x, y) \in R^{2} ; \quad(x-a)^{2}+(y-b)^{2}=R^{2}\right\}$, then we use the following change of coordinates:

$$
\left\{\begin{array}{c}
x=a+r \cos \alpha \\
y=b+r \sin \alpha
\end{array} \quad r \in[0, R], \quad \alpha \in[0,2 \pi), \quad d A=r d r d \alpha\right.
$$

- If $A:=\left\{(x, y) \in R^{2} ; \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\}$, then we use the following change of coordinates:

$$
\left\{\begin{array}{l}
x=a r \cos \alpha \\
y=b r \sin \alpha
\end{array}\right.
$$

$$
r \in[0,1], \quad \alpha \in[0,2 \pi), \quad d A=a b r d r d \alpha
$$

Cylindrycal coordinates

Let the set A will be a cylinder:

Cylindrycal coordinates

Let the set A will be a cylinder:

then, to compute $\int_{A} f d A$ we can use cylindycal coordinates
$\left\{\begin{array}{l}x=r \cos \alpha \\ y=r \sin \alpha \\ z=z\end{array}\right.$
$r \in[0, R], \quad \alpha \in[0,2 \pi), \quad z \in[c, d] \quad d A=r d r d \alpha d z$,

Cylindrycal coordinates

In particular,

- If base of a cylider is a circle with a center at (a, b), then we use the following change of coordinates:

$$
\left\{\begin{array}{l}
x=a+r \cos \alpha \\
y=b+r \sin \alpha \\
z=z, \quad r \in[0, R], \quad \alpha \in[0,2 \pi), \quad z \in[c, d] \quad d A=r d r d \alpha d z
\end{array}\right.
$$

Cylindrycal coordinates

In particular,

- If base of a cylider is a circle with a center at (a, b), then we use the following change of coordinates:

$$
\left\{\begin{array}{l}
x=a+r \cos \alpha \\
y=b+r \sin \alpha \\
z=z, \quad r \in[0, R], \quad \alpha \in[0,2 \pi), \quad z \in[c, d] \quad d A=r d r d \alpha d z
\end{array}\right.
$$

- If base of a cylider is an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then we use the following change of coordinates:

$$
\left\{\begin{array}{l}
x=a r \cos \alpha \\
y=b r \sin \alpha \\
z=z, \quad r \in[0,1], \quad \alpha \in[0,2 \pi), \quad z \in[c, d] \quad d A=a b r d r d \alpha d z,
\end{array}\right.
$$

Spherical coordinates

Let $A:=\left\{(x, y) ; x^{2}+y^{2}+z^{2} \leq R\right\}$. Then, to compute $\int_{A} f d A$ we can use spherical coordinates

$$
\left\{\begin{array}{l}
x=r \sin \alpha \cos \beta \\
y=r \sin \alpha \sin \beta \\
z=r \cos \alpha
\end{array} \quad d A=r^{2} \sin \alpha d r d \alpha d \beta\right.
$$

The velocity vector

Definition

The velocity vector of a moving object is a vector \vec{v} such that:
(1) The magnitude of \vec{v} is the speed of the object.
(2) The direction of \vec{v} is the direction of motion.

Thus the speed of the object is $\|\vec{v}\|$ and the velocity vector is tangent to the object's path.

The velocity vector

Definition

The velocity vector of a moving object is a vector \vec{v} such that:
(1) The magnitude of \vec{v} is the speed of the object.
(2) The direction of \vec{v} is the direction of motion.

Thus the speed of the object is $\|\vec{v}\|$ and the velocity vector is tangent to the object's path.

Exercise 6.7 A child is sitting on a ferris wheel of diameter 10 meters, making one revolution every 2 minutes. Find the speed of the child and draw velocity vectors at two different times.

Solution. One revolution around a circle of radius 5 is a distance of 10π, so the child's speed is $\frac{10 \pi}{2}=5 \pi \approx 15.7 \mathrm{~m} / \mathrm{min}$. The direction of motion is tangent to the circle, and hence perpendicular to the radius at that point.

Computing the velocity

Definition

The velocity vector,

$$
\vec{v}(t)=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}(t)}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\Delta \vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}
$$

whenever the limit exists. We use the notation $\vec{v}=\frac{d \vec{r}}{d t}=\overrightarrow{r^{\prime}}(t)$.

The components of the velocity vector

If we represent a curve parametrically by $x=f(t), y=g(t)$, $z=h(t)$, then we can write its position vector as:

$$
\vec{r}(t)=[f(t), g(t), h(t)] .
$$

The components of the velocity vector

If we represent a curve parametrically by $x=f(t), y=g(t)$,
$z=h(t)$, then we can write its position vector as:

$$
\vec{r}(t)=[f(t), g(t), h(t)] .
$$

In this situation,

$$
\frac{\Delta \vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}=
$$

$$
=\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}, \frac{g(t+\Delta t)-g(t)}{\Delta t}, \frac{h(t+\Delta t)-h(t)}{\Delta t}\right] .
$$

The components of the velocity vector

If we represent a curve parametrically by $x=f(t), y=g(t)$,
$z=h(t)$, then we can write its position vector as:

$$
\vec{r}(t)=[f(t), g(t), h(t)] .
$$

In this situation,

$$
\begin{gathered}
\frac{\Delta \vec{r}(t+\Delta t)-\vec{r}(t)}{\Delta t}= \\
=\left[\frac{f(t+\Delta t)-f(t)}{\Delta t}, \frac{g(t+\Delta t)-g(t)}{\Delta t}, \frac{h(t+\Delta t)-h(t)}{\Delta t}\right] .
\end{gathered}
$$

In the limit as Δt goes to zero we can see that the components of the velocity vector of a particle moving in space with position vector $\vec{r}(t)$ at time t are given by

$$
\vec{v}(t)=\left[f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right] .
$$

Exercise 8.8

Find the components of the velocity vector for the child on the ferris wheel in Exercise 6.7 using a coordinate system which has its origin at the center of the ferris wheel and which makes the rotation counterclockwise.

Exercise 8.8

Find the components of the velocity vector for the child on the ferris wheel in Exercise 6.7 using a coordinate system which has its origin at the center of the ferris wheel and which makes the rotation counterclockwise.

Solution. The motion is parameterized by the equation of the form

$$
\vec{r}(t)=[5 \cos (\omega t), 5 \sin (\omega t)]
$$

where ω is chosen to make the period 2 minutes,

Exercise 8.8

Find the components of the velocity vector for the child on the ferris wheel in Exercise 6.7 using a coordinate system which has its origin at the center of the ferris wheel and which makes the rotation counterclockwise.

Solution. The motion is parameterized by the equation of the form

$$
\vec{r}(t)=[5 \cos (\omega t), 5 \sin (\omega t)]
$$

where ω is chosen to make the period 2 minutes, so $\frac{2 \pi}{\omega}=2$ that is $\omega=\pi$.

Exercise 8.8

Find the components of the velocity vector for the child on the ferris wheel in Exercise 6.7 using a coordinate system which has its origin at the center of the ferris wheel and which makes the rotation counterclockwise.

Solution. The motion is parameterized by the equation of the form

$$
\vec{r}(t)=[5 \cos (\omega t), 5 \sin (\omega t)]
$$

where ω is chosen to make the period 2 minutes, so $\frac{2 \pi}{\omega}=2$ that is $\omega=\pi$.
Thus, the motion is described by the equation

$$
\vec{r}(t)=[5 \cos (\pi t), 5 \sin (\pi t)]
$$

where t is in minutes.

The velocity is given by

$$
\vec{v}(t)=[-5 \pi \sin (\pi t), 5 \pi \cos (\pi t)]
$$

The velocity is given by

$$
\vec{v}(t)=[-5 \pi \sin (\pi t), 5 \pi \cos (\pi t)]
$$

To check, we calculate the magnitude of \vec{v} :

$$
\|\vec{v}\|=5 \pi \approx 15.7
$$

The velocity is given by

$$
\vec{v}(t)=[-5 \pi \sin (\pi t), 5 \pi \cos (\pi t)]
$$

To check, we calculate the magnitude of \vec{v} :

$$
\|\vec{v}\|=5 \pi \approx 15.7
$$

To see that the direction is correct we compute that

$$
\vec{v} \cdot \vec{r}=0
$$

So the velocity vector, \vec{v}, is perpendicular to \vec{r} and hence tangent to the circle.

The acceleration vector

Figure. Computing the difference between two velocity vectors

Definition

The acceleration vector of an object moving with velocity $\vec{v}(t)$ at time t is

$$
\vec{a}(t)=\lim _{\Delta t \rightarrow 0}=\frac{\Delta \vec{v}}{\Delta t}=\lim _{\Delta t \rightarrow 0} \frac{\vec{v}(t+\Delta t)-\vec{v}(t)}{\Delta t},
$$

if a limit exists. We use the notation $\vec{a}=\frac{d \vec{V}}{d t}=\frac{d^{2} \vec{r}}{d t^{2}}=\vec{r}^{\prime \prime}(t)$.

The components of the acceleration vector

If we represent a curve in space parametrically by

$$
x=f(t), y=g(t), z=h(t)
$$

we can express the acceleration in components.

The components of the acceleration vector

If we represent a curve in space parametrically by

$$
x=f(t), y=g(t), z=h(t)
$$

we can express the acceleration in components. Remind, that the velocity vector is given by

$$
\vec{v}(t)=\left[f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right] .
$$

The components of the acceleration vector

If we represent a curve in space parametrically by

$$
x=f(t), y=g(t), z=h(t)
$$

we can express the acceleration in components. Remind, that the velocity vector is given by

$$
\vec{v}(t)=\left[f^{\prime}(t), g^{\prime}(t), h^{\prime}(t)\right] .
$$

So, from the definition of the acceleration vector, we can compute that

$$
\vec{a}(t)=\left[f^{\prime \prime}(t), g^{\prime \prime}(t), h^{\prime \prime}(t)\right]
$$

Exercise 8.9

Find the acceleration vector for the child on the ferris wheel in Exercises 8.6 and 8.8.

Exercise 8.9

Find the acceleration vector for the child on the ferris wheel in Exercises 8.6 and 8.8.

Solution. The child's position vector is given by

$$
\vec{r}(t)=[5 \cos (\pi t), 5 \sin (\pi t)]
$$

and the velocity vector is

$$
\vec{v}(t)=[-5 \pi \sin (\pi t), 5 \pi \cos (\pi t)]
$$

Exercise 8.9

Find the acceleration vector for the child on the ferris wheel in Exercises 8.6 and 8.8.

Solution. The child's position vector is given by

$$
\vec{r}(t)=[5 \cos (\pi t), 5 \sin (\pi t)]
$$

and the velocity vector is

$$
\vec{v}(t)=[-5 \pi \sin (\pi t), 5 \pi \cos (\pi t)]
$$

Thus, the acceleration vector is

$$
\vec{a}(t)=\left[-5 \pi^{2} \cos (\pi t),-5 \pi^{2} \sin (\pi t)\right]
$$

Exercise 8.9

Find the acceleration vector for the child on the ferris wheel in Exercises 8.6 and 8.8.

Solution. The child's position vector is given by

$$
\vec{r}(t)=[5 \cos (\pi t), 5 \sin (\pi t)]
$$

and the velocity vector is

$$
\vec{v}(t)=[-5 \pi \sin (\pi t), 5 \pi \cos (\pi t)]
$$

Thus, the acceleration vector is

$$
\vec{a}(t)=\left[-5 \pi^{2} \cos (\pi t),-5 \pi^{2} \sin (\pi t)\right]
$$

Notice, that $\vec{a}(t)=-\pi^{2} \vec{r}(t)$. Thus, the acceleration vector is a multiple of $\vec{r}(t)$ and points toward the origin.

Fact

Uniform circular motion: For a particle whose motion is described by

$$
\vec{r}(t)=[R \cos (\omega t), R \sin (\omega t)]
$$

(1) Motion is in the circle of radius R with period $\frac{2 \pi}{\omega}$.
(2) Velocity, $\vec{V}(t)$, is tangent to the circle and speed is constant $\|\vec{V}(t)\|=\omega R$.
(3) Accelaration, $\vec{a}(t)$, points toward the center of the circle with $\|\vec{a}(t)\|=\|\vec{v}(t)\|^{2} / R$.

Exercise 8.10

Consider the motion given by the vector equation

$$
\vec{r}(t)=\overrightarrow{r_{0}}+f(t) \overrightarrow{v_{0}}
$$

where $\overrightarrow{r_{0}}=[2,6,0], f(t)=t^{3}+t$ and $\overrightarrow{v_{0}}=[4,3,1]$. Show that this is straight line motion in the direction of the vector [4, 3, 1] and relate the acceleration vector to the velocity vector.

Exercise 8.10

Consider the motion given by the vector equation

$$
\vec{r}(t)=\overrightarrow{r_{0}}+f(t) \overrightarrow{v_{0}}
$$

where $\overrightarrow{r_{0}}=[2,6,0], f(t)=t^{3}+t$ and $\overrightarrow{v_{0}}=[4,3,1]$. Show that this is straight line motion in the direction of the vector $[4,3,1]$ and relate the acceleration vector to the velocity vector.

Fact

Motion in a straight line: For a particle whose motion is described by

$$
\vec{r}(t)=\overrightarrow{r_{0}}+f(t) \overrightarrow{v_{0}}
$$

(1) Motion is along the straight line through the point with position vector $\overrightarrow{r_{0}}$ parallel to $\overrightarrow{v_{0}}$.
(2) Velocity, \vec{v}, and acceleration, \vec{a}, are parallel to the line.

The length of curve

The speed of a particle is the magnitude of its velocity vector:

$$
\text { Speed }=\|\vec{v}\|=\sqrt{\left(\frac{d x}{d t}\right)+\left(\frac{d y}{d t}\right)+\left(\frac{d z}{d t}\right)} .
$$

The length of curve

The speed of a particle is the magnitude of its velocity vector:

$$
\text { Speed }=\|\vec{v}\|=\sqrt{\left(\frac{d x}{d t}\right)+\left(\frac{d y}{d t}\right)+\left(\frac{d z}{d t}\right)}
$$

Thus,

$$
\text { distance traveled }=\int_{a}^{b}\|\vec{v}(t)\| d t
$$

The length of curve

The speed of a particle is the magnitude of its velocity vector:

$$
\text { Speed }=\|\vec{v}\|=\sqrt{\left(\frac{d x}{d t}\right)+\left(\frac{d y}{d t}\right)+\left(\frac{d z}{d t}\right)} .
$$

Thus,

$$
\text { distance traveled }=\int_{a}^{b}\|\vec{V}(t)\| d t .
$$

Theorem

If the curve C is given parametrically for $a \leq t \leq b$ by smooth functions and if the velocity vector \vec{v} is not $\overrightarrow{0}$ for $a<t<b$, then

$$
\text { Length of } C=\int_{a}^{b}\|\vec{v}(t)\| d t
$$

Exercise 8.11

Find the circumference of the ellipse given by the parametric equations

$$
x=2 \cos t, y=\sin t, 0 \leq t \leq 2 \pi
$$

Exercise 8.11

Find the circumference of the ellipse given by the parametric equations

$$
x=2 \cos t, y=\sin t, 0 \leq t \leq 2 \pi
$$

Solution.

$$
\begin{gathered}
\text { Circumference }=\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d t}\right)+\left(\frac{d y}{d t}\right)} d t= \\
\int_{0}^{2 \pi} \sqrt{4 \sin ^{2} t+\cos ^{2} t} d t=9.69
\end{gathered}
$$

