Mathematics. Multivariable Calculus

Faculty of Mathematics and Computer Science University of Warmia and Mazury in Olsztyn

May 20, 2014

Parametric equations in three dimentions

A curve in the plane may be parametrized by a pair of equations of the form $x=f(t), y=g(t)$. To describe a motion in 3-dimensional space parametrically, we need a third equation giving z in terms of t.

Parametric equations in three dimentions

A curve in the plane may be parametrized by a pair of equations of the form $x=f(t), y=g(t)$. To describe a motion in 3-dimensional space parametrically, we need a third equation giving z in terms of t.

Exercise 8.1 Find the parametric equations for the curve $y=x^{2}$.

Parametric equations in three dimentions

A curve in the plane may be parametrized by a pair of equations of the form $x=f(t), y=g(t)$. To describe a motion in 3-dimensional space parametrically, we need a third equation giving z in terms of t.

Exercise 8.1 Find the parametric equations for the curve $y=x^{2}$.
Solution. A possible parametrization in two dimensions is $x=t, y=t^{2}$. Since the curve is in the $x y$-plane, the z-coordinate is zero, so the parametrization in three dimensions is

$$
x=t, y=t^{2}, z=0
$$

Exercise 8.2

Find parametrical equations for the particle that starts at $(0,3,0)$ and moves around a circle in the $y z$-plane in the clockwise direction.

Exercise 8.2

Find parametrical equations for the particle that starts at $(0,3,0)$ and moves around a circle in the $y z$-plane in the clockwise direction.

Solution. Since the motion is in the $y z$-plane, we have $x=0$ at all times t. Looking at the $y z$-plane from the positive x-direction we see motion around a circle of radius 3 in the clocwise direction. Thus

$$
x=0, y=3 \cos t, z=-3 \sin t .
$$

Exercise 8.3

Describe in words the motion given parametrically by

$$
x=\cos t, y=\sin t, z=t
$$

Parametric equations of a line

Definition

Parametric equations of a line through the point $\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the vector $\vec{r}=[a, b, c]$ are

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t .
$$

Exercise 8.4

(a) Describe in the words the curve given by the parametric equations $x=3+t, y=2 t, z=1-t$.
(b) Find parametric equations for the line through the points $(1,2,-1)$ and $(3,3,4)$.

Exercise 8.4

(a) Describe in the words the curve given by the parametric equations $x=3+t, y=2 t, z=1-t$.
(b) Find parametric equations for the line through the points $(1,2,-1)$ and $(3,3,4)$.

Solution. (a) The curve is a line through the point $(3,0,1)$ and parallel to the vector $\vec{u}=[1,2,-1]$.

Exercise 8.4

(a) Describe in the words the curve given by the parametric equations $x=3+t, y=2 t, z=1-t$.
(b) Find parametric equations for the line through the points $(1,2,-1)$ and $(3,3,4)$.

Solution. (a) The curve is a line through the point $(3,0,1)$ and parallel to the vector $\vec{u}=[1,2,-1]$.
(b) The line is parallel to the vector $\overrightarrow{P Q}=[2,1,5]$. Thus, using the point P, the parametric equations are

$$
x=1+2 t, y=2+t, z=-1+5 t
$$

Exercise 8.4

(a) Describe in the words the curve given by the parametric equations $x=3+t, y=2 t, z=1-t$.
(b) Find parametric equations for the line through the points $(1,2,-1)$ and $(3,3,4)$.

Solution. (a) The curve is a line through the point $(3,0,1)$ and parallel to the vector $\vec{u}=[1,2,-1]$.
(b) The line is parallel to the vector $\overrightarrow{P Q}=[2,1,5]$. Thus, using the point P, the parametric equations are

$$
x=1+2 t, y=2+t, z=-1+5 t
$$

Using the point Q gives the equations

$$
x=3+2 t, y=3+t, z=4+5 t
$$

which represent the same line.

Position vector

A point in the plane with coordinates (x, y) can be represented by the position vector $\vec{r}=[x, y]$.

Position vector

A point in the plane with coordinates (x, y) can be represented by the position vector $\vec{r}=[x, y]$.
Exercise 8.5 Use vectors to give a parametrization for the circle of radius $\frac{1}{2}$ at the point $(-1,2)$.

Position vector

A point in the plane with coordinates (x, y) can be represented by the position vector $\vec{r}=[x, y]$.
Exercise 8.5 Use vectors to give a parametrization for the circle of radius $\frac{1}{2}$ at the point $(-1,2)$.
Solution. The circle of radius 1 centered at the origin is parametrized by the vector-valued function

$$
\overrightarrow{r_{0}}=[\cos t, \sin t], \quad 0 \leq t \leq 2 \pi
$$

Position vector

A point in the plane with coordinates (x, y) can be represented by the position vector $\vec{r}=[x, y]$.

Exercise 8.5 Use vectors to give a parametrization for the circle of radius $\frac{1}{2}$ at the point $(-1,2)$.
Solution. The circle of radius 1 centered at the origin is parametrized by the vector-valued function

$$
\overrightarrow{r_{0}}=[\cos t, \sin t], \quad 0 \leq t \leq 2 \pi
$$

Thus, the parametrization is

$$
\vec{r}=\left[-1+\frac{1}{2} \cos t, 2+\frac{1}{2} \sin t\right] \quad 0 \leq t \leq 2 \pi
$$

Position vector

A point in the plane with coordinates (x, y) can be represented by the position vector $\vec{r}=[x, y]$.

Exercise 8.5 Use vectors to give a parametrization for the circle of radius $\frac{1}{2}$ at the point $(-1,2)$.
Solution. The circle of radius 1 centered at the origin is parametrized by the vector-valued function

$$
\overrightarrow{r_{0}}=[\cos t, \sin t], \quad 0 \leq t \leq 2 \pi
$$

Thus, the parametrization is

$$
\vec{r}=\left[-1+\frac{1}{2} \cos t, 2+\frac{1}{2} \sin t\right] \quad 0 \leq t \leq 2 \pi
$$

or equivalently,

$$
x=-1+\frac{1}{2} \cos t, \quad y=2+\frac{1}{2} \sin t, \quad 0 \leq t \leq 2 \pi
$$

Paramatric equation of a line

Definition

The line through the point with position vector $\overrightarrow{r_{0}}=\left[x_{0}, y_{0}, z_{0}\right]$ in the direction of the vector $\vec{v}=[a, b, c]$ has parametric equation

$$
\vec{r}(t)=\overrightarrow{r_{0}}+t \vec{v} .
$$

Exercise 8.6

(1) Find parametric equations for the line passing through the points ($2,-1,3$) and ($-1,5,4$).

Exercise 8.6

(1) Find parametric equations for the line passing through the points $(2,-1,3)$ and $(-1,5,4)$. Solution.

$$
\vec{r}(t)=[2,-1,3]+t[-3,6,1] .
$$

Exercise 8.6

(1) Find parametric equations for the line passing through the points $(2,-1,3)$ and $(-1,5,4)$. Solution.

$$
\vec{r}(t)=[2,-1,3]+t[-3,6,1] .
$$

(2) Represent the line segment from $(2,-1,3)$ to $(-1,5,4)$ parametrically.

Exercise 8.6

(1) Find parametric equations for the line passing through the points $(2,-1,3)$ and $(-1,5,4)$.

Solution.

$$
\vec{r}(t)=[2,-1,3]+t[-3,6,1] .
$$

(2) Represent the line segment from $(2,-1,3)$ to $(-1,5,4)$ parametrically.
Solution.

$$
\vec{r}(t)=[2,-1,3]+t[-3,6,1], 0 \leq t \leq 1 .
$$

Parameterizing planes

Parameterizing planes

Definition

Parametric equation for the plane
The plain through the point with position vector $\overrightarrow{r_{0}}$ and containing the two nonparallel vectors $\overrightarrow{v_{1}}$ and $\overrightarrow{v_{2}}$ has parametric equation

$$
\vec{r}(s, t)=\overrightarrow{r_{0}}+s \overrightarrow{v_{1}}+t \overrightarrow{v_{2}}
$$

Parameterizing planes

If $\overrightarrow{r_{0}}=\left[x_{0}, y_{0}, z_{0}\right]$, and $\overrightarrow{v_{1}}=\left[a_{1}, a_{2}, a_{3}\right]$, and $\overrightarrow{v_{2}}=\left[b_{1}, b_{2}, b_{3}\right]$, then the parametric equations of the plane can be written in the form:

$$
x=x_{0}+s a_{1}+t b_{1}, \quad y=y_{0}+s a_{2}+t b_{2}, \quad z=z_{0}+s a_{3}+t b_{3}
$$

Parameterizing planes

If $\overrightarrow{r_{0}}=\left[x_{0}, y_{0}, z_{0}\right]$, and $\overrightarrow{v_{1}}=\left[a_{1}, a_{2}, a_{3}\right]$, and $\overrightarrow{v_{2}}=\left[b_{1}, b_{2}, b_{3}\right]$, then the parametric equations of the plane can be written in the form:

$$
x=x_{0}+s a_{1}+t b_{1}, \quad y=y_{0}+s a_{2}+t b_{2}, \quad z=z_{0}+s a_{3}+t b_{3} .
$$

Exercises 8.7 Write a parametric equation for the plane through the point $(2,-1,3)$ and containing the vectors $\overrightarrow{v_{1}}=[2,3,-1]$ and $\overrightarrow{v_{2}}=[1,-4,5]$.

Parameterizing planes

If $\overrightarrow{r_{0}}=\left[x_{0}, y_{0}, z_{0}\right]$, and $\overrightarrow{v_{1}}=\left[a_{1}, a_{2}, a_{3}\right]$, and $\overrightarrow{v_{2}}=\left[b_{1}, b_{2}, b_{3}\right]$, then the parametric equations of the plane can be written in the form:

$$
x=x_{0}+s a_{1}+t b_{1}, \quad y=y_{0}+s a_{2}+t b_{2}, \quad z=z_{0}+s a_{3}+t b_{3} .
$$

Exercises 8.7 Write a parametric equation for the plane through the point $(2,-1,3)$ and containing the vectors $\overrightarrow{v_{1}}=[2,3,-1]$ and $\overrightarrow{v_{2}}=[1,-4,5]$.

Solution. The parametric equation is

$$
x=2+2 s+t, \quad y=-1+3 s-4 t, \quad z=3-s+5 t
$$

