Mathematics. Multivariable Calculus

Artur Siemaszko

Faculty of Mathematics and Computer Science University of Warmia and Mazury in Olsztyn

April 3, 2013

Definition

Let P_{0} belongs to the domain of f but is not on the boundary of the domain. A function f has

- a local maximum at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points P sufficiently near P_{0};

Definition

Let P_{0} belongs to the domain of f but is not on the boundary of the domain. A function f has

- a local maximum at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points P sufficiently near P_{0};
- a local minimum at the point P_{0} if $f\left(P_{0}\right) \leq f(P)$ for all points P sufficiently near P_{0};

Definition

Let P_{0} belongs to the domain of f but is not on the boundary of the domain. A function f has

- a local maximum at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points P sufficiently near P_{0};
- a local minimum at the point P_{0} if $f\left(P_{0}\right) \leq f(P)$ for all points P sufficiently near P_{0};
Local maxima and minima are called local extrema.

Definition

Let P_{0} belongs to the domain of f but is not on the boundary of the domain. A function f has

- a local maximum at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points P sufficiently near P_{0};
- a local minimum at the point P_{0} if $f\left(P_{0}\right) \leq f(P)$ for all points P sufficiently near P_{0};
Local maxima and minima are called local extrema.
A function f has
- a global maximum on R at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points $P \in R$;

Definition

Let P_{0} belongs to the domain of f but is not on the boundary of the domain. A function f has

- a local maximum at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points P sufficiently near P_{0};
- a local minimum at the point P_{0} if $f\left(P_{0}\right) \leq f(P)$ for all points P sufficiently near P_{0};
Local maxima and minima are called local extrema.
A function f has
- a global maximum on R at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points $P \in R$;
- a global minimum on R at the point P_{0} if $f\left(P_{0}\right) \leq f(P)$ for all points $P \in R$.

Definition

Let P_{0} belongs to the domain of f but is not on the boundary of the domain. A function f has

- a local maximum at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points P sufficiently near P_{0};
- a local minimum at the point P_{0} if $f\left(P_{0}\right) \leq f(P)$ for all points P sufficiently near P_{0};
Local maxima and minima are called local extrema.
A function f has
- a global maximum on R at the point P_{0} if $f\left(P_{0}\right) \geq f(P)$ for all points $P \in R$;
- a global minimum on R at the point P_{0} if $f\left(P_{0}\right) \leq f(P)$ for all points $P \in R$.
Global maxima and minima are called global extrema.

Illustration

Figure 15.1: Local and global extrema for a function of two variables on $0 \leq x \leq a$,

$$
0 \leq y \leq b
$$

Figure 15.2: Contour map of the function in Figure 15.1

Critical points

Figure 15.3: Contour diagram around a local maximum of a function

Figure 15.4: Gradients pointing toward the local maximum of the function in Figure 15.3

Critical points

Figure 15.3: Contour diagram around a local maximum of a function

Figure 15.4: Gradients pointing toward the local maximum of the function in Figure 15.3

Fact

Let f has a local extremum at the point P. If f is differentiable at P then

$$
\nabla f(P)=\quad \overrightarrow{0} .
$$

Critical points

Figure 15.3: Contour diagram around a local maximum of a function

Figure 15.4: Gradients pointing toward the local maximum of the function in Figure 15.3

Fact

Let f has a local extremum at the point P. If f is differentiable at P then

$$
\nabla f(P)=\left[f_{x}(P), f_{y}(P)\right]=\overrightarrow{0}
$$

Critical points

Critical points

Definition

Points where the gradient is either $\overrightarrow{0}$ or undefined are called critical points of the function.

Exercise 6.1

Find the local extrema of the function $f(x, y)=2 y^{3}+3 x^{2}-6 x y$.

Exercise 6.1

Find the local extrema of the function $f(x, y)=2 y^{3}+3 x^{2}-6 x y$. Solution:
$\nabla f(x, y)=\left[6 x-6 y, 6 y^{2}-6 x\right]=[0,0]$

Exercise 6.1

Find the local extrema of the function $f(x, y)=2 y^{3}+3 x^{2}-6 x y$. Solution:
$\nabla f(x, y)=\left[6 x-6 y, 6 y^{2}-6 x\right]=[0,0]$
$x=y, \quad x=y^{2}$

Exercise 6.1

Find the local extrema of the function $f(x, y)=2 y^{3}+3 x^{2}-6 x y$.

Solution:

$$
\begin{aligned}
& \nabla f(x, y)=\left[6 x-6 y, 6 y^{2}-6 x\right]=[0,0] \\
& x=y, \quad x=y^{2} \\
& (x, y)=(0,0) \quad \text { or } \quad(x, y)=(1,1)
\end{aligned}
$$

Exercise 6.1

Find the local extrema of the function $f(x, y)=2 y^{3}+3 x^{2}-6 x y$.

Solution:

$$
\begin{aligned}
& \nabla f(x, y)=\left[6 x-6 y, 6 y^{2}-6 x\right]=[0,0] \\
& x=y, \quad x=y^{2} \\
& (x, y)=(0,0) \quad \text { or } \quad(x, y)=(1,1)
\end{aligned}
$$

No extrema at $(0,0)$

Exercise 6.1

Find the local extrema of the function $f(x, y)=2 y^{3}+3 x^{2}-6 x y$.

Solution:

$\nabla f(x, y)=\left[6 x-6 y, 6 y^{2}-6 x\right]=[0,0]$
$x=y, \quad x=y^{2}$
$(x, y)=(0,0) \quad$ or $\quad(x, y)=(1,1)$
No extrema at $(0,0)$
$f_{\text {min }}(1,1)=-1$

The graph of $f(x, y)=a x^{2}+b x y+c y^{2}, a \neq 0$

$$
f(x, y)=a\left[\left(x+\frac{b}{2 a} y\right)^{2}+\left(\frac{4 a c-b^{2}}{4 a^{2}}\right) y^{2}\right]
$$

The graph of $f(x, y)=a x^{2}+b x y+c y^{2}, a \neq 0$

$$
f(x, y)=a\left[\left(x+\frac{b}{2 a} y\right)^{2}+\left(\frac{4 a c-b^{2}}{4 a^{2}}\right) y^{2}\right]
$$

$(0,0)$ is a critical point

The graph of $f(x, y)=a x^{2}+b x y+c y^{2}, a \neq 0$

$$
f(x, y)=a\left[\left(x+\frac{b}{2 a} y\right)^{2}+\left(\frac{4 a c-b^{2}}{4 a^{2}}\right) y^{2}\right]
$$

$(0,0)$ is a critical point, $a=\frac{1}{2} f_{x x}(0,0)$

The graph of $f(x, y)=a x^{2}+b x y+c y^{2}, a \neq 0$

$$
f(x, y)=a\left[\left(x+\frac{b}{2 a} y\right)^{2}+\left(\frac{4 a c-b^{2}}{4 a^{2}}\right) y^{2}\right]
$$

$(0,0)$ is a critical point, $a=\frac{1}{2} f_{x x}(0,0)$

$$
\begin{aligned}
D=4 a c-b^{2} & =f_{x x}(0,0) f_{y y}(0,0)-\left(f_{x y}(0,0)\right)^{2}= \\
& =4\left(\frac{1}{2} f_{x x}(0,0)\right)\left(\frac{1}{2} f_{y y}(0,0)\right)-\left(f_{x y}(0,0)\right)^{2}
\end{aligned}
$$

Figure 15.13: Concave up: $D>0$ and $a>0$

Figure 15.14: Concave down: $D>0$ and $a<0$

Figure 15.15: Saddle poin $D<0$

Shift to the point $\left(x_{0}, y_{0}\right)$

Second Derivative Test for Functions of Two Variables

Suppose $\left(x_{0}, y_{0}\right)$ is a point where $\operatorname{grad} f\left(x_{0}, y_{0}\right)=\overrightarrow{0}$. Let

$$
D=f_{x x}\left(x_{0}, y_{0}\right) f_{y y}\left(x_{0}, y_{0}\right)-\left(f_{x y}\left(x_{0}, y_{0}\right)\right)^{2}
$$

- If $D>0$ and $f_{x x}\left(x_{0}, y_{0}\right)>0$, then f has a local minimum at $\left(x_{0}, y_{0}\right)$.
- If $D>0$ and $f_{x x}\left(x_{0}, y_{0}\right)<0$, then f has a local maximum at $\left(x_{0}, y_{0}\right)$.
- If $D<0$, then f has a saddle point at $\left(x_{0}, y_{0}\right)$.
- If $D=0$, anything can happen: f can have a local maximum, or a local minimum, or a saddle point, or none of these, at $\left(x_{0}, y_{0}\right)$.

Exercise 6.2

Complete the solution of Exercise 6.1.

Exercise 6.2

Complete the solution of Exercise 6.1.

$$
f(x, y)=2 y^{3}+3 x^{2}-6 x y, \nabla f(0,0)=\nabla f(1,1)=\overrightarrow{0}
$$

Exercise 6.2

Complete the solution of Exercise 6.1.
$f(x, y)=2 y^{3}+3 x^{2}-6 x y, \nabla f(0,0)=\nabla f(1,1)=\overrightarrow{0}$.
$f_{x x}=6$,

Exercise 6.2

Complete the solution of Exercise 6.1.

$$
\begin{aligned}
& f(x, y)=2 y^{3}+3 x^{2}-6 x y, \nabla f(0,0)=\nabla f(1,1)=\overrightarrow{0} \\
& f_{x x}=6, \quad f_{x y}=-6
\end{aligned}
$$

Exercise 6.2

Complete the solution of Exercise 6.1.

$$
\begin{aligned}
& f(x, y)=2 y^{3}+3 x^{2}-6 x y, \nabla f(0,0)=\nabla f(1,1)=\overrightarrow{0} \\
& f_{x x}=6, \quad f_{x y}=-6, \quad f_{y y}=12 y
\end{aligned}
$$

Exercise 6.2

Complete the solution of Exercise 6.1.

$$
\begin{aligned}
& f(x, y)=2 y^{3}+3 x^{2}-6 x y, \nabla f(0,0)=\nabla f(1,1)=\overrightarrow{0} \\
& f_{x x}=6, \quad f_{x y}=-6, \quad f_{y y}=12 y \\
& D(x, y)=\left|\begin{array}{cc}
6 & -6 \\
-6 & 12 y
\end{array}\right|=72 y-36
\end{aligned}
$$

Exercise 6.2

Complete the solution of Exercise 6.1.
$f(x, y)=2 y^{3}+3 x^{2}-6 x y, \nabla f(0,0)=\nabla f(1,1)=\overrightarrow{0}$.
$f_{x x}=6, \quad f_{x y}=-6, \quad f_{y y}=12 y$
$D(x, y)=\left|\begin{array}{cc}6 & -6 \\ -6 & 12 y\end{array}\right|=72 y-36$
$D(0,0)=-36$,

Exercise 6.2

Complete the solution of Exercise 6.1.
$f(x, y)=2 y^{3}+3 x^{2}-6 x y, \nabla f(0,0)=\nabla f(1,1)=\overrightarrow{0}$.
$f_{x x}=6, \quad f_{x y}=-6, \quad f_{y y}=12 y$
$D(x, y)=\left|\begin{array}{cc}6 & -6 \\ -6 & 12 y\end{array}\right|=72 y-36$
$D(0,0)=-36, \quad D(1,1)=36$

Exercise 6.2

Complete the solution of Exercise 6.1.
$f(x, y)=2 y^{3}+3 x^{2}-6 x y, \nabla f(0,0)=\nabla f(1,1)=\overrightarrow{0}$.
$f_{x x}=6, \quad f_{x y}=-6, \quad f_{y y}=12 y$
$D(x, y)=\left|\begin{array}{cc}6 & -6 \\ -6 & 12 y\end{array}\right|=72 y-36$
$D(0,0)=-36, \quad D(1,1)=36$
a saddle point at $(0,0)$, a local minimum at $(1,1)$

Exercise 6.3

For the following functions find the critical points and classify them as local maxima, local minima, saddle points, or none of these:
(1) $f(x, y)=x^{2}-2 x y+3 y^{2}-8 y$;
(2) $f(x, y)=400-3 x^{2}-4 x+2 x y-5 y^{2}+48 y$;
(3) $f(x, y)=x^{3}+y^{2}-3 x^{2}+10 y+6$;
(4) $f(x, y)=x^{3}-3 x+y^{3}-3 y$;
(5) $f(x, y)=x^{3}+y^{3}-3 x^{2}-3 y+10$;
(6) $f(x, y)=x^{3}+y^{3}-6 y^{2}-3 x+9$;
(7) $f(x, y)=(x+y)(x y+1)$;
(8) $f(x, y)=8 x y-\frac{1}{4}(x+y)^{4}$;
(2) $f(x, y)=5+6 x-x^{2}+x y-y^{2}$;
(10) $f(x, y)=e^{2 x^{2}+y^{2}}$.

Exercise 6.4

Let

$$
f(x, y)=k x^{2}+y^{2}-4 x y, \quad k \neq 4 .
$$

Determine the value of k (if any) for which the critical point at $(0,0)$ is a saddle, a local maximum, a local minimum.

Exercise 6.5

Let

$$
f(x, y)=x^{3}-3 x y^{2}
$$

Show that there is one critical point at $(0,0)$ and that $D=0$ there. Show that the contour of f consists of three lines intersecting at the origin and that these lines divide the plane into six regions around the origin where f alternates from positive to negative.

Exercise 6.5

Let

$$
f(x, y)=x^{3}-3 x y^{2}
$$

Show that there is one critical point at $(0,0)$ and that $D=0$ there. Show that the contour of f consists of three lines intersecting at the origin and that these lines divide the plane into six regions around the origin where f alternates from positive to negative.

The graph of this function is called a monkey saddle.

Necessary conditions for global extrema

Definition

- A closed region is one which contains its boundary.

Necessary conditions for global extrema

Definition

- A closed region is one which contains its boundary.
- A bounded region is one which does not stretch to infinity in any direction (equivalently is contained in some ball).

Necessary conditions for global extrema

Definition

- A closed region is one which contains its boundary.
- A bounded region is one which does not stretch to infinity in any direction (equivalently is contained in some ball).
- A compact region is one which is simultaneously closed and bounded.

Necessary conditions for global extrema

Definition

- A closed region is one which contains its boundary.
- A bounded region is one which does not stretch to infinity in any direction (equivalently is contained in some ball).
- A compact region is one which is simultaneously closed and bounded.

Fact (Weierstrass Theorems on Continuous Functions)

A continuous function on a compact region R is bounded and has a global maximum at some point in R and a global minimum at some point in R.

Example

The function

$$
f(x, y)=\frac{1}{x^{2}+y^{2}}
$$

has neither global minima nor global maxima in the region $R: 0<x^{2}+y^{2} \leq 1$.

Example

The function

$$
f(x, y)=\frac{1}{x^{2}+y^{2}}
$$

has neither global minima nor global maxima in the region $R: 0<x^{2}+y^{2} \leq 1$.

Exercise 6.6

Do the following functions have global maxima or minima?
(1) $f(x, y)=x^{2}-2 y^{2}$;
(2) $f(x, y)=x^{2} y^{2}$;
(3) $f(x, y)=x^{3}+y^{3}$;
(4) $f(x, y)=-2 x^{2}-7 y^{2}$;
(5) $f(x, y)=x^{2} / 2+3 y^{3}+9 y^{2}-3 x$.

Exercise 6.7

Find the global minima and global maxima of the below functions on the region $R: \max (|x|,|y|) \leq 1$, and say whether it occurs on the boundary of the square. [Hint: Use graphs.]
(1) $z=x^{2}+y^{2}$;
(2) $z=-x^{2}-y^{2}$;
(c) $z=x^{2}-y^{2}$.

Exercise 6.8

An international airline has a regulation that each passenger can carry a suitcase having the sum of its width, length and height less or equal to 135 cm . Find the dimensions of the suitcase of maximum volume that a passenger may carry under this regulation.

Constrained Optimization: Lagrange Multipliers

Optimize an objective function $f(x, y)$ subject to a constraint $g(x, y)=c$.

Definition

Suppose P_{0} is a point satisfying the constraint $g(x, y)=c$.

Constrained Optimization: Lagrange Multipliers

Optimize an objective function $f(x, y)$ subject to a constraint $g(x, y)=c$.

Definition

Suppose P_{0} is a point satisfying the constraint $g(x, y)=c$.

- f has a local maximum at P_{0} subject to the constraint (or a conditional local maximum) if $f\left(P_{0}\right) \geq f(P)$ for all points sufficiently near P_{0} satisfying the constraint.

Constrained Optimization: Lagrange Multipliers

Optimize an objective function $f(x, y)$ subject to a constraint $g(x, y)=c$.

Definition

Suppose P_{0} is a point satisfying the constraint $g(x, y)=c$.

- f has a local maximum at P_{0} subject to the constraint (or a conditional local maximum) if $f\left(P_{0}\right) \geq f(P)$ for all points sufficiently near P_{0} satisfying the constraint.
- f has a global maximum at P_{0} subject to the constraint (or a conditional global maximum) if $f\left(P_{0}\right) \geq f(P)$ for all points satisfying the constraint.

Constrained Optimization: Lagrange Multipliers

Optimize an objective function $f(x, y)$ subject to a constraint $g(x, y)=c$.

Definition

Suppose P_{0} is a point satisfying the constraint $g(x, y)=c$.

- f has a local maximum at P_{0} subject to the constraint (or a conditional local maximum) if $f\left(P_{0}\right) \geq f(P)$ for all points sufficiently near P_{0} satisfying the constraint.
- f has a global maximum at P_{0} subject to the constraint (or a conditional global maximum) if $f\left(P_{0}\right) \geq f(P)$ for all points satisfying the constraint.

Conditinal local ang global minima are defined analogously.

Lagrange Multipliers; Illustration

Figure 15.28: Maximum and minimum values of $f(x, y)$ on $g(x, y)=c$ are at points where $\operatorname{grad} f$ is parallel to $\operatorname{grad} g$

Lagrange Multipliers

Fact

If a differentiable function, f, has an extremum subject to a differentiable constraint $g=c$ at a point P_{0}, then either P_{0} satisfies the equation

$$
\nabla f\left(P_{0}\right)=\lambda \cdot \nabla g\left(P_{0}\right) \quad \text { and } \quad g\left(P_{0}\right)=c
$$

(provided $\left.\nabla f\left(P_{0}\right) \neq \overrightarrow{0}, \nabla g\left(P_{0}\right) \neq \overrightarrow{0}\right)$, or

Lagrange Multipliers

Fact

If a differentiable function, f, has an extremum subject to a differentiable constraint $g=c$ at a point P_{0}, then either P_{0} satisfies the equation

$$
\nabla f\left(P_{0}\right)=\lambda \cdot \nabla g\left(P_{0}\right) \quad \text { and } \quad g\left(P_{0}\right)=c
$$

(provided $\nabla f\left(P_{0}\right) \neq \overrightarrow{0}, \nabla g\left(P_{0}\right) \neq \overrightarrow{0}$), or P_{0} is an endpoint of the constraint, or

Lagrange Multipliers

Fact

If a differentiable function, f, has an extremum subject to a differentiable constraint $g=c$ at a point P_{0}, then either P_{0} satisfies the equation

$$
\nabla f\left(P_{0}\right)=\lambda \cdot \nabla g\left(P_{0}\right) \quad \text { and } \quad g\left(P_{0}\right)=c
$$

(provided $\left.\nabla f\left(P_{0}\right) \neq \overrightarrow{0}, \nabla g\left(P_{0}\right) \neq \overrightarrow{0}\right)$, or P_{0} is an endpoint of the constraint, or $\nabla f\left(P_{0}\right)=\overrightarrow{0}$.

Lagrange Multipliers

Fact

If a differentiable function, f, has an extremum subject to a differentiable constraint $g=c$ at a point P_{0}, then either P_{0} satisfies the equation

$$
\nabla f\left(P_{0}\right)=\lambda \cdot \nabla g\left(P_{0}\right) \quad \text { and } \quad g\left(P_{0}\right)=c
$$

(provided $\nabla f\left(P_{0}\right) \neq \overrightarrow{0}, \nabla g\left(P_{0}\right) \neq \overrightarrow{0}$), or P_{0} is an endpoint of the constraint, or $\nabla f\left(P_{0}\right)=\overrightarrow{0}$.
To find P_{0} compare values of f at these points.

Lagrange Multipliers

Fact

If a differentiable function, f, has an extremum subject to a differentiable constraint $g=c$ at a point P_{0}, then either P_{0} satisfies the equation

$$
\nabla f\left(P_{0}\right)=\lambda \cdot \nabla g\left(P_{0}\right) \quad \text { and } \quad g\left(P_{0}\right)=c
$$

(provided $\nabla f\left(P_{0}\right) \neq \overrightarrow{0}, \nabla g\left(P_{0}\right) \neq \overrightarrow{0}$), or P_{0} is an endpoint of the constraint, or $\nabla f\left(P_{0}\right)=\overrightarrow{0}$.
To find P_{0} compare values of f at these points.
The number λ is called the Lagrange multiplier.

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$,

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$
$\nabla f(x, y)=[1,1]$,

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$
$\nabla f(x, y)=[1,1], \nabla g(x)=,[2 x, 2 y]$

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$
$\nabla f(x, y)=[1,1], \nabla g(x)=,[2 x, 2 y]$
$1=2 \lambda x, 1=2 \lambda y$,

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$
$\nabla f(x, y)=[1,1], \nabla g(x)=,[2 x, 2 y]$
$1=2 \lambda x, 1=2 \lambda y, x=y$

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$
$\nabla f(x, y)=[1,1], \nabla g(x)=,[2 x, 2 y]$
$1=2 \lambda x, 1=2 \lambda y, x=y$
$2 x^{2}=4$,

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$
$\nabla f(x, y)=[1,1], \nabla g(x)=,[2 x, 2 y]$
$1=2 \lambda x, 1=2 \lambda y, x=y$
$2 x^{2}=4, x=y=\sqrt{2}$ or $x=y=-\sqrt{2}$

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$
$\nabla f(x, y)=[1,1], \nabla g(x)=,[2 x, 2 y]$
$1=2 \lambda x, 1=2 \lambda y, x=y$
$2 x^{2}=4, x=y=\sqrt{2}$ or $x=y=-\sqrt{2}$
the constraint has no endpoints, $\nabla g \neq 0$ on the circle

Exercise 6.9

Find the maximum and minimum values of $x+y$ on the circle $x^{2}+y^{2}=4$.

Solution:

The objective function: $f(x, y)=x+y$, the constraint: $g(x, y)=x^{2}+y^{2}=4$
$\nabla f(x, y)=[1,1], \nabla g(x)=,[2 x, 2 y]$
$1=2 \lambda x, 1=2 \lambda y, x=y$
$2 x^{2}=4, x=y=\sqrt{2}$ or $x=y=-\sqrt{2}$
the constraint has no endpoints, $\nabla g \neq 0$ on the circle
$f_{\min }(-\sqrt{2},-\sqrt{2})=-2 \sqrt{2}, f_{\max }(\sqrt{2}, \sqrt{2})=2 \sqrt{2}$

Meaning of the Lagrange Multiplier

$$
f\left(x_{0}(c), y_{0}(c)\right)
$$

Meaning of the Lagrange Multiplier

$f\left(x_{0}(c), y_{0}(c)\right)$

$$
\frac{d f}{d c}=\frac{\partial f}{\partial x} \cdot \frac{d x_{0}}{d c}+\frac{\partial f}{\partial y} \cdot \frac{d y_{0}}{d c}
$$

Meaning of the Lagrange Multiplier

$f\left(x_{0}(c), y_{0}(c)\right)$

$$
\frac{d f}{d c}=\frac{\partial f}{\partial x} \cdot \frac{d x_{0}}{d c}+\frac{\partial f}{\partial y} \cdot \frac{d y_{0}}{d c}
$$

We have $\left[f_{x}, f_{y}\right]=\left[\lambda g_{x}, \lambda g_{y}\right]$ at the optimum point, so

$$
\frac{d f}{d c}=\lambda\left(\frac{\partial g}{\partial x} \cdot \frac{d x_{0}}{d c}+\frac{\partial g}{\partial y} \cdot \frac{d y_{0}}{d c}\right)=\lambda \frac{d g}{d c} .
$$

But $\frac{d g}{d c}=1$ at this point, so $\frac{d f}{d c}=\lambda$.

Meaning of the Lagrange Multiplier

$f\left(x_{0}(c), y_{0}(c)\right)$

$$
\frac{d f}{d c}=\frac{\partial f}{\partial x} \cdot \frac{d x_{0}}{d c}+\frac{\partial f}{\partial y} \cdot \frac{d y_{0}}{d c}
$$

We have $\left[f_{x}, f_{y}\right]=\left[\lambda g_{x}, \lambda g_{y}\right]$ at the optimum point, so

$$
\frac{d f}{d c}=\lambda\left(\frac{\partial g}{\partial x} \cdot \frac{d x_{0}}{d c}+\frac{\partial g}{\partial y} \cdot \frac{d y_{0}}{d c}\right)=\lambda \frac{d g}{d c} .
$$

But $\frac{d g}{d c}=1$ at this point, so $\frac{d f}{d c}=\lambda$.

Fact

The value of λ is the rate of change of the optimum value of f as c increases (where $(g(x, y)=c)$. If the optimum value of f is written as $f\left(x_{0}(c), y_{0}(c)\right)$, then

$$
\frac{d}{d c} f\left(\left(x_{0}(c), y_{0}(c)\right)=\lambda\right.
$$

Exercise 6.10

In Exercises 1-15, use Lagrange multipliers to find the maximum and minimum values of f subject to the given constraint, if such values exist.

1. $f(x, y)=x+y, \quad x^{2}+y^{2}=1$
2. $f(x, y)=3 x-2 y, \quad x^{2}+2 y^{2}=44$
3. $f(x, y)=x y, \quad 4 x^{2}+y^{2}=8$
4. $f(x, y)=x^{2}+y^{2}, \quad x^{4}+y^{4}=2$
5. $f(x, y)=x^{2}+y^{2}, \quad 4 x-2 y=15$
6. $f(x, y)=x^{2}+y, \quad x^{2}-y^{2}=1$
7. $f(x, y)=x^{2}-x y+y^{2}, \quad x^{2}-y^{2}=1$
8. $f(x, y, z)=x+3 y+5 z, \quad x^{2}+y^{2}+z^{2}=1$
9. $f(x, y, z)=x^{2}-2 y+2 z^{2}, \quad x^{2}+y^{2}+z^{2}=1$
10. $f(x, y, z)=2 x+y+4 z, \quad x^{2}+y+z^{2}=16$
11. $f(x, y)=x^{2}+2 y^{2}, \quad x^{2}+y^{2} \leq 4$
12. $f(x, y)=x+3 y, \quad x^{2}+y^{2} \leq 2$
13. $f(x, y)=x y, \quad x^{2}+2 y^{2} \leq 1$
14. $f(x, y)=x^{3}-y^{2}, \quad x^{2}+y^{2} \leq 1$
15. $f(x, y)=x^{3}+y, \quad x+y \geq 1$.
