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Linear approximation Gradients and directional derivatives in the plane

Differentiability and the tangent plane

Definition
We say that a n-variable function f of variables x1, . . . , xn is
differentiable at the point (a1, . . . ,an) if there exist all partial
derivatives

fxk (a1, . . . ,an), k = 1, . . . ,n.

Tangent Plane to the Surface z = f (x , y) at the Point (a,b)

Fact
Assuming f is differentiable at (a,b), the equation of the
tangent plane is

z − f (a,b) = fx (a,b)(x − a) + fy (a,b)(y − b).
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Illustration of differentiability
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Exercise 4.1

Find the equation for the tangent plane to the surface

z = x2 + y2

at the point (3,4).

Solution:

fx (x , y) = 2x , fy (x , y) = 2y

fx (3,4) = 6, fy (3,4) = 8

f (3,4) = 32 + 42 = 25

the equation of the tangent plane is

z − 25 = 6(x − 3) + 8(y − 4),

6x + 8y − z = 25.
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Tangent Plane Approximation to f (x , y) for (x , y) Near the
Point (a,b)

Definition
Provided f is differentiable at (a,b), we can approximate f (x , y):

f (x , y) ≈ f (a,b) + fx (a,b)(x − a) + fy (a,b)(y − b).

The right side of this approximation is called the local linearization
of f near the point (a,b).
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the Tangent Plane approximation shown graphically



Linear approximation Gradients and directional derivatives in the plane

Exercise 4.2

Find the local linearization of f (x , y) = x2 + y2 at the point
(3,4). Estimate f (29/10,21/5) and f (2,2) using the
linearization and compare your answers to the true values.

Solution:

The equation of the tangent plane: z = 6x + 8y − 25.

Local linearization near (3,4): f (x , y) ≈ 6x + 8y − 25.

Substituting x = 29/10, y = 21/5:

f (29/10,21/5) ≈ 26, f (29/10,21/5) = 2605/100 = 26.05.

Substituting x = 2, y = 2:

f (2,2) ≈ 3, f (2,2) = 8.
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Put

∆f = f (x , y)− f (a,b), ∆x = x − a and ∆y = y − b

and rewrite the tangent plane approximation in the form

∆f ≈ fx (a,b)∆x + fy (a,b)∆y .

Definition
The differential, df (or dz) of a function z = f (x , y) at a point
(a,b) is the lienar function of dx and dy given by the formula

df = fx (a,b)dx + fy (a,b)dy .

The differential at a general point is often written

df = fxdx + fydy .
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The differential in the magnified coordinate system
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Exercise 4.3

Compute the differentials of the following functions:

(a) f (x , y) = x2e5y , (b) u = x sin(xyz) + ln(x2 + y2 + z2),
(c) g(x , y) = x cos(2x).

Solution:

(a) df = 2xe5ydx + 5x2e5ydy .

(b)

du =
(

sin(xyz) + xyz cos(xyz) + 2x
x2+y2+z2

)
dx+

+
(

x2z cos(xyz) + 2y
x2+y2+z2

)
dy+

+
(

x2y cos(xyz) + 2z
x2+y2+z2

)
dz.

(c) dg = (cos(2x)− 2x sin(2x))dx .



Linear approximation Gradients and directional derivatives in the plane

Exercise 4.3

Compute the differentials of the following functions:

(a) f (x , y) = x2e5y , (b) u = x sin(xyz) + ln(x2 + y2 + z2),
(c) g(x , y) = x cos(2x).

Solution:
(a) df = 2xe5ydx + 5x2e5ydy .

(b)

du =
(

sin(xyz) + xyz cos(xyz) + 2x
x2+y2+z2

)
dx+

+
(

x2z cos(xyz) + 2y
x2+y2+z2

)
dy+

+
(

x2y cos(xyz) + 2z
x2+y2+z2

)
dz.

(c) dg = (cos(2x)− 2x sin(2x))dx .



Linear approximation Gradients and directional derivatives in the plane

Exercise 4.3

Compute the differentials of the following functions:

(a) f (x , y) = x2e5y , (b) u = x sin(xyz) + ln(x2 + y2 + z2),
(c) g(x , y) = x cos(2x).

Solution:
(a) df = 2xe5ydx + 5x2e5ydy .

(b)

du =
(

sin(xyz) + xyz cos(xyz) + 2x
x2+y2+z2

)
dx+

+
(

x2z cos(xyz) + 2y
x2+y2+z2

)
dy+

+
(

x2y cos(xyz) + 2z
x2+y2+z2

)
dz.

(c) dg = (cos(2x)− 2x sin(2x))dx .



Linear approximation Gradients and directional derivatives in the plane

Exercise 4.3

Compute the differentials of the following functions:

(a) f (x , y) = x2e5y , (b) u = x sin(xyz) + ln(x2 + y2 + z2),
(c) g(x , y) = x cos(2x).

Solution:
(a) df = 2xe5ydx + 5x2e5ydy .

(b)

du =
(

sin(xyz) + xyz cos(xyz) + 2x
x2+y2+z2

)
dx+

+
(

x2z cos(xyz) + 2y
x2+y2+z2

)
dy+

+
(

x2y cos(xyz) + 2z
x2+y2+z2

)
dz.

(c) dg = (cos(2x)− 2x sin(2x))dx .



Linear approximation Gradients and directional derivatives in the plane

Exercise 4.4

The density ρ (in g/cm3) of carbon dioxide gas CO2 depends
upon its temperature T (in Kelvins) and pressure P (in
atmospheres). The ideal gas model for CO2 gives what is
called the state equation

ρ = r
P
T
,

where r > 0 denotes the individual gas constant of CO2.
Compute the differential dρ. Explain the sign of the coefficients
of dT and dP.

Solution: dρ = − rP
T 2 dT + r

T dP.

− rP
T 2 < 0 - if the pressure is kept constant increasing the

temperature expands the gas, hence decreases its density;
r
T > 0 - if the temperature is kept constant increasing the
pressure compresses the gas and therefore increases its
density.
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Definition

If ~u = [u1,u2] is a unit vector, we define the directional
derivatives, f~u, in the direction of ~u at a point (a,b) by

f~u(a,b) = lim
h→0

f (a + hu1,b + hu2)− f (a,b)

h
,

provided the limit exists.

f~u(a,b) - the rate of change of f in direction of ~u at (a,b).

If ~v 6= 0 is not a unit vector then we take ~u = ~v
|~v | and define

f~v = f~u.
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Exercise 4.5

Calculate the directional derivative of f (x , y) = x2 + y2 at (1,0)
in the direction of the vector ~v = [1,1].

Solution: |~v | =
√

2, ~u = [1/
√

2,1/
√

2].

f~v (1,0) = f~u(1,0) = limh→0
f (1+h/

√
2,h/
√

2)−f (1,0)
h =

= limh→0
(1+h/

√
2)2+(h/

√
2)2−1

h =

= limh→0
h
√

2+h2

h = limh→0(
√

2 + h) =
√

2.
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The Gradient Vector

We have the following formula:

Fact

f~u(a,b) = fx (a,b)u1 + fy (a,b)u2

= [fx (a,b), fy (a,b)] · ~u.

Exercise 4.6. Using the above formula calculate the directional
derivative from the previous exercise.

Definition
The gradient vector of a differentiable function f (x , y) at the
point (a,b) is

∇f (a,b) = [fx (a,b), fy (a,b)].
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Fact

f~u(a,b) = ∇f (a,b) · ~u.

We can think about the gradient as the result of applying the
vector operator

∇ =

[
∂

∂x
,
∂

∂y

]
to the function f . The above operator is called "del".
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Geometric Interpretation of the Gradient

~u – an unit vector,

φ = |^(∇f , ~u)| at (a,b).
f~u = ∇f · ~u = |∇f | · |~u| · cosφ = |∇f | · cosφ.

max f~u = |∇f | · cos 0 = |∇f |;

min f~u = |∇f | · cosπ = −|∇f |;
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Geometric Properties of the Gradient Vector in the
Space

Fact
If f is differentiable function at the point (a,b) and ∇f (a,b) 6= 0,
then:

The direction of∇f (a,b) is
Perpendicular to the contour of f through (a,b)
In the direction of increasing f

The magnitude of the gradient vector, |∇g|, is
The maximum rate of change of f at that point
Large when the contour are close together and small when they
are far apart.
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Exercise 4.7

Use the below contour diagram of f to decide if the specified
directional derivative is positive, negative, or approximately
zero.

1. At point (−2,2), in dir. [1,0].
2. At point (0,−2), in dir. [0,1].
3. At point (−1,1), in dir. [1,1].

4. At point (−1,1), in dir. [−1,1].
5. At point (0,−2), in dir. [1,2].
6. At point (0,−2), in dir. [1,−2].
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Exercise 4.8

Use the below contour diagram of f to estimate the directional
derivative of f (x , y) in the given directions and points.

1. At point (1,1), in dir. [1,0].
2. At point (1,1), in dir. [0,1].
3. At point (1,1), in dir. [1,1].

4. At point (4,1), in dir. [1,1].
5. At point (3,3), in dir. [−2,1].
6. At point (4,1), in dir. [−2,1].
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Exerciese 4.9

The surface z = g(x , y) is in the below figure. What is the sign
of each of the following directional derivatives?

1 g~u(2,5) where ~u = [1,−1]/
√

2;
2 g~u(2,5) where ~u = [1,1]/

√
2.
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The Gradient Vector in the Plane

Definition

∇f (a,b, c) = [fx (a,b, c), fy (a,b, c), fz(a,b, c)] .

Fact

If f is differentiable at (a,b, c) and ~u is a unit vector, then

f~u(a,b, c) = ∇f (a,b, c) · ~u.

I, in addition,∇f (a,b, c) 6= 0, then

∇f (a,b, c) is in the direction of the greatest rate of increase of f
∇f (a,b, c) is perpendicular to the level surface of f at (a,b, c)

|∇f (a,b, c)| is the maximum rate of change of f at (a,b, c).
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Example

f (x , y , z) = x2 + y2, g(x , y , z) = −x2 − y2 − z2.

Describe ∇f (0,1,1), ∇f (1,0,1), ∇g(0,1,1), ∇g(1,0,1).
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