Mathematics. Multivariable Calculus

Artur Siemaszko

Faculty of Mathematics and Computer Science University of Warmia and Mazury in Olsztyn

March 10, 2014

Zooming in to see local linearity

Figure 14.19: Zooming in on the graph of a function of two variables until the graph looks like a plane

Zooming in to see local linearity

Figure 14.19: Zooming in on the graph of a function of two variables until the graph looks like a plane

Figure 14.20: Zooming in on a contour diagram until the lines look parallel and equally spaced

Differentiability and the tangent plane

Definition

We say that a n-variable function f of variables x_{1}, \ldots, x_{n} is differentiable at the point $\left(a_{1}, \ldots, a_{n}\right)$ if there exist all partial derivatives

$$
f_{x_{k}}\left(a_{1}, \ldots, a_{n}\right), \quad k=1, \ldots, n .
$$

Differentiability and the tangent plane

Definition

We say that a n-variable function f of variables x_{1}, \ldots, x_{n} is differentiable at the point $\left(a_{1}, \ldots, a_{n}\right)$ if there exist all partial derivatives

$$
f_{x_{k}}\left(a_{1}, \ldots, a_{n}\right), \quad k=1, \ldots, n .
$$

Tangent Plane to the Surface $z=f(x, y)$ at the Point (a, b)

Differentiability and the tangent plane

Definition

We say that a n-variable function f of variables x_{1}, \ldots, x_{n} is differentiable at the point $\left(a_{1}, \ldots, a_{n}\right)$ if there exist all partial derivatives

$$
f_{x_{k}}\left(a_{1}, \ldots, a_{n}\right), \quad k=1, \ldots, n .
$$

Tangent Plane to the Surface $z=f(x, y)$ at the Point (a, b)

Fact

Assuming f is differentiable at (a, b), the equation of the tangent plane is

Differentiability and the tangent plane

Definition

We say that a n-variable function f of variables x_{1}, \ldots, x_{n} is differentiable at the point $\left(a_{1}, \ldots, a_{n}\right)$ if there exist all partial derivatives

$$
f_{x_{k}}\left(a_{1}, \ldots, a_{n}\right), \quad k=1, \ldots, n .
$$

Tangent Plane to the Surface $z=f(x, y)$ at the Point (a, b)

Fact

Assuming f is differentiable at (a, b), the equation of the tangent plane is

$$
z-f(a, b)=f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Illustration of differentiability

Point of contact between plane and surface: $(a, b, f(a, b))$

Surface $z=f(x, y)$

Figure 14.21: The tangent plane to the surface $z=f(x, y)$ at the point (a, b)

Exercise 4.1

Find the equation for the tangent plane to the surface

$$
z=x^{2}+y^{2}
$$

at the point $(3,4)$.

Exercise 4.1

Find the equation for the tangent plane to the surface

$$
z=x^{2}+y^{2}
$$

at the point $(3,4)$.
Solution:
$f_{x}(x, y)=2 x, \quad f_{y}(x, y)=2 y$

Exercise 4.1

Find the equation for the tangent plane to the surface

$$
z=x^{2}+y^{2}
$$

at the point $(3,4)$.
Solution:
$f_{x}(x, y)=2 x, \quad f_{y}(x, y)=2 y$
$f_{x}(3,4)=6, \quad f_{y}(3,4)=8$

Exercise 4.1

Find the equation for the tangent plane to the surface

$$
z=x^{2}+y^{2}
$$

at the point $(3,4)$.
Solution:
$f_{x}(x, y)=2 x, \quad f_{y}(x, y)=2 y$
$f_{x}(3,4)=6, \quad f_{y}(3,4)=8$
$f(3,4)=3^{2}+4^{2}=25$

Exercise 4.1

Find the equation for the tangent plane to the surface

$$
z=x^{2}+y^{2}
$$

at the point $(3,4)$.

Solution:

$f_{x}(x, y)=2 x, \quad f_{y}(x, y)=2 y$
$f_{x}(3,4)=6, \quad f_{y}(3,4)=8$
$f(3,4)=3^{2}+4^{2}=25$
the equation of the tangent plane is

$$
z-25=6(x-3)+8(y-4)
$$

Exercise 4.1

Find the equation for the tangent plane to the surface

$$
z=x^{2}+y^{2}
$$

at the point $(3,4)$.

Solution:

$f_{x}(x, y)=2 x, \quad f_{y}(x, y)=2 y$
$f_{x}(3,4)=6, \quad f_{y}(3,4)=8$
$f(3,4)=3^{2}+4^{2}=25$
the equation of the tangent plane is

$$
z-25=6(x-3)+8(y-4)
$$

$$
6 x+8 y-z=25
$$

Tangent Plane Approximation to $f(x, y)$ for (x, y) Near the Point (a, b)

Tangent Plane Approximation to $f(x, y)$ for (x, y) Near the Point (a, b)

Definition

Provided f is differentiable at (a, b), we can approximate $f(x, y)$:

$$
f(x, y) \approx f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

The right side of this approximation is called the local linearization of f near the point (a, b).

the Tangent Plane approximation shown graphically

Figure 14.22: Local linearization: Approximating $f(x, y)$ by the z-value from the tangent plane

Exercise 4.2

Find the local linearization of $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$. Estimate $f(29 / 10,21 / 5)$ and $f(2,2)$ using the linearization and compare your answers to the true values.

Exercise 4.2

Find the local linearization of $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$. Estimate $f(29 / 10,21 / 5)$ and $f(2,2)$ using the linearization and compare your answers to the true values.

Solution:

The equation of the tangent plane: $z=6 x+8 y-25$.

Exercise 4.2

Find the local linearization of $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$. Estimate $f(29 / 10,21 / 5)$ and $f(2,2)$ using the linearization and compare your answers to the true values.

Solution:

The equation of the tangent plane: $z=6 x+8 y-25$.
Local linearization near (3,4): $f(x, y) \approx 6 x+8 y-25$.

Exercise 4.2

Find the local linearization of $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$. Estimate $f(29 / 10,21 / 5)$ and $f(2,2)$ using the linearization and compare your answers to the true values.

Solution:

The equation of the tangent plane: $z=6 x+8 y-25$.
Local linearization near (3,4): $f(x, y) \approx 6 x+8 y-25$.
Substituting $x=29 / 10, y=21 / 5$:
$f(29 / 10,21 / 5) \approx 26$,

Exercise 4.2

Find the local linearization of $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$. Estimate $f(29 / 10,21 / 5)$ and $f(2,2)$ using the linearization and compare your answers to the true values.

Solution:

The equation of the tangent plane: $z=6 x+8 y-25$.
Local linearization near (3,4): $f(x, y) \approx 6 x+8 y-25$.
Substituting $x=29 / 10, y=21 / 5$:
$f(29 / 10,21 / 5) \approx 26, \quad f(29 / 10,21 / 5)=2605 / 100=26.05$.

Exercise 4.2

Find the local linearization of $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$. Estimate $f(29 / 10,21 / 5)$ and $f(2,2)$ using the linearization and compare your answers to the true values.

Solution:

The equation of the tangent plane: $z=6 x+8 y-25$.
Local linearization near (3,4): $f(x, y) \approx 6 x+8 y-25$.
Substituting $x=29 / 10, y=21 / 5$:
$f(29 / 10,21 / 5) \approx 26, \quad f(29 / 10,21 / 5)=2605 / 100=26.05$.
Substituting $x=2, y=2$:
$f(2,2) \approx 3$,

Exercise 4.2

Find the local linearization of $f(x, y)=x^{2}+y^{2}$ at the point $(3,4)$. Estimate $f(29 / 10,21 / 5)$ and $f(2,2)$ using the linearization and compare your answers to the true values.

Solution:

The equation of the tangent plane: $z=6 x+8 y-25$.
Local linearization near (3,4): $f(x, y) \approx 6 x+8 y-25$.
Substituting $x=29 / 10, y=21 / 5$:
$f(29 / 10,21 / 5) \approx 26, \quad f(29 / 10,21 / 5)=2605 / 100=26.05$.
Substituting $x=2, y=2$:
$f(2,2) \approx 3, \quad f(2,2)=8$.

Put

$$
\Delta f=f(x, y)-f(a, b), \quad \Delta x=x-a \quad \text { and } \quad \Delta y=y-b
$$

Put

$$
\Delta f=f(x, y)-f(a, b), \quad \Delta x=x-a \quad \text { and } \quad \Delta y=y-b
$$

and rewrite the tangent plane approximation in the form

$$
\Delta f \approx f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y
$$

Put

$$
\Delta f=f(x, y)-f(a, b), \quad \Delta x=x-a \quad \text { and } \quad \Delta y=y-b
$$

and rewrite the tangent plane approximation in the form

$$
\Delta f \approx f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y
$$

Definition

The differential, df (or $d z$) of a function $z=f(x, y)$ at a point (a, b) is the lienar function of $d x$ and $d y$ given by the formula

$$
d f=f_{x}(a, b) d x+f_{y}(a, b) d y
$$

Put

$$
\Delta f=f(x, y)-f(a, b), \quad \Delta x=x-a \quad \text { and } \quad \Delta y=y-b
$$

and rewrite the tangent plane approximation in the form

$$
\Delta f \approx f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y
$$

Definition

The differential, df (or $d z$) of a function $z=f(x, y)$ at a point (a, b) is the lienar function of $d x$ and $d y$ given by the formula

$$
d f=f_{x}(a, b) d x+f_{y}(a, b) d y
$$

The differential at a general point is often written

$$
d f=f_{x} d x+f_{y} d y
$$

The differential in the magnified coordinate system

Figure 14.23: The graph of f, with a view through a microscope showing the tangent plane in the magnified coordinate system

Exercise 4.3

Compute the differentials of the following functions:

$$
\begin{aligned}
& \text { (a) } f(x, y)=x^{2} e^{5 y}, \text { (b) } u=x \sin (x y z)+\ln \left(x^{2}+y^{2}+z^{2}\right) \\
& \text { (c) } g(x, y)=x \cos (2 x) .
\end{aligned}
$$

Solution:

Exercise 4.3

Compute the differentials of the following functions:
(a) $f(x, y)=x^{2} e^{5 y}$, (b) $u=x \sin (x y z)+\ln \left(x^{2}+y^{2}+z^{2}\right)$,
(c) $g(x, y)=x \cos (2 x)$.

Solution:

(a) $d f=2 x e^{5} y d x+5 x^{2} e^{5 y} d y$.

Exercise 4.3

Compute the differentials of the following functions:
(a) $f(x, y)=x^{2} e^{5 y}$, (b) $u=x \sin (x y z)+\ln \left(x^{2}+y^{2}+z^{2}\right)$,
(c) $g(x, y)=x \cos (2 x)$.

Solution:

(a) $d f=2 x e^{5} y d x+5 x^{2} e^{5 y} d y$.

$$
d u=\left(\sin (x y z)+x y z \cos (x y z)+\frac{2 x}{x^{2}+y^{2}+z^{2}}\right) d x+
$$

(b)

$$
\begin{aligned}
& +\left(x^{2} z \cos (x y z)+\frac{2 y}{x^{2}+y^{2}+z^{2}}\right) d y+ \\
& +\left(x^{2} y \cos (x y z)+\frac{2 z}{x^{2}+y^{2}+z^{2}}\right) d z
\end{aligned}
$$

Exercise 4.3

Compute the differentials of the following functions:
(a) $f(x, y)=x^{2} e^{5 y}$, (b) $u=x \sin (x y z)+\ln \left(x^{2}+y^{2}+z^{2}\right)$,
(c) $g(x, y)=x \cos (2 x)$.

Solution:

(a) $d f=2 x e^{5} y d x+5 x^{2} e^{5 y} d y$.

$$
d u=\left(\sin (x y z)+x y z \cos (x y z)+\frac{2 x}{x^{2}+y^{2}+z^{2}}\right) d x+
$$

(b)

$$
\begin{aligned}
& +\left(x^{2} z \cos (x y z)+\frac{2 y}{x^{2}+y^{2}+z^{2}}\right) d y+ \\
& +\left(x^{2} y \cos (x y z)+\frac{2 z}{x^{2}+y^{2}+z^{2}}\right) d z
\end{aligned}
$$

(c) $d g=(\cos (2 x)-2 x \sin (2 x)) d x$.

Exercise 4.4

The density ρ (in $\mathrm{g} / \mathrm{cm}^{3}$) of carbon dioxide gas CO_{2} depends upon its temperature T (in Kelvins) and pressure P (in atmospheres). The ideal gas model for CO_{2} gives what is called the state equation

$$
\rho=r \frac{P}{T}
$$

where $r>0$ denotes the individual gas constant of CO_{2}. Compute the differential $d \rho$. Explain the sign of the coefficients of $d T$ and $d P$.

Exercise 4.4

The density ρ (in $\mathrm{g} / \mathrm{cm}^{3}$) of carbon dioxide gas CO_{2} depends upon its temperature T (in Kelvins) and pressure P (in atmospheres). The ideal gas model for CO_{2} gives what is called the state equation

$$
\rho=r \frac{P}{T}
$$

where $r>0$ denotes the individual gas constant of CO_{2}. Compute the differential $d \rho$. Explain the sign of the coefficients of $d T$ and $d P$.

Solution: $\quad d \rho=-\frac{r P}{T^{2}} d T+\frac{r}{T} d P$.

Exercise 4.4

The density ρ (in $\mathrm{g} / \mathrm{cm}^{3}$) of carbon dioxide gas CO_{2} depends upon its temperature T (in Kelvins) and pressure P (in atmospheres). The ideal gas model for CO_{2} gives what is called the state equation

$$
\rho=r \frac{P}{T}
$$

where $r>0$ denotes the individual gas constant of CO_{2}. Compute the differential $d \rho$. Explain the sign of the coefficients of $d T$ and $d P$.
Solution: $\quad d \rho=-\frac{r P}{T^{2}} d T+\frac{r}{T} d P$.
$-\frac{r P}{T^{2}}<0$

Exercise 4.4

The density ρ (in $\mathrm{g} / \mathrm{cm}^{3}$) of carbon dioxide gas CO_{2} depends upon its temperature T (in Kelvins) and pressure P (in atmospheres). The ideal gas model for CO_{2} gives what is called the state equation

$$
\rho=r \frac{P}{T}
$$

where $r>0$ denotes the individual gas constant of CO_{2}. Compute the differential $d \rho$. Explain the sign of the coefficients of $d T$ and $d P$.

Solution: $\quad d \rho=-\frac{r P}{T^{2}} d T+\frac{r}{T} d P$.
$-\frac{r P}{T^{2}}<0$ - if the pressure is kept constant increasing the temperature expands the gas, hence decreases its density;

Exercise 4.4

The density ρ (in $\mathrm{g} / \mathrm{cm}^{3}$) of carbon dioxide gas CO_{2} depends upon its temperature T (in Kelvins) and pressure P (in atmospheres). The ideal gas model for CO_{2} gives what is called the state equation

$$
\rho=r \frac{P}{T}
$$

where $r>0$ denotes the individual gas constant of CO_{2}. Compute the differential $d \rho$. Explain the sign of the coefficients of $d T$ and $d P$.

Solution: $\quad d \rho=-\frac{r P}{T^{2}} d T+\frac{r}{T} d P$.
$-\frac{r P}{T^{2}}<0$ - if the pressure is kept constant increasing the temperature expands the gas, hence decreases its density; $\frac{r}{T}>0$

Exercise 4.4

The density ρ (in $\mathrm{g} / \mathrm{cm}^{3}$) of carbon dioxide gas CO_{2} depends upon its temperature T (in Kelvins) and pressure P (in atmospheres). The ideal gas model for CO_{2} gives what is called the state equation

$$
\rho=r \frac{P}{T},
$$

where $r>0$ denotes the individual gas constant of CO_{2}. Compute the differential $d \rho$. Explain the sign of the coefficients of $d T$ and $d P$.

Solution: $\quad d \rho=-\frac{r P}{T^{2}} d T+\frac{r}{T} d P$.
$-\frac{r P}{T^{2}}<0$ - if the pressure is kept constant increasing the temperature expands the gas, hence decreases its density;
$\stackrel{r}{T}>0$ - if the temperature is kept constant increasing the pressure compresses the gas and therefore increases its density.

Definition

If $\vec{u}=\left[u_{1}, u_{2}\right]$ is a unit vector, we define the directional derivatives, $f_{\vec{u}}$, in the direction of \vec{u} at a point (a, b) by

$$
f_{\vec{u}}(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h},
$$

provided the limit exists.

Definition

If $\vec{u}=\left[u_{1}, u_{2}\right]$ is a unit vector, we define the directional derivatives, $f_{\vec{u}}$, in the direction of \vec{u} at a point (a, b) by

$$
f_{\vec{u}}(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h},
$$

provided the limit exists.
$f_{\vec{u}}(a, b)$ - the rate of change of f in direction of \vec{u} at (a, b).

Definition

If $\vec{u}=\left[u_{1}, u_{2}\right]$ is a unit vector, we define the directional derivatives, $f_{\vec{u}}$, in the direction of \vec{u} at a point (a, b) by

$$
f_{\vec{u}}(a, b)=\lim _{h \rightarrow 0} \frac{f\left(a+h u_{1}, b+h u_{2}\right)-f(a, b)}{h},
$$

provided the limit exists.
$f_{\vec{u}}(a, b)$ - the rate of change of f in direction of \vec{u} at (a, b).
If $\vec{v} \neq 0$ is not a unit vector then we take $\vec{u}=\frac{\vec{v}}{|\vec{v}|}$ and define

$$
f_{\vec{v}}=f_{\vec{u}} .
$$

Exercise 4.5

Calculate the directional derivative of $f(x, y)=x^{2}+y^{2}$ at $(1,0)$ in the direction of the vector $\vec{v}=[1,1]$.

Exercise 4.5

Calculate the directional derivative of $f(x, y)=x^{2}+y^{2}$ at $(1,0)$ in the direction of the vector $\vec{v}=[1,1]$.
Solution: $|\vec{v}|=\sqrt{2}, \quad \vec{u}=[1 / \sqrt{2}, 1 / \sqrt{2}]$.

Exercise 4.5

Calculate the directional derivative of $f(x, y)=x^{2}+y^{2}$ at $(1,0)$ in the direction of the vector $\vec{v}=[1,1]$.
Solution: $|\vec{v}|=\sqrt{2}, \quad \vec{u}=[1 / \sqrt{2}, 1 / \sqrt{2}]$.

$$
\begin{aligned}
f_{\vec{v}}(1,0)=f_{\vec{u}}(1,0) & =\lim _{h \rightarrow 0} \frac{f(1+h / \sqrt{2}, h / \sqrt{2})-f(1,0)}{h}= \\
& =\lim _{h \rightarrow 0} \frac{(1+h / \sqrt{2})^{2}+(h / \sqrt{2})^{2}-1}{h}= \\
& =\lim _{h \rightarrow 0} \frac{h \sqrt{2}+h^{2}}{h}=\lim _{h \rightarrow 0}(\sqrt{2}+h)=\sqrt{2} .
\end{aligned}
$$

The Gradient Vector

We have the following formula:

Fact

$$
f_{\vec{u}}(a, b)=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}
$$

The Gradient Vector

We have the following formula:

Fact

$$
f_{\vec{u}}(a, b)=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}=\left[f_{x}(a, b), f_{y}(a, b)\right] \cdot \vec{u} .
$$

The Gradient Vector

We have the following formula:

Fact

$$
f_{\vec{u}}(a, b)=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}=\left[f_{x}(a, b), f_{y}(a, b)\right] \cdot \vec{u} .
$$

Exercise 4.6. Using the above formula calculate the directional derivative from the previous exercise.

The Gradient Vector

We have the following formula:
Fact

$$
f_{\vec{u}}(a, b)=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}=\left[f_{x}(a, b), f_{y}(a, b)\right] \cdot \vec{u} .
$$

Exercise 4.6. Using the above formula calculate the directional derivative from the previous exercise.

Definition

The gradient vector of a differentiable function $f(x, y)$ at the point (a, b) is

$$
\nabla f(a, b)=\left[f_{x}(a, b), f_{y}(a, b)\right] .
$$

Fact

$$
f_{\vec{u}}(a, b)=\nabla f(a, b) \cdot \vec{u} .
$$

Fact

$$
f_{\vec{u}}(a, b)=\nabla f(a, b) \cdot \vec{u} .
$$

We can think about the gradient as the result of applying the vector operator

$$
\nabla=\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right]
$$

to the function f. The above operator is called "del".

Geometric Interpretation of the Gradient

\vec{u} - an unit vector,

Geometric Interpretation of the Gradient

$$
\vec{u}-\text { an unit vector, } \phi=|\varangle(\nabla f, \vec{u})| \text { at }(a, b) .
$$

Geometric Interpretation of the Gradient

$$
\begin{aligned}
& \vec{u}-\text { an unit vector, } \phi=|\varangle(\nabla f, \vec{u})| \text { at }(a, b) . \\
& \qquad f_{\vec{u}}=\nabla f \cdot \vec{u}
\end{aligned}
$$

Geometric Interpretation of the Gradient

$$
\begin{aligned}
& \vec{u} \text { - an unit vector, } \phi=|\varangle(\nabla f, \vec{u})| \text { at }(a, b) . \\
& \qquad f_{\vec{u}}=\nabla f \cdot \vec{u}=|\nabla f| \cdot|\vec{u}| \cdot \cos \phi
\end{aligned}
$$

Geometric Interpretation of the Gradient

$$
\begin{aligned}
& \vec{u} \text { - an unit vector, } \phi=|\varangle(\nabla f, \vec{u})| \text { at }(a, b) . \\
& \qquad f_{\vec{u}}=\nabla f \cdot \vec{u}=|\nabla f| \cdot|\vec{u}| \cdot \cos \phi=|\nabla f| \cdot \cos \phi .
\end{aligned}
$$

Geometric Interpretation of the Gradient

$$
\begin{aligned}
& \vec{u} \text { - an unit vector, } \phi=|\varangle(\nabla f, \vec{u})| \text { at }(a, b) . \\
& \qquad f_{\vec{u}}=\nabla f \cdot \vec{u}=|\nabla f| \cdot|\vec{u}| \cdot \cos \phi=|\nabla f| \cdot \cos \phi . \\
& \qquad \max f_{\vec{u}}=|\nabla f| \cdot \cos 0
\end{aligned}
$$

Geometric Interpretation of the Gradient

$$
\begin{aligned}
& \vec{u} \text { - an unit vector, } \phi=|\varangle(\nabla f, \vec{u})| \text { at }(a, b) . \\
& \qquad f_{\vec{u}}=\nabla f \cdot \vec{u}=|\nabla f| \cdot|\vec{u}| \cdot \cos \phi=|\nabla f| \cdot \cos \phi . \\
& \qquad \max f_{\vec{u}}=|\nabla f| \cdot \cos 0=|\nabla f| ;
\end{aligned}
$$

Geometric Interpretation of the Gradient

$$
\begin{aligned}
& \vec{u} \text { - an unit vector, } \phi=|\varangle(\nabla f, \vec{u})| \text { at }(a, b) . \\
& \qquad f_{\vec{u}}=\nabla f \cdot \vec{u}=|\nabla f| \cdot|\vec{u}| \cdot \cos \phi=|\nabla f| \cdot \cos \phi . \\
& \qquad \max f_{\vec{u}}=|\nabla f| \cdot \cos 0=|\nabla f| ; \\
& \min f_{\vec{u}}=|\nabla f| \cdot \cos \pi
\end{aligned}
$$

Geometric Interpretation of the Gradient

$$
\begin{aligned}
& \vec{u} \text { - an unit vector, } \phi=|\varangle(\nabla f, \vec{u})| \text { at }(a, b) . \\
& \qquad f_{\vec{u}}=\nabla f \cdot \vec{u}=|\nabla f| \cdot|\vec{u}| \cdot \cos \phi=|\nabla f| \cdot \cos \phi . \\
& \qquad \max f_{\vec{u}}=|\nabla f| \cdot \cos 0=|\nabla f| ; \\
& \qquad \min f_{\vec{u}}=|\nabla f| \cdot \cos \pi=-|\nabla f| ;
\end{aligned}
$$

Geometric Interpretation of the Gradient

$\vec{u}-$ an unit vector, $\phi=|\varangle(\nabla f, \vec{u})|$ at (a, b).

$$
f_{\vec{u}}=\nabla f \cdot \vec{u}=|\nabla f| \cdot|\vec{u}| \cdot \cos \phi=|\nabla f| \cdot \cos \phi .
$$

$$
\max f_{\vec{u}}=|\nabla f| \cdot \cos 0=|\nabla f| ;
$$

$$
\min f_{\vec{u}}=|\nabla f| \cdot \cos \pi=-|\nabla f| ;
$$

: Values of the directional derivative at different angles to the gradient

Geometric Properties of the Gradient Vector in the Space

Fact

If f is differentiable function at the point (a, b) and $\nabla f(a, b) \neq 0$, then:

- The direction of $\nabla f(a, b)$ is
- Perpendicular to the contour of f through (a, b)
- In the direction of increasing f
- The magnitude of the gradient vector, $|\nabla g|$, is
- The maximum rate of change of f at that point
- Large when the contour are close together and small when they are far apart.

Exercise 4.7

Use the below contour diagram of f to decide if the specified directional derivative is positive, negative, or approximately zero.

1. At point $(-2,2)$, in dir. $[1,0]$.
2. At point $(0,-2)$, in dir. $[0,1]$.
3. At point $(-1,1)$, in dir. $[1,1]$.
4. At point $(-1,1)$, in dir. $[-1,1]$.
5. At point $(0,-2)$, in dir. $[1,2]$.
6. At point $(0,-2)$, in dir. $[1,-2]$.

Exercise 4.8

Use the below contour diagram of f to estimate the directional derivative of $f(x, y)$ in the given directions and points.

1. At point $(1,1)$, in dir. $[1,0]$.
2. At point $(1,1)$, in dir. $[0,1]$.
3. At point $(1,1)$, in dir. $[1,1]$.
4. At point $(4,1)$, in dir. [1, 1].
5. At point $(3,3)$, in dir. $[-2,1]$.
6. At point $(4,1)$, in dir. $[-2,1]$.

Exerciese 4.9

The surface $z=g(x, y)$ is in the below figure. What is the sign of each of the following directional derivatives?

(1) $g_{\vec{u}}(2,5)$ where $\vec{u}=[1,-1] / \sqrt{2}$;
(2) $g_{\vec{u}}(2,5)$ where $\vec{u}=[1,1] / \sqrt{2}$.

The Gradient Vector in the Plane

Definition

$$
\nabla f(a, b, c)=\left[f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right] .
$$

The Gradient Vector in the Plane

Definition

$$
\nabla f(a, b, c)=\left[f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right] .
$$

Fact

If f is differentiable at (a, b, c) and \vec{u} is a unit vector, then

$$
f_{\vec{u}}(a, b, c)=\nabla f(a, b, c) \cdot \vec{u} .
$$

I, in addition, $\nabla f(a, b, c) \neq 0$, then

- $\nabla f(a, b, c)$ is in the direction of the greatest rate of increase of f
- $\nabla f(a, b, c)$ is perpendicular to the level surface of f at (a, b, c)
- $|\nabla f(a, b, c)|$ is the maximum rate of change of f at (a, b, c).

Example

$$
f(x, y, z)=x^{2}+y^{2}, \quad g(x, y, z)=-x^{2}-y^{2}-z^{2}
$$

Describe $\nabla f(0,1,1), \nabla f(1,0,1), \nabla g(0,1,1), \nabla g(1,0,1)$.

Example

$$
f(x, y, z)=x^{2}+y^{2}, \quad g(x, y, z)=-x^{2}-y^{2}-z^{2} .
$$

Describe $\nabla f(0,1,1), \nabla f(1,0,1), \nabla g(0,1,1), \nabla g(1,0,1)$.

Figure 14.39: The level surface $f(x, y, z)=x^{2}+y^{2}=1$ with two gradient vectors

Figure 14.40: The level surface $g(x, y, z)=-x^{2}-y^{2}-z^{2}=-2$ with two
gradient vectors

