
Lecture 3.

Mathematics. Multivariable Calculus

Artur Siemaszko

Faculty of Mathematics and Computer Science
University of Warmia and Mazury in Olsztyn

February 25, 2014



Lecture 3.

What is the difference in the behaviour of the following
functions near the point (0,0)?

f (x , y) =

{
x2y

x2+y2 : (x , y) 6= (0, 0)
0 : (x , y) = (0, 0);

g(x , y) =

{
x2

x2+y2 : (x , y) 6= (0, 0)
0 : (x , y) = (0, 0).
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Definitions

Definition
The function f has a limit L at the point (a,b), written

lim
(x ,y)→(a,b)

f (x , y) = L

if f (x , y) is as close to L as we please whenever the distance from the
point (x , y) to the point (a,b) is sufficiently small, but not zero.

Definition
A function f is continuous at the point (a,b) if

lim
(x ,y)→(a,b)

f (x , y) = f (a,b).

A function is continuous on a region D in the xy -plane if it is
continuous at each point of D.
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The basic theorem

Recall that an elementary function is a function built up of a
finite combination of constant functions, field operations
(addition, multiplication, division, and root extractions–the
elementary operations)–and algebraic, exponential, and
logarithmic functions and their inverses under repeated
compositions. Among the simplest elementary functions are
the logarithm, exponential function (including the hyperbolic
functions), power function, and trigonometric functions.

We can easily extend the above definition to multi-variable
functions.

Theorem
All elementary functions are continuous at all points where they
are defined.
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Exercise 3.1

Are the following functions continuous at all points in the given
regions?

1 1
x2+y2 on the square −1 ≤ x ≤ 1, −1 ≤ y ≤ 1;

2 1
x2+y2 on the square 1 ≤ x ≤ 2, 1 ≤ y ≤ 2;

3 y
x2+2 on the disk x2 + y2 ≤ 1;

4 esin x

cos y on the rectangle −π/2 ≤ x ≤ π/2, 0 ≤ y ≤ π/4;
5 tan(xy) on the square −2 ≤ x ≤ 2, −2 ≤ y ≤ 2;
6
√

2x − y on the disk x2 + y2 ≤ 4.
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Exercise 3.2

Find the limits of the following functions as (x , y) −→ 0.
1 f (x , y) = e−x−y ;
2 g(x , y) = x2 + y2;
3 h(x , y) = x

x2+1 ;

4 i(x , y) = x+y
2+sin y ;

5 j(x , y) = sin(x2+y2)
x2+y2 .



Lecture 3.

Definition

Definition
For all points at which the limits exist, we define the partial
derivatives of f at the point (a,b) by

fx(a,b) = lim
h→0

f (a + h,b)− f (a,b)
h

,

fy (a,b) = lim
h→0

f (a,b + h)− f (a,b)
h

.

If we let a and b vary, we have the partial derivative functions
fx(x , y) and fy (x , y).

fx(a,b) is a rate of change of f with respect to x at the
point (a,b);
fy (a,b) is a rate of change of f with respect to y at the
point (a,b).
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Alternative Notations

If z = f (x , y), we can write

fx(x , y) = ∂z
∂x and fy (x , y) = ∂z

∂y ,

fx(a,b) = ∂z
∂x |(a,b) and fy (a,b) = ∂z

∂y |(a,b).
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Visualizing Partial Derivatives on a Graph

The partial derivative fx(a,b) is the slope of the tangent line to
the curve

Graph(f ) ∩ {y = b}

at x = a.

Analogically for fy (a,b).
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Exercise 3.3

The surface z = f (x , y) is shown on the following figure. The
points A and B are on the plane z = 0.

(a) What is the sign of
(i) fx(A)?
(ii) fy (A)?

(b) The point P in the plane z = 0 moves along a straight line
from A to B. How does the sign of fx(P) change? How
does the sign of fy (P) change?
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Exercise 3.4

The following figure shows the saddle-shaped surface
z = f (x , y).

(a) What is the sign of fx(0,5)?
(b) What is the sign of fy (0,5)?
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Exercise 3.5

The following figure shows contours of f (x , y) with values of f
on the contours omitted.

If fx(P) > 0, find the sign of

(a) fy (P); (b) fy (Q); (c) fx(Q).
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Differentiate with the respect to one variable, regarding the
others variables as constants!

Example. Find fx(3,2) and fy (1,1) algebraically, where

f (x , y) =
x2

y + 1
.

Solution 1.

f (x ,2) = x2

3 , thus f ′(x ,2) = 2x
3 , hence fx(3,2) = 2.

f (1, y) = 1
y+1 , thus f ′(1, y) = − 1

(y+1)2 , hence fy (1,1) = −1
4 .

Solution 2.

fx(x , y) = 2x
y+1 , thus fx(3,2) = 2.

fy (x , y) = − x2

(y+1)2 , thus fy (1,1) = −1
4 .
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Exercise 3.6

(a) Find all the partial derivatives of f (x , y , z) = x2y3

z .

(b) Compute fx(1,2,1), fy (2,1,1) and fz(1,1,2).

Solution:

fx(x , y , z) = 2xy3

z ; fy (x , y , z) = 3x2y2

z ; fz(x , y , z) = −x2y3

z2 ;

fx(1,2,1) = 16; fy (2,1,1) = 12; fz(1,1,2) = −1
4 .
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Exercise 3.7

Find the partial derivatives:

1 fx and fy if f (x , y) = 5x2y3 + 8xy2 − 3x2;
2 ∂

∂y (3x5y7 − 32x4y3 + 5xy);

3 ∂
∂x (y
√

x);

4 Fv if F = mv2

2 ;

5 ∂
∂x

(
1√
2πσ

e−(x−µ)
2/(2σ2)

)
;

6 ∂m
∂v if m = m0√

1−v2/c2
.

7 gx if g(x , y) = ln(yexy );
8 ∂z

∂y |(1,0,5) if z = ex+2y sin y ;

9 ∂f
∂x |(π/3,1) if f (x , y) = x ln(y cos x).
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