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Contour diagrams

The curve, on the plain Z = 0, f(x, y) = c is called a contour line
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Definition
The curve, on the plain z = 0, f(x, y) = c s called a contour line or
alevel curve.
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The level curve at the level ¢ = Graph(f) N P

We can represent a function as a contour diagram:
the family of contour lines for some chosen ¢’s.
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Contour diagrams

Definition
The curve, on the plain z = 0, f(x, y) = c s called a contour line or
alevel curve.

P -theplane z=c
The level curve at the level ¢ = Graph(f) N P

We can represent a function as a contour diagram:
the family of contour lines for some chosen ¢’s.

Examples. Any weather or topographical map.
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What one can read from a contour diagram?
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Figure 12.37: Pass between
two mountains

Figure 12.39: Impossible

Figure 12.36: Mountain peak
contour lines

Figure 12.38: Long valley
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Contour diagram and graphs

T (temperature in °F) 76 4
74 1
72 - \
6 9

Figure 12.40: Corn production, C, as a function of rainfall and temperature

12 15 18 21 24

R (rainfall in inches)
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Contour diagram and graphs

R (rainfall in inches)

Figure 12.40: Corn production, C, as a function of rainfall and temperature

The contour diagram is
created form the graph by
joining all the points of the
same level and dropping the
curve into the plane z = 0.
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Contour diagram and graphs

T (temperature in °F) 76
74

72

12 15 18 21 24

R (rainfall in inches)

Figure 12.40: Corn production, C, as a function of rainfall and temperature

The contour diagram is
created form the graph by
joining all the points of the
same level and dropping the
curve into the plane z = 0.

Figure 12.41: Getting the graph of the com yicld function from the contour diagram

The graph is created from
the contour diagram by lifting
each contour above the
plane to a height equal to its
value.
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Finding contours algebraically

Suppose the surface has equation z = f(x, y).
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Finding contours algebraically

Suppose the surface has equation z = f(x, y). The equation for
the contour ar height c is given by: f(x, y) = c.
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Finding contours algebraically

Suppose the surface has equation z = f(x, y). The equation for

the contour ar height c is given by: f(x, y)

)-
C.

-3 -2 -1

Figure 12.42: COHiOul‘ diagram for Figure 12.43: The graph of f(z,y) = #2 + "
Flz,y) = 2% 4 y? (even values of c only)
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Exercise 2.1

Draw a contour diagram for f(x, y) = 1/x2 + y2 and relate it to
the graph of f.
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Exercise 2.1

Draw a contour diagram for f(x, y) = 1/x2 + y2 and relate it to
the graph of f.

Solution:

Y

T

7

N

Figure 12.44: A contour diagram for Figure 12.45: The graph of
Hay) = /22 +9? fle,y) = /22 +¢?
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Lecture 2.

with the contour diagrams (I)—(IV).
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Exercise 2.3

Match the surfaces (a)—(e) with the contour diagrams (1)—(V).
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Exercise 2.4

Match the pairs of functions (a)—(d) with the contour diagrams
(D—(1V). In each case, show which contours represent f and
which represent g.

(@) f(x,y)=x+y,
gx,y)=x—-y; U

(b) f(x,y)=2x+3y,
g(x,y) =2x —3y;

2
(C) f(X’ y) =X Y, I 1y v ¥
9(x,y) =2y +In|x|; |

(d) f(x,y)=x2—y?
g(x,y) = xy.
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Exercise 2.5

Match the functions (a)—(d) with the shapes of their level curves
(h—(1V). Sketch each contour diagram.

(a) f(x,y) = x?; (1) Lines;
(b) f(x,y) = x>+ 2y?; (ll) Parabolas;
(c) f(x,y) =y —x%  (lll) Hyperbolas;

(d) f(x,y) = x2 — y2.  (IV) Ellipses.
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Exercise 2.6

(@) Sketch level curves of f(x,y) = /X2 + y2 + xfor f =1,2 3.
(b) For what calues of ¢ can level curves f = ¢ be drawn?

(c) Sketch a contour diagram for f.
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Exercise 2.7

The below figure is the contour diagram of f(x, y)

Sketch the contour diagram of each od the following functions.
(a) 3f(x, y); (b) f(x,y) — 10;

(©) f(x =2,y —2); (d)f(—x,y).
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Exercise 2.8

The below figure part of the contour diagram of f(x, y).

|

Complete the diagram for x < 0 if
@) f(=x,y) = f(x,y); (b) f(=x,y) = —f(x,y).
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Exercise 2.9

(a) Draw the contour diagram of f(x,y) = g(x — y) if

(i) g(t) =13
(i) g(t) =sint;
(i) g(t) =In|t|.

(b) What can you say about the level curves of a functions of
the form f(x, y) = g(x — y) where g(t) is a one-variable
function?
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A family of level surfaces

Definition
A level surface, or level set, of a functions of three variables,
f(x,y, z), is a surface of the form

f(X7 y? Z) - C7

where C is a constant.
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Example

The temperature, in °C, at a point (x, y, z) is given by
T = f(x,y,2) = x2 + y? + z2. The level surfaces of f:
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Example

The temperature, in °C, at a point (x, y, z) is given by
T = f(x,y,2) = x2 + y? + z2. The level surfaces of f:

Z

T =300°C

T = 200°C
2
T =100°C

I Level surfaces of T = f(x, vy, #) = x> + y* -+ 2°, each one having a constant temperature
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Exercise 2.10

What do the level surfaces of f(x, y, z) = x? + y2 and
g(x.y,2z) = z — y look like?
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Exercise 2.10

What do the level surfaces of f(x, y, z) = x? + y2 and
g(x.y,z) = z — y look like?

Solution:

Figure 12.65: Level surfaces of f(z,y, 2) = «* + y* Figure 12.66: Level surfaces of g(w,y,2) =2 — ¥
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Exercise 2.11

What do the level surfaces of f(x, y, z) = x? + y2 — 22 look like?
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Exercise 2.11

What do the level surfaces of f(x, y, z) = x? + y2 — 22 look like?

Solution:

Figure 12. 70 Hypabolmd of Figure 12.71: Hypcrboloid of two Figure 12 72: Cone
o g i 2
one sheet %y +7——;71 sheetqufl-m—Z—z:—l 54 ;:—”1 0
z

z
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A catalog of surfaces

For later reference, here is a small catalog of the surfaces we have encountered.

. z

x

Figure 1267: Eliptic Figue 1268: Hyperolic Figure 1269: Bllipsoid
paraboloid z +& paraboloid z = — 25 + %, iy

3 z

Figure 12, 70 Hypcx bmmd of Figure 12, 7T vaeubolmd of two Figure 12 72 Cons
2

one sheet 5 B sheets 3 + Iy — 5 = —1 2 4y =0

Figure 12.73: Planc Figure 12.74: Cylindrical Figure 12.75: Parabolic
ar+by+ez=d surface 72 + 32 = ao® cylinder y = az?
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