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Functions of several variables
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Examples of quantities depending on more that on variable:
1 the amount of food grown - the amount of rain, the

temperature, the amount of fertilizer used;
2 the rate of a chemical reaction - the temperature, the

pressure of the environment in which it proceeds;
3 the strength of gravitational attraction between two bodies -

their masses, their distance apart;
4 the rate of fallout from a volcanic explosion - the distance

from the volcano, the time since the explosion;
5 the distance from the origin of the systems of coordinates -

each of coordinates.
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Some ways of representing a function of two variables:
1 graphically (by contour diagrams for instance);
2 numerically by a table of values;
3 algebraically by a formula.
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A graphical way of representing a function:
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Another graphical way of representing a function:
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A numerical way of representing a function:
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Algebraical ways of representing a function:
1 the strength of gravitational attraction between two bodies -

F (m1,m2, r) = G
m1m2

r2 ;

2 the distance from the origin on the plane -

d(x , y) =
√

x2 + y2;

3 the distance from the origin in the space -

d(x , y , z) =
√

x2 + y2 + z2;

4 the Manhattan distance on the plane -

d((x1, y1), (x2, y2)) =

|x2 − x1|+ |y2 − y1|.
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Graphs od functions of two variables

Let D ⊂ R2 and f : D −→ R

Definition
The graph of a function f of two variables is a set of all points
(x , y , z) ∈ R3 such that (x , y) ∈ D and z = f (x , y):

Graph(f ) = {(x , y , z) ∈ R3 : (x , y) ∈ D, z = f (x , y)}.
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A wire-frame picture of the graph
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A new graph from old one

f (x , y) = x2 + y2,
g(x , y) = f (x , y) + 3,
h(x , y) = −f (x , y) + 5,
h(x , y) = f (x , y − 1).
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Exercise 1.1

Describe the graph of G(x , y) = e−(x2+y2). What kind of
symmetry does it have?

Solution:
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Cross-sections and the graph of a function

Let an x be fixed.

f (x , ·) : ({x} × R) ∩ D −→ R

Definition
The function f (x , ·) is called a cross-section of f with fixed x.

The graph of a cross-section is also called a cross-section.

A cross-section at x = c = Graph(f ) ∩ P,

where P = the plane x = c.
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Example of a family of cross-sections
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Exercise 1.2

Describe the cross-sections of the function g(x , y) = x2 − y2

with y fixed and then with x fixed.

Use these cross-section to describe the shape of the graph of
g.

Solution:
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One variable is missing
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Exercise 1.3

Without a calculator or computer, match the functions with their
graphs in Figure 12.27.

(a) z = 2 + x2 + y2;

(b) z = 2− x2 − y2;

(c) z = 2(x2 + y2);

(d) z = 2 + 2x − y ;

(e) z = 2.
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Exercise 1.4

Without a calculator or computer, match the functions with their
graphs in Figure 12.28.

(a) z = 1
x2+y2 ;

(b) z = −e−x2−y2
;

(c) z = x + 2y + 3;

(d) z = −y2;

(e) z = x3 − sin y .
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Exercise 1.5

(a) z = xye−(x2+y2);

(b) z = cos
(√

x2 + y2
)

;

(c) z = sin y ;

(d) z = − 1
x2+y2 ;

(e) z = cos2 x cos2 y ;

(f) z = sin(x2+y2)
x2+y2 ;

(g) z = cos(xy);

(h) z = |xy |;

(i) z = (2x2 + y2)e1−x2−y2
.
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Exercise 1.6

Sketch a graph of the surface and briefly describe it in words:

a) z = 3; b) x2 + y2 + z2 = 9; c) z = x2 + y2 + 4;

d) z = 5− x2 − y2; e) z = y2; f) 2x + 4y + 3z = 12;

g) x2 + y2 = 4; h) x2 + z2 = 4.
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