Mathematics. Multivariable Calculus

Artur Siemaszko

Faculty of Mathematics and Computer Science University of Warmia and Mazury in Olsztyn

February 27, 2013

Functions of several variables

Examples of quantities depending on more that on variable:

Examples of quantities depending on more that on variable:
(1) the amount of food grown - the amount of rain, the temperature, the amount of fertilizer used;
(2) the rate of a chemical reaction - the temperature, the pressure of the environment in which it proceeds;
(3) the strength of gravitational attraction between two bodies their masses, their distance apart;
(4) the rate of fallout from a volcanic explosion - the distance from the volcano, the time since the explosion;
(5) the distance from the origin of the systems of coordinates each of coordinates.

Examples of quantities depending on more that on variable:
(1) the amount of food grown - the amount of rain, the temperature, the amount of fertilizer used;
(2) the rate of a chemical reaction-the temperature, the pressure of the environment in which it proceeds;
(. the strength of gravitational attraction between two bodies their masses, their distance apart;
(3) the rate of fallout from a volcanic explosion - the distance from the volcano, the time since the explosion;
(5) the distance from the origin of the systems of coordinates each of coordinates.

Examples of quantities depending on more that on variable:
(1) the amount of food grown - the amount of rain, the temperature, the amount of fertilizer used;
(2) the rate of a chemical reaction-the temperature, the pressure of the environment in which it proceeds;
(3) the strength of gravitational attraction between two bodies their masses, their distance apart;
(4) the rate of fallout from a volcanic explosion - the distance from the volcano, the time since the explosion;

6 the distance from the oriain of the systems of coordinates each of coordinates.

Examples of quantities depending on more that on variable:
(1) the amount of food grown - the amount of rain, the temperature, the amount of fertilizer used;
(2) the rate of a chemical reaction-the temperature, the pressure of the environment in which it proceeds;
(3) the strength of gravitational attraction between two bodies their masses, their distance apart;
(3) the rate of fallout from a volcanic explosion - the distance from the volcano, the time since the explosion;
© the distance from the origin of the systems of coordinates each of coordinates.

Examples of quantities depending on more that on variable:
(1) the amount of food grown - the amount of rain, the temperature, the amount of fertilizer used;
(2) the rate of a chemical reaction-the temperature, the pressure of the environment in which it proceeds;
(3) the strength of gravitational attraction between two bodies their masses, their distance apart;
(3) the rate of fallout from a volcanic explosion - the distance from the volcano, the time since the explosion;
© the distance from the origin of the systems of coordinates each of coordinates.

Some ways of representing a function of two variables:

Some ways of representing a function of two variables:
(1) graphically (by contour diagrams for instance);
(2) numerically by a table of values;
(3) algebraically by a formula.

Some ways of representing a function of two variables:

- graphically (by contour diagrams for instance);
(2) numerically by a table of values;
© algebraically by a formula.

Some ways of representing a function of two variables:

- graphically (by contour diagrams for instance);
(2) numerically by a table of values;
(algebraically by a formula.

A graphical way of representing a function:

Figure 12.1: Weather map showing predicted high temperatures, T, on a summer day

Another graphical way of representing a function:

A numerical way of representing a function:

Table 12.1 Quantity of beef bought (pounds/household/week)
Price of beef, (\$/lb)

		3.00	3.50	4.00	4.50
Household income per year, I (1000)	20	2.65	2.59	2.51	2.43
	40	4.14	4.05	3.94	3.88
	60	5.11	5.00	4.97	4.84
	80	5.35	5.29	5.19	5.07
	100	5.79	5.77	5.60	5.53

Algebraical ways of representing a function:
(1) the strength of gravitational attraction between two bodies

(2) the distance from the origin on the plane

(3) the distance from the origin in the space
(4) the Manhattan distance on the plane

Algebraical ways of representing a function:
(1) the strength of gravitational attraction between two bodies -

$$
F\left(m_{1}, m_{2}, r\right)=G \frac{m_{1} m_{2}}{r^{2}}
$$

(2) the distance from the origin on the plane -

(3) the distance from the origin in the space
(c) the Manhattan distance on the plane -

Algebraical ways of representing a function:
(1) the strength of gravitational attraction between two bodies -

$$
F\left(m_{1}, m_{2}, r\right)=G \frac{m_{1} m_{2}}{r^{2}}
$$

(2) the distance from the origin on the plane -

$$
d(x, y)=\sqrt{x^{2}+y^{2}}
$$

(3) the distance from the origin in the space -
(4) the Manhattan distance on the plane -

Algebraical ways of representing a function:
(1) the strength of gravitational attraction between two bodies -

$$
F\left(m_{1}, m_{2}, r\right)=G \frac{m_{1} m_{2}}{r^{2}}
$$

(2) the distance from the origin on the plane -

$$
d(x, y)=\sqrt{x^{2}+y^{2}}
$$

(3) the distance from the origin in the space -

$$
d(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

(9) the Manhattan distance on the plane -

Algebraical ways of representing a function:
(1) the strength of gravitational attraction between two bodies -

$$
F\left(m_{1}, m_{2}, r\right)=G \frac{m_{1} m_{2}}{r^{2}}
$$

(2) the distance from the origin on the plane -

$$
d(x, y)=\sqrt{x^{2}+y^{2}}
$$

(3) the distance from the origin in the space -

$$
d(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

(4) the Manhattan distance on the plane -

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=
$$

Algebraical ways of representing a function:
(1) the strength of gravitational attraction between two bodies -

$$
F\left(m_{1}, m_{2}, r\right)=G \frac{m_{1} m_{2}}{r^{2}}
$$

(2) the distance from the origin on the plane -

$$
d(x, y)=\sqrt{x^{2}+y^{2}}
$$

(3) the distance from the origin in the space -

$$
d(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}
$$

(4) the Manhattan distance on the plane -

$$
d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\left|x_{2}-x_{1}\right|+\left|y_{2}-y_{1}\right| .
$$

Graphs od functions of two variables

Let $D \subset \mathbb{R}^{2}$ and $f: D \longrightarrow \mathbb{R}$

Definition

The graph of a function f of two variables is a set of all points

$$
\operatorname{Graph}(f)=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad(x, y) \in D, \quad z=f(x, y)\right\}
$$

Graphs od functions of two variables

Let $D \subset \mathbb{R}^{2}$ and $f: D \longrightarrow \mathbb{R}$
Definition
The graph of a function f of two variables is a set of all points $(x, y, z) \in \mathbb{R}^{3}$ such that $(x, y) \in D$ and $z=f(x, y)$:

Graphs od functions of two variables

Let $D \subset \mathbb{R}^{2}$ and $f: D \longrightarrow \mathbb{R}$
Definition
The graph of a function f of two variables is a set of all points $(x, y, z) \in \mathbb{R}^{3}$ such that $(x, y) \in D$ and $z=f(x, y)$:

$$
\operatorname{Graph}(f)=\left\{(x, y, z) \in \mathbb{R}^{3}: \quad(x, y) \in D, \quad z=f(x, y)\right\}
$$

A wire-frame picture of the graph

Table 12.4 Table of values of $f(x, y)=x^{2}+y^{2}$

-3 -2 -1 0 1 2 3 -3 18 13 10 9 10 13 18 -2 13 8 5 4 5 8 13 -1 10 5 2 1 2 5 10 0 9 4 1 0 1 4 9 1 10 5 2 1 2 5 10 2 13 8 5 4 5 8 13 3 18 13 10 9 10 13 18

A wire-frame picture of the graph

Figure 12.11: Wire frame
picture of $f(x, y)=x^{2}+y^{2}$ for $-3 \leq x \leq 3,-3 \leq y \leq 3$

Figure 12.12: Wire frame
picture of $f(x, y)=x^{2}+y^{2}$
with more points plotted

Figure 12.13: Graph of

$$
\begin{gathered}
f(x, y)=x^{2}+y^{2} \text { for } \\
-3 \leq x \leq 3,-3 \leq y \leq 3
\end{gathered}
$$

A new graph from old one

Figure 12.14: Graph of $g(x, y)=x^{2}+y^{2}+3$

Figure 12.15: Graph of
$h(x, y)=5-x^{2}-y^{2}$

Figure 12.16: Graph of $k(x, y)=x^{2}+(y-1)^{2}$
$f(x, y)=x^{2}+y^{2}$
$g(x, y)=f(x, y)+3$
$h(x, y)=-f(x, y)+5$,
$h(x, y)=f(x, y-1)$.

A new graph from old one

Figure 12.14: Graph of $g(x, y)=x^{2}+y^{2}+3$

Figure 12.15: Graph of
$h(x, y)=5-x^{2}-y^{2}$

Figure 12.16: Graph of $k(x, y)=x^{2}+(y-1)^{2}$
$f(x, y)=x^{2}+y^{2}$
$g(x, y)=f(x, y)+3$,
$h(x, y)=-f(x, y)+5$,
$h(x, y)=f(x, y-1)$.

A new graph from old one

Figure 12.14: Graph of $g(x, y)=x^{2}+y^{2}+3$

Figure 12.15: Graph of
$h(x, y)=5-x^{2}-y^{2}$

Figure 12.16: Graph of $k(x, y)=x^{2}+(y-1)^{2}$

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2} \\
& g(x, y)=f(x, y)+3 \\
& h(x, y)=-f(x, y)+5 \\
& h(x, y)=f(x, y-1)
\end{aligned}
$$

A new graph from old one

Figure 12.14: Graph of $g(x, y)=x^{2}+y^{2}+3$

Figure 12.15: Graph of
$h(x, y)=5-x^{2}-y^{2}$

Figure 12.16: Graph of $k(x, y)=x^{2}+(y-1)^{2}$

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2} \\
& g(x, y)=f(x, y)+3 \\
& h(x, y)=-f(x, y)+5
\end{aligned}
$$

$$
h(x, y)=f(x, y-1)
$$

A new graph from old one

Figure 12.14: Graph of $g(x, y)=x^{2}+y^{2}+3$

Figure 12.15: Graph of
$h(x, y)=5-x^{2}-y^{2}$

Figure 12.16: Graph of $k(x, y)=x^{2}+(y-1)^{2}$

$$
\begin{aligned}
& f(x, y)=x^{2}+y^{2} \\
& g(x, y)=f(x, y)+3 \\
& h(x, y)=-f(x, y)+5 \\
& h(x, y)=f(x, y-1)
\end{aligned}
$$

Exercise 1.1

Describe the graph of $G(x, y)=e^{-\left(x^{2}+y^{2}\right)}$. What kind of symmetry does it have?

Exercise 1.1

Describe the graph of $G(x, y)=e^{-\left(x^{2}+y^{2}\right)}$. What kind of symmetry does it have? Solution:

Figure 12.17: Graph of $G(x, y)=e^{-\left(x^{2}+y^{2}\right)}$

Cross-sections and the graph of a function

Let an x be fixed.

Definition

The function $f(x$.$) is called a cross-section of f$ with fixed x.
The graph of a cross-section is also called a cross-section.
A cross-section at $x=c=\operatorname{Graph}(f) \cap P$,
where $P=$ the plane $x=c$.

Cross-sections and the graph of a function

Let an x be fixed.

$$
f(x, \cdot):(\{x\} \times R) \cap D \longrightarrow \mathbb{R}
$$

Definition

The function $f(x,$.$) is called a cross-section of f$ with fixed x.
The graph of a cross-section is also called a cross-section.
A cross-section at $x=c=\operatorname{Graph}(f) \cap P$,
where $P=$ the plane $x=c$.

Cross-sections and the graph of a function

Let an x be fixed.

$$
f(x, \cdot):(\{x\} \times R) \cap D \longrightarrow \mathbb{R}
$$

Definition

The function $f(x, \cdot)$ is called a cross-section of f with fixed x. The graph of a cross-section is also called a cross-section.

A cross-section at $x=c=$ where $P=$ the plane $x=c$

Cross-sections and the graph of a function

Let an x be fixed.

$$
f(x, \cdot):(\{x\} \times R) \cap D \longrightarrow \mathbb{R}
$$

Definition

The function $f(x, \cdot)$ is called a cross-section of f with fixed x. The graph of a cross-section is also called a cross-section.

A cross-section at $x=C=$ where $P=$ the plane $X=c$.

Cross-sections and the graph of a function

Let an x be fixed.

$$
f(x, \cdot):(\{x\} \times R) \cap D \longrightarrow \mathbb{R}
$$

Definition

The function $f(x, \cdot)$ is called a cross-section of f with fixed x. The graph of a cross-section is also called a cross-section.

A cross-section at $x=c=\operatorname{Graph}(f) \cap P$,
where $P=$ the plane $x=c$.

Example of a family of cross-sections

Figure 12.18: Cross-section of the surface $z=f(x, y)$ by the plane $x=2$

Figure 12.19: The curves $z=f(a, y)$ with a constant: cross-sections with x fixed

Figure 12.20: The curves $z=f(x, b)$ with b constant: cross-sections with y fixed

Exercise 1.2

Describe the cross-sections of the function $g(x, y)=x^{2}-y^{2}$ with y fixed and then with x fixed.

Use these cross-section to describe the shape of the graph of g.

Exercise 1.2

Describe the cross-sections of the function $g(x, y)=x^{2}-y^{2}$ with y fixed and then with x fixed.
Use these cross-section to describe the shape of the graph of g.

Solution:

Figure 12.21: Cross-sections of $g(x, y)=x^{2}-y^{2}$ with y fixed

Figure 12.22: Cross-sections of
$g(x, y)=x^{2}-y^{2}$ with x fixed

Figure 12.23: Graph of $g(x, y)=x^{2}-y^{2}$ showing cross sections

One variable is missing

Figure 12.25: A parabolic cylinder $z=x^{2}$

Figure 12.26: Circular cylinder

$$
x^{2}+y^{2}=1
$$

Graph the equation $x^{2}+y^{2}=1$ in 3 -space.
Although the equation $x^{2}+y^{2}=1$ does not represent a function, the surface representing it can be graphed by the method used for $z=x^{2}$. The graph of $x^{2}+y^{2}=1$ in the $x y$-plane is a circle. Since z does not appear in the equation, the intersection of the surface with any horizontal plane will be the same circle $x^{2}+y^{2}=1$. Thus, the surface is the cylinder shown in Figure 12.26.

Exercise 1.3

Without a calculator or computer, match the functions with their graphs in Figure 12.27.
(a) $z=2+x^{2}+y^{2}$;
(b) $z=2-x^{2}-y^{2}$;
(c) $z=2\left(x^{2}+y^{2}\right)$;
(d) $z=2+2 x-y$;
(e) $z=2$.

Exercise 1.3

Without a calculator or computer, match the functions with their graphs in Figure 12.27.
(a) $z=2+x^{2}+y^{2}$;
(b) $z=2-x^{2}-y^{2}$;
(c) $z=2\left(x^{2}+y^{2}\right)$;
(d) $z=2+2 x-y$;
(e) $z=2$.

Figure 12.27

Exercise 1.4

Without a calculator or computer, match the functions with their graphs in Figure 12.28.
(a) $z=\frac{1}{x^{2}+y^{2}}$;
(b) $z=-e^{-x^{2}-y^{2}}$;
(c) $z=x+2 y+3$;
(d) $z=-y^{2}$;
(e) $z=x^{3}-\sin y$.

Exercise 1.4

Without a calculator or computer, match the functions with their graphs in Figure 12.28.
(a) $z=\frac{1}{x^{2}+y^{2}}$;
(b) $z=-e^{-x^{2}-y^{2}}$;
(c) $z=x+2 y+3$;
(d) $z=-y^{2}$;
(e) $z=x^{3}-\sin y$.

Figure 12.28

Exercise 1.5

(a) $z=x y e^{-\left(x^{2}+y^{2}\right)}$;
(b) $z=\cos \left(\sqrt{x^{2}+y^{2}}\right)$;
(c) $z=\sin y$;
(d) $z=-\frac{1}{x^{2}+y^{2}}$;
(e) $z=\cos ^{2} x \cos ^{2} y$;
(f) $z=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$;
(g) $z=\cos (x y)$;
(h) $z=|x y|$;
(i) $z=\left(2 x^{2}+y^{2}\right) e^{1-x^{2}-y^{2}}$.

Exercise 1.5

(a) $z=x y e^{-\left(x^{2}+y^{2}\right)}$;
(b) $z=\cos \left(\sqrt{x^{2}+y^{2}}\right)$;
(c) $z=\sin y$;
(d) $z=-\frac{1}{x^{2}+y^{2}}$;
(e) $z=\cos ^{2} x \cos ^{2} y$;
(f) $z=\frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}$;
(g) $z=\cos (x y)$;
(h) $z=|x y|$;
(i) $z=\left(2 x^{2}+y^{2}\right) e^{1-x^{2}-y^{2}}$.

Exercise 1.6

Sketch a graph of the surface and briefly describe it in words:
a) $z=3$;
b) $x^{2}+y^{2}+z^{2}=9$;
c) $z=x^{2}+y^{2}+4$;
d) $z=5-x^{2}-y^{2}$;
e) $z=y^{2}$;
f) $2 x+4 y+3 z=12$;
g) $x^{2}+y^{2}=4$;
h) $x^{2}+z^{2}=4$.

