Mathematics. Multivariable Calculus

Artur Siemaszko

Faculty of Mathematics and Computer Science University of Warmia and Mazury in Olsztyn

February 27, 2013

Functions of several variables

- the amount of food grown the amount of rain, the temperature, the amount of fertilizer used;
- the rate of a chemical reaction the temperature, the pressure of the environment in which it proceeds;
- the strength of gravitational attraction between two bodies their masses, their distance apart;
- the rate of fallout from a volcanic explosion the distance from the volcano, the time since the explosion;
- the distance from the origin of the systems of coordinates each of coordinates.

- the amount of food grown the amount of rain, the temperature, the amount of fertilizer used;
- the rate of a chemical reaction the temperature, the pressure of the environment in which it proceeds;
- the strength of gravitational attraction between two bodies their masses, their distance apart;
- the rate of fallout from a volcanic explosion the distance from the volcano, the time since the explosion;
- the distance from the origin of the systems of coordinates each of coordinates.

- the amount of food grown the amount of rain, the temperature, the amount of fertilizer used;
- the rate of a chemical reaction the temperature, the pressure of the environment in which it proceeds;
- the strength of gravitational attraction between two bodies their masses, their distance apart;
- the rate of fallout from a volcanic explosion the distance from the volcano, the time since the explosion;
- the distance from the origin of the systems of coordinates each of coordinates.

- the amount of food grown the amount of rain, the temperature, the amount of fertilizer used;
- the rate of a chemical reaction the temperature, the pressure of the environment in which it proceeds;
- the strength of gravitational attraction between two bodies their masses, their distance apart;
- the rate of fallout from a volcanic explosion the distance from the volcano, the time since the explosion;
- the distance from the origin of the systems of coordinates each of coordinates.

- the amount of food grown the amount of rain, the temperature, the amount of fertilizer used;
- the rate of a chemical reaction the temperature, the pressure of the environment in which it proceeds;
- the strength of gravitational attraction between two bodies their masses, their distance apart;
- the rate of fallout from a volcanic explosion the distance from the volcano, the time since the explosion;
- the distance from the origin of the systems of coordinates each of coordinates.

- the amount of food grown the amount of rain, the temperature, the amount of fertilizer used;
- the rate of a chemical reaction the temperature, the pressure of the environment in which it proceeds;
- the strength of gravitational attraction between two bodies their masses, their distance apart;
- the rate of fallout from a volcanic explosion the distance from the volcano, the time since the explosion;
- the distance from the origin of the systems of coordinates each of coordinates.

- graphically (by contour diagrams for instance);
- numerically by a table of values;
- algebraically by a formula.

L.1

- graphically (by contour diagrams for instance);
- numerically by a table of values;
- algebraically by a formula.

L.1

- graphically (by contour diagrams for instance);
- Inumerically by a table of values;
- algebraically by a formula.

L.1

- graphically (by contour diagrams for instance);
- Inumerically by a table of values;
- algebraically by a formula.

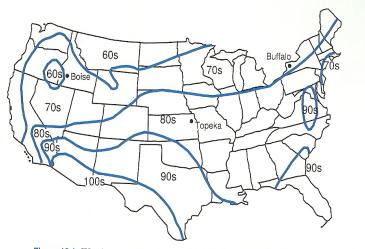


Figure 12.1: Weather map showing predicted high temperatures, T, on a summer day

Another graphical way of representing a function:

A numerical way of representing a function:

Table 12.1 Quantity of beef bought (pounds/household/week)

		3.00	3.50	4.00	4.50
Household	20	2.65	2.59	2.51	2.43
income	40	4.14	4.05	3.94	3.88
per year,	60	5.11	5.00	4.97	4.84
I (1000)	80	5.35	5.29	5.19	5.07
(1000)	100	5.79	5.77	5.60	5.53

Price of beef, (\$/lb)

the strength of gravitational attraction between two bodies -

$$F(m_1, m_2, r) = G \frac{m_1 m_2}{r^2};$$

Ithe distance from the origin on the plane -

$$d(x,y)=\sqrt{x^2+y^2};$$

Ithe distance from the origin in the space -

$$d(x,y,z) = \sqrt{x^2 + y^2 + z^2};$$

the Manhattan distance on the plane -

the strength of gravitational attraction between two bodies -

$$F(m_1, m_2, r) = G \frac{m_1 m_2}{r^2};$$

Ithe distance from the origin on the plane -

$$d(x,y)=\sqrt{x^2+y^2};$$

Ithe distance from the origin in the space -

$$d(x,y,z) = \sqrt{x^2 + y^2 + z^2};$$

the Manhattan distance on the plane -

the strength of gravitational attraction between two bodies -

$$F(m_1, m_2, r) = G \frac{m_1 m_2}{r^2};$$

the distance from the origin on the plane -

$$d(x,y)=\sqrt{x^2+y^2};$$

Ithe distance from the origin in the space -

$$d(x,y,z) = \sqrt{x^2 + y^2 + z^2};$$

Ithe Manhattan distance on the plane -

the strength of gravitational attraction between two bodies -

$$F(m_1, m_2, r) = G \frac{m_1 m_2}{r^2};$$

Ithe distance from the origin on the plane -

$$d(x,y)=\sqrt{x^2+y^2};$$

the distance from the origin in the space -

$$d(x, y, z) = \sqrt{x^2 + y^2 + z^2};$$

• the Manhattan distance on the plane $d((x_1, y_1), (x_2, y_2)) =$

the strength of gravitational attraction between two bodies -

$$F(m_1, m_2, r) = G \frac{m_1 m_2}{r^2};$$

the distance from the origin on the plane -

$$d(x,y)=\sqrt{x^2+y^2};$$

the distance from the origin in the space -

$$d(x, y, z) = \sqrt{x^2 + y^2 + z^2};$$

the Manhattan distance on the plane -

the strength of gravitational attraction between two bodies -

$$F(m_1, m_2, r) = G \frac{m_1 m_2}{r^2};$$

the distance from the origin on the plane -

$$d(x,y)=\sqrt{x^2+y^2};$$

the distance from the origin in the space -

$$d(x, y, z) = \sqrt{x^2 + y^2 + z^2};$$

the Manhattan distance on the plane -

 $d((x_1, y_1), (x_2, y_2)) = |x_2 - x_1| + |y_2 - y_1|.$

Graphs od functions of two variables

Let $D \subset \mathbb{R}^2$ and $f : D \longrightarrow \mathbb{R}$

Definition

The **graph** of a function f of two variables is a set of all points $(x, y, z) \in \mathbb{R}^3$ such that $(x, y) \in D$ and z = f(x, y):

 $Graph(f) = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, z = f(x, y)\}.$

Graphs od functions of two variables

Let
$$D \subset \mathbb{R}^2$$
 and $f : D \longrightarrow \mathbb{R}$

Definition

The **graph** of a function f of two variables is a set of all points $(x, y, z) \in \mathbb{R}^3$ such that $(x, y) \in D$ and z = f(x, y):

 $Graph(f) = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, z = f(x, y)\}.$

Graphs od functions of two variables

Let
$$D \subset \mathbb{R}^2$$
 and $f : D \longrightarrow \mathbb{R}$

Definition

The **graph** of a function f of two variables is a set of all points $(x, y, z) \in \mathbb{R}^3$ such that $(x, y) \in D$ and z = f(x, y):

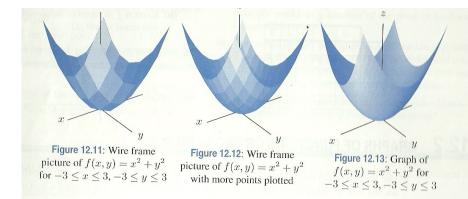
 $Graph(f) = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in D, z = f(x, y)\}.$

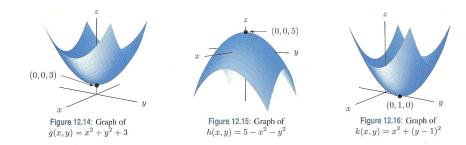
Table 12.4 Table of values of $f(x, y) = x^2 + y^2$

	y								
	-3	-2	-1	0	1	2	3		
-3	18	13	10	9	10	13	18		
-2	13	8	5	4	5	8	13		
-1	10	5	2	1	2	5	10		
0	9	4	1	0	1	4	9		
1	10	5	2	1	2	5	10		
2	13	8	5	4	5	8	13		
3	18	13	10	9	10	13	18		

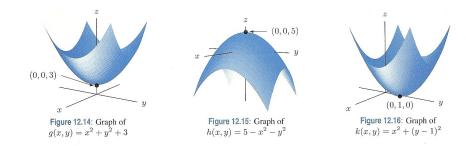
x

A wire-frame picture of the graph

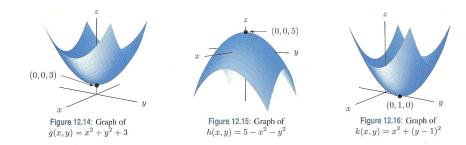




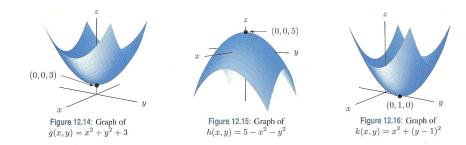
 $f(x, y) = x^{2} + y^{2},$ g(x, y) = f(x, y) + 3, h(x, y) = -f(x, y) + 5,h(x, y) = f(x, y - 1).



 $f(x, y) = x^{2} + y^{2},$ g(x, y) = f(x, y) + 3, h(x, y) = -f(x, y) + 5,h(x, y) = f(x, y - 1).



 $f(x, y) = x^{2} + y^{2},$ g(x, y) = f(x, y) + 3, h(x, y) = -f(x, y) + 5,h(x, y) = f(x, y - 1).

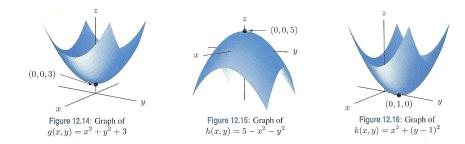


$$f(x, y) = x^{2} + y^{2},$$

$$g(x, y) = f(x, y) + 3,$$

$$h(x, y) = -f(x, y) + 5,$$

$$h(x, y) = f(x, y - 1).$$



$$f(x, y) = x^{2} + y^{2},$$

$$g(x, y) = f(x, y) + 3,$$

$$h(x, y) = -f(x, y) + 5,$$

$$h(x, y) = f(x, y - 1).$$

Exercise 1.1

Describe the graph of $G(x, y) = e^{-(x^2+y^2)}$. What kind of symmetry does it have?

Exercise 1.1

Describe the graph of $G(x, y) = e^{-(x^2+y^2)}$. What kind of symmetry does it have? **Solution:**

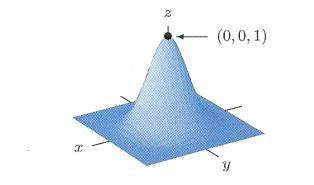


Figure 12.17: Graph of $G(x, y) = e^{-(x^2+y^2)}$

Cross-sections and the graph of a function

Let an x be fixed.

$f(x,\cdot):(\{x\}\times R)\cap D\longrightarrow \mathbb{R}$

Definition

The function $f(x, \cdot)$ is called a **cross-section** of f with fixed x.

The graph of a cross-section is also called a cross-section.

A cross-section at $x = c = Graph(f) \cap P$,

where P = the plane x = c.

Cross-sections and the graph of a function

Let an x be fixed.

$f(x, \cdot): (\{x\} \times R) \cap D \longrightarrow \mathbb{R}$

Definition

The function $f(x, \cdot)$ is called a **cross-section** of f with fixed x.

The graph of a cross-section is also called a cross-section.

A cross-section at $x = c = Graph(f) \cap P$,

where P = the plane x = c.

Cross-sections and the graph of a function

Let an x be fixed.

$$f(x, \cdot): (\{x\} \times R) \cap D \longrightarrow \mathbb{R}$$

Definition

The function $f(x, \cdot)$ is called a **cross-section** of f with fixed x.

The graph of a cross-section is also called a cross-section.

A cross-section at $x = c = Graph(f) \cap P$,

where P = the plane x = c.

Cross-sections and the graph of a function

Let an x be fixed.

$$f(x, \cdot): (\{x\} \times R) \cap D \longrightarrow \mathbb{R}$$

Definition

The function $f(x, \cdot)$ is called a **cross-section** of f with fixed x.

The graph of a cross-section is also called a cross-section.

A cross-section at $x = c = Graph(f) \cap P$,

where P = the plane x = c.

Cross-sections and the graph of a function

Let an x be fixed.

$$f(x, \cdot): (\{x\} \times R) \cap D \longrightarrow \mathbb{R}$$

Definition

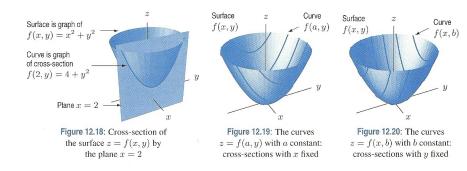
The function $f(x, \cdot)$ is called a **cross-section** of f with fixed x.

The graph of a cross-section is also called a cross-section.

A cross-section at $x = c = Graph(f) \cap P$,

where P = the plane x = c.

Example of a family of cross-sections



L.1

Describe the cross-sections of the function $g(x, y) = x^2 - y^2$ with y fixed and then with x fixed.

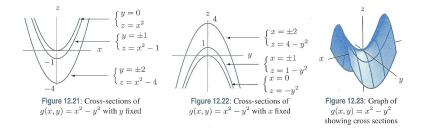
Use these cross-section to describe the shape of the graph of g.

L.1

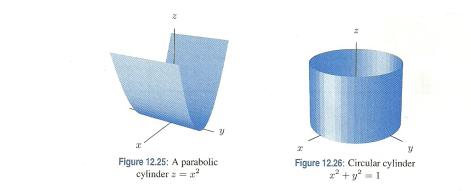
Describe the cross-sections of the function $g(x, y) = x^2 - y^2$ with y fixed and then with x fixed.

Use these cross-section to describe the shape of the graph of g.

Solution:



One variable is missing



Graph the equation $x^2 + y^2 = 1$ in 3-space.

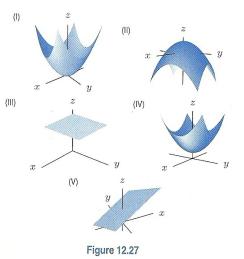
Although the equation $x^2 + y^2 = 1$ does not represent a function, the surface representing it can be graphed by the method used for $z = x^2$. The graph of $x^2 + y^2 = 1$ in the xy-plane is a circle. Since z does not appear in the equation, the intersection of the surface with any horizontal plane will be the same circle $x^2 + y^2 = 1$. Thus, the surface is the cylinder shown in Figure 12.26.

Without a calculator or computer, match the functions with their graphs in Figure 12.27.

(a) $z = 2 + x^2 + y^2$; (b) $z = 2 - x^2 - y^2$; (c) $z = 2(x^2 + y^2)$; (d) z = 2 + 2x - y; (e) z = 2.

Without a calculator or computer, match the functions with their graphs in Figure 12.27.

(a)
$$z = 2 + x^2 + y^2$$
;
(b) $z = 2 - x^2 - y^2$;
(c) $z = 2(x^2 + y^2)$;
(d) $z = 2 + 2x - y$;
(e) $z = 2$.

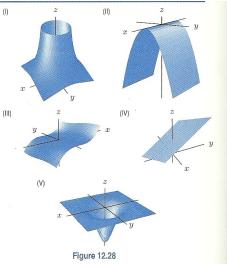


Without a calculator or computer, match the functions with their graphs in Figure 12.28.

(a)
$$z = \frac{1}{x^2 + y^2}$$
;
(b) $z = -e^{-x^2 - y^2}$;
(c) $z = x + 2y + 3$;
(d) $z = -y^2$;
(e) $z = x^3 - \sin y$.

Without a calculator or computer, match the functions with their graphs in Figure 12.28.

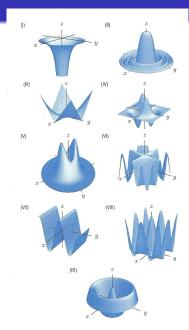
(a) $z = \frac{1}{x^2 + y^2}$; (b) $z = -e^{-x^2 - y^2}$; (c) z = x + 2y + 3; (d) $z = -y^2$; (e) $z = x^3 - \sin y$.



(a) $z = xye^{-(x^2+y^2)}$; (b) $z = \cos(\sqrt{x^2 + y^2});$ (c) $z = \sin y$; (d) $Z = -\frac{1}{x^2 + v^2};$ (e) $z = \cos^2 x \cos^2 v$: (f) $Z = \frac{\sin(x^2 + y^2)}{x^2 + y^2};$ (g) $z = \cos(xy)$; (h) z = |xy|;(i) $z = (2x^2 + y^2)e^{1-x^2-y^2}$.

(a)
$$z = xye^{-(x^2+y^2)};$$

(b) $z = \cos\left(\sqrt{x^2+y^2}\right);$
(c) $z = \sin y;$
(d) $z = -\frac{1}{x^2+y^2};$
(e) $z = \cos^2 x \cos^2 y;$
(f) $z = \frac{\sin(x^2+y^2)}{x^2+y^2};$
(g) $z = \cos(xy);$
(h) $z = |xy|;$
(i) $z = (2x^2+y^2)e^{1-x^2-y^2}.$



Sketch a graph of the surface and briefly describe it in words:

a) z = 3; b) $x^2 + y^2 + z^2 = 9$; c) $z = x^2 + y^2 + 4$; d) $z = 5 - x^2 - y^2$; e) $z = y^2$; f) 2x + 4y + 3z = 12; g) $x^2 + y^2 = 4$; h) $x^2 + z^2 = 4$.