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1. INTRODUCTION

The principal aim of this note is to explain some open questions on symplectic man-
ifolds in a way accessible to non-specialists and students. For this purpose we include
an extensive preliminary part where basic notions and facts are described. Last three
sections contain a discussion of:
• existence of symplectic forms on closed manifolds;
• existence of symplectic circle actions;
• existence of symplectic structures on exotic tori and a related question on symplec-

tomorphisms of tori.
I omit most of technical details, to enable the reader to follow main route to those

problems. Hopefully, this can be read by anybody knowing main facts and notions of
elementary differential topology and the elementary part of de Rham theory of differential
forms on manifolds. For further reading, detailed proof, enlightening comments and more
I recommend a beautiful book by Dusa McDuff and Dietmar Salamon [MS].

This article is based on lectures delivered during Winter School on Topological Meth-
ods in Nonlinear Analysis which was organized by Juliusz Schauder Center for Nonlinear
Studies at Copernicus University, Toruń, in February 2009. Here I skip most of that in-
troductory part of the lectures, which contained an elementary review of notions which
were used later. The background material can be found in many textbooks and it would
not be very useful to include it here. Some possible sources are [BG, BT] for introduction
to geometry of differential forms and de Rham complex and [M, H] for a comprehensible
introduction to differential topology.

I would like to express my thanks to Lech Górniewicz and Marek Izydorek for the
invitation to talk at the school.

2. PRELIMINARIES

Linear symplectic forms.
A bilinear skew-symmetric form ω on Rk is called symplectic if it is nondegenerate,

i.e., if for some X ∈ Rk we have ω(X, Y ) = 0 for any Y, then X = 0. Any bilinear skew
1
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symmmetric form in a base e∗1, ..., e
∗
k of the dual space (R2n)∗ is equal to e∗1 ∧ e∗2 + ... +

e∗2n−1 ∧ e∗2n, where 2n ≤ k. If such a form ω is non-degenerate, then 2n = k and there
exists a base e∗1, ..., e

∗
n, f ∗1 , ..., f ∗n such that

ω = e∗1 ∧ f ∗1 + e∗2 ∧ f ∗2 + ... + e∗n ∧ f ∗n.

In other words, for the dual base e1, ..., en, f1, ..., fn we get ω(ei, ej) = ω(fi, fj) =
0, ω(ei, fj) = δi

j for any i, j ∈ {1, 2, ..., n}. Such a base is called symplectic. Any sym-
plectic linear form admits many symplectic bases.

Equivalently, ω on R2n is non-degenerate if and only if ωn = ω ∧ ... ∧ ω is nonzero.
If we define J by Jei = fi, Jfi = −ei, i = 1, 2, ..., n, then J2 = −Id. Thus we have on

R2n a complex linear structure. We have also, for any v, w ∈ R2n ω(Jv, Jw) = ω(v, w)
and ω(v, Jv) > 0 if v 6= 0. The formula < v, w >= ω(v, Jw) defines a scalar product in
R2n. In such a case we say that J is compatible with ω.

In the other direction, if J is a complex structure on R2n and <,> is a J-invariant
scalar product, then ω(v, w) = − < v, Jv > is a symplectic linear form on R2n and J is
compatible with ω. For any given J there exists a J-invariant scalar product given for
example as the averaged form 1

2
(< v, w > + < Jv, Jw >), where <,> is arbitrary scalar

product.
Using symplectic bases, it is easy to see that if J0 is the standard complex structure,

then any other J is induced from J0 by a linear isomorphism T, J = TJ0T
−1. Since J0

is preserved by complex isomorphisms T if and only if T is a complex isomorphism, we
can identify J with an element of the quotient GL(R, 2n)/GL(C, n). Up to homotopy
type this is the quotient of maximal compact subgroups.

Corollary. The space of all linear symplectic forms on R2n is homeomorphic to
GL(R, 2n)/GL(C, n) and has the homotopy type of O(2n)/U(n). If n = 2, then it is
homotopically equivalent to S2 ∪ S2.

This is also not difficult to deduct from existence of a symplectic base that ωn =
ω ∧ ω ∧ ... ∧ ω (n times) is a volume form (a non-zero 2n-form on R2n).

Note also that the space of all complex structures compatible with a given symplectic
form is large, since one can change a symplectic base by a complex isomorphism preserv-
ing the form to get another symplectic base associated with the same form. As above
one gets a homeomorphism of that space with Sp(n)/GL(C, n) ∩ Sp(n), where Sp(n)
denotes the space of linear isomorphisms preserving the standard symplectic form.

Proposition 2.1. The space of all complex structures on R2n compatible with a given
symplectic form is contractible.

Symplectic differential forms.

Now we will consider exterior differential 2-forms on smooth manifolds, i.e., smooth
sections of the second exterior power of the cotangent bundle. If such a form ω is
symplectic, then at any point x ∈ M we have a symplectic linear form ωx on TxM and
ωx smoothly depends on x. By definition, a 2-form ω is non-degenerate at x ∈ M if for any
nonzero vector X ∈ TxM, the 1-form ιXω does not vanish, where (ιXω)(Y ) = ω(X, Y ).
Moreover, it is assumed that dω = 0.
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Definition 2.2. A differential 2-form is called symplectic if it is closed and non-
degenerate at every point.

A smooth complex structure on the tangent vector bundle of a manifold is called almost
complex structure on M. This means that there is a bundle endomorphism J : TM → TM
such that

(1) J2 = −Id;
(2) ω(JV, JW ) = ω(V,W ) for all U, V ;
(3) a symmetric form defined as g(U, V ) = ω(U, JV ) is a Riemannian metric on M.

Contractibility of the space of complex structures on TxM compatible with ωx implies
that there exist almost complex structures compatible with any symplectic form. Namely,
construct J first locally using symplectic bases and then combine local structures to a
global almost structure using 2.1 to deform one local J to another. In terms of bundles, a
ω-compatible J is a section of a bundle with contractible fibre and the argument describes
how to construct a section of such bundle. The space of such sections is contractible,
thus we have

Proposition 2.3. If a manifold has a symplectic structure, then it admits an almost
complex structure. The space of all almost complex structures compatible with a given
symplectic form

However, only nondegeneracy is used to construct J. Thus existence of an almost
complex structure is equivalent to existence of a differential form, not necessarily closed,
which is non-degenerate at each point.

Examples.

(1) In R2n consider coordinates x1, x2, ..., xn, y1, ..., yn. The formula ω = dx1 ∧ dy2 +
dx2 ∧ dy2 + ... + dxn ∧ dyn defines a symplectic form.
Since ω is invariant with respect to translations, it defines also a symplectic form
on the torus T2n = R2n/Z2n.

(2) The volume form of a Riemannian surface is symplectic. Any oriented surface is
symplectic.

(3) If ω1, ω2 are symplectic forms on manifolds M1,M2 respectively, then ω1 × ω2 =
p∗MωM + p∗NωN , where pM , pN are projections, is a symplectic form on M1 ×M2.

(4) For any manifold M the cotangent bundle T ∗M admits a (noncompact) symplec-
tic manifold. A symplectic form is given by a form dλ, where λ is the tautological
1-form on T ∗M given by

λv∗ = v∗dπ.

Here π : T ∗M → M jest the projection of the cotangent bundle and v∗ ∈
T ∗M is a point in T ∗M. In local coordinates x1, ...xn on M we have the formula
λv∗(

∂
∂xj

) = yj, if v∗ =
∑

yjdxj.

The following theorem shows some rigidity of symplectic structures.

Theorem 2.4. [Moser] If ωt is a smooth path of symplectic forms on M such that the
cohomology class [ωt] is constant, then there exists an isotopy ψt ∈ Diff(M) satisfying
ψ0 = IdM and ψ∗t ωt = ω0.
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The proof is based on so called Moser trick. Since [ωt] = const, thus there exists σt such
that d

dt
ωt = dσt. Consider the 1-parameter family of vector fields Xt defined (uniquely,

since ωt are non-degenerate) by the equation σt = −ι(Xt)ωt. This family defines a path
ψt of diffeomorphisms by

d

dt
ψt = Xt(ψt).

Differentiating, with respect to t, the equality ψ∗t ωt = ω0 we get ψ∗t d(σt + ι(Xt)ωt) = 0,
thus the isotopy ψt given by Xt has the required property.

The theorem can be used to prove the following property which shows that there is
no local symplectic invariants. This is in contrast with Riemannian geometry, where
curvature invariants play a prominent role.

Theorem 2.5. (Darboux) For any symplectic form ω on M and any point P ∈ M there
exists a local coefficient system x1, ..., xn, y1, ..., yn around P such that ω = dx1 ∧ dy2 +
dx2 ∧ dy2 + ... + dxn ∧ dyn.

3. SYMPLECTIC FORMS ON CLOSED MANIFOLDS

The existence problem for symplectic structures has a simple answer in the case of
open (i.e., non-compact or with non-empty boundary) manifolds. However, the proof of
the following theorem is quite difficult (see [MS]).

Theorem 3.1. [Gromov] If M is an open almost complex manifold, then it admits a
symplectic form.

For closed manifolds the problem whether there is a symplectic form on a given man-
ifold is simple only in dimension 2, where orientability is necessary and sufficient. In
dimension 4 there are some answers, see Section 6, and in higher dimensions essentially
nothing is known.

Consider a closed symplectic manifold M of dimension 2n. By Proposition 2.3 M
is almost complex. There are non-trivial obstructions to impose an almost complex
structure on M. For 2n = 4 a characterization of closed almost complex manifolds was
given by Ehresman and Wu.

Theorem 3.2. A closed 4-manifold M admits an almost complex structure if and only
if there exists a class c ∈ H2(M,Z) such that its reduction mod 2 is equal to the second
Stiefel - Whitney class of M and c2 = 2χ(M) + 3σ(M), where χ, σ denote respectively
the Euler characteristic and the signature.

Using refehwu one can check that the connected sum #kCP 2 of k copies of CP 2 is
almost complex if and only if k is odd. This implies that CP 2#CP 2 admits no symplectic
structure. To calculate this, let us recall that for CP 2 we have w1 6= 0, χ = 3, σ = 1.
It is not difficult to calculate that H2(#kCP 2) ∼= ⊕kH2(CP 2) and that (a1, ..., ak)

2 =
a2

1 + ... + a2
k ∈ H4(M,Z) ∼= Z. Thus χ = k + 2, σ = k, w1 = (1, 1, ..., 1) mod 2. Thus

for the class c = (a1, ..., ak) required by the Ehresmann - Wu theorem all entries should
be odd integers. One can show that c2 = a2

1 + ... + a2
k cannot be equal to 6= 5k + 4 for

even k. For k = 2 this boils down to a simple fact that there is no integers a, b such that
a2 + b2 = 14. For k = 3 a solution is c = (3, 3, 1).
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For closed manifolds another obstruction to existence of symplectic forms arises from
the fact that ωn is a volume form. This implies that any symplectic form determines
an orientation of the underlying manifold. However, this can be concluded as well from
the almost complex structure, since any complex structure on a vector space V defines
uniquely an orientation of V. But for closed manifolds it shows more. Namely, on a
connected 2n-dimensional manifold we have

∫
M

ωn 6= 0, thus the cohomology class [ω]n =
[ω] ∪ ... ∪ [ω] as well as [ω] are nonzero.

Thus we have two basic obstructions to get a symplectic structure.

Proposition. If a 2n-dimensional manifold M admits a symplectic structure, then M
is almost complex and there is a class u ∈ H2(M ;Z) such that un 6= 0. In particular,
H2(M) 6= 0.

Examples.

(1) Complex projective space CP n is symplectic and the following Fubini - Study
form τ gives a symplectic structure.

τ =
1

2(
∑

µ zµzµ

∑

k

∑

j 6=k

zjzjdzk ∧ dzk − zjz + kdzj ∧ dzk.

where we denote dzj = dxj + idyj, dzj = dxj − idyj, for zj = xj + iyj.
This is an example of a Kähler manifold, i.e., a complex manifold with a

Riemannian metric g such that ω(V,W ) = g(V, JW ) is a closed form, where J is
the almost complex structure on M provided by its complex structure.

(2) The sphere S2n of dimension 2n does not admit any symplectic form for n > 2,
since H2(S2n = 0. For the same reason S3 × S1 is not symplectic. Moreover,
S2 × S4 is not symplectic because for any x ∈ H2(S2 × S4;Z) we have x3 = 0.

4. CONSTRUCTIONS OF SYMPLECTIC MANIFOLDS

The product of two symplectic manifolds is symplectic. Hence, the question whether
a fibre bundle with symplectic base and symplectic fibre is symplectic is natural. In
general this fail to be true as the following example shows.

Example. Let S3 → S2 be the Hopf fibre bundle. It is a bundle with fibre S1 given
by the natural action, by multiplication, of unit (of module 1) complex numbers on unit
quaternions. Then S3 × S1 → S3 → S2 is a fibre bundle map with fibre T 2, hence
both base and fibre are symplectic, while the total space is not. Moreover, the structure
group of this fibre bundle is the symplectomorphism group of the fibre, which is (since
we are in dimension 2) the group of volume preserving diffeomorphisms. In fact, the
structure group of Hopf fibration is the isometry group of S1, thus the structure group
of S3 × S1 → S2 is the isometry group of T 2.

A sufficient condition for a fibre bundle p : M → B with both base and fibre symplectic
to have a symplectic total space was given by Thurston [Th]. A condition imposed on
bundles was that the structure group is the symplectomorphism group of the fibre. We
say in this case that such a bundle is symplectic. This is natural, if one expects on M a
symplectic form which restricts to a symplectic form on all fibres.
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For a point b in the base let ib denote the inclusion of the fibre Fb = p−1(b) ⊂ M. In a
symplectic fibration each fibre has a well defined symplectic form ωb symplectomorphic
to ωF . But, as the example above shows, some further assumptions are needed.

Theorem 4.1. [Thurston] Consider a symplectic bundle p : M → B with closed sym-
plectic base (B,ωB) and closed symplectic fibre (F, ωF ). If there exists a cohomology class
u ∈ H2(M,R) such that i∗bu = [ωb], then there exists a symplectic form ωM on M which
is compatible with the fibration, i.e., i∗bωM = ωb.

However, if a symplectic manifolds fibres with a symplectic fibre then one cannot in
general expect the base to be symplectic. An example is CP 3 which is fibred over S4

with fibre S2. More such examples can be deduced from [R].
We give now two interesting examples of a fibre bundle with symplectic base and fibre.

Example 4.2.

Let Diff(D2n, S2n−1) denote the group of diffeomorphisms equal to the identity in a
neighborhood of the boundary sphere S2n−1. Then f extends by the identity to a dif-
feomorphism of any 2n-manifold X if an embedding of D2n into X is given. Consider
f ∈ Diff(D2n, S2n−1) not in the identity component. For X = S2n we get again a
diffeomorphism fS which is not isotopic to the identity and it is a classical fact that it
correspond to an exotic (2n+1)-sphere Σf = D2n+1∪fS

D2n+1 (a smooth manifold home-
omorphic but not diffeomorphic to the sphere with the standard differential structure).
If X is the 2n-torus T2n = S1 × ... × S1, denote the resulting diffeomorphism by fT . In
this case we will get also an exotic manifold in the following way. Take T2n × [0, 1] and
glue the ends according to (x, 0) ∼ (fT (x), 1). The resulting manifold depends, up to
diffeomorphism, only on the isotopy class of f and it is called the mapping torus of fT .
We denote it by T(fT ). From the fact that fT is supported in a disk (i.e., is equal to Id
outside a disk) it is not difficult to argue that T(fT ) is obtained from the standard torus
T2n+1 by a connected sum with the homotopy sphere Σf . This is known that T(fT ) is
homeomorphic but not diffeomorphic to T2n+1, cf. [W], ”Fake Tori” chapter. Note also
that, by construction, T(fT ) fibers over S1 with fibre T2n.

Now M = Tf×S1 fibres over T2 with fiber T2n. The fibration is symplectic if and only
if the diffeomorphism fT is a symplectomorphism. Moreover, if this is the case, then the
other assumption of Thurston’s theorem is satisfied. This is because f is homotopic (even
topologically isotopic) to the identity, thus the fibration is equivalent, up to fibrewise
homotopy equivalence, to the product T2×T2n. So the required cohomology class exists.

Example 4.3.

Let A be a linear map of the torus T2 given by

(
1 2
0 1

)
∈ SL(2,Z).

Consider TA = T2 × [0, 1]/(x, 0) ∼ (A(x), 1) and a fibration M = TA × S1 → T2. By
Theorem 4.1 there exists a symplectic structure on M. However, direct calculations show
that first Betti number b1M = dim H1(M,R) = 3. This implies that there is no Kähler
structure on M , since odd Betti numbers of closed Kähler manifolds are always even.
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This was first example of a closed symplectic manifold with no Kähler structure. Later
many other such examples were constructed. One can say that all known bounds for the
topology of closed Kähler manifolds fail in symplectic case (see [TO]).

Let us sketch two other useful constructions of new symplectic manifolds from old
ones.

First is the blow up of a manifold. By blow up of a point x of a 2n-manifold M we
mean a compactification of M −{x} by CP n−1, where in a chart U ∼= Cn around x (with
x corresponding to (0, ..., 0)) any complex plane is compactified by the point of CP n−1

which represents this plane. A direct generalization gives a blow up along a submanifold.
This is given by compactifying each normal space of a symplectic submanifold as above.
Topologically, a manifold obtained by blow up of a point in M is diffeomorphic to a
connected sum M#CP n, where CP n is CP n with the orientation reversed.

Theorem 4.4. If M is a symplectic 2n-manifold, then a blow up of M is also symplectic.

However, there is no canonical choice of a symplectic structure on a blown up symplec-
tic manifold. For various data used to perform the operation one can get different (non
symplectomorphic) symplectic structures. This is in contrast with the case of differential
manifolds, where on a connected sum one can construct a unique, up to a diffeomorphism,
differential structure.

Another operation on symplectic manifolds was introduced by Gompf [G] and it is
often called Gompf’s surgery. Consider two symplectic manifolds M,N and symplectic
submanifolds M0, N0 of codimension two. Assume that M0 is symplectomorphic to N0

and the normal bundle ν(M0) is inverse to the normal bundle ν(N0). This means that
there is a orientation changing linear isomorphism of that bundles, covering the given
symplectomorphism Φ0 : M0 → N0. In terms of Chern classes, c1ν(M0) = −c1ν(N0).
Note that first Chern classes classify complex bundles of complex dimension 1. Then
one can find a symplectic structure on (M − ν1(M0)) ∪f (N − ν1(N0), where ν1 denotes
the open unit disc bundle and f is a diffeomorphism of the boundary sphere bundles
covering Φ0.

As an application, Gompf has shown that in any even dimension greater than 2 any
finitely presented group is the fundamental group of a closed symplectic manifold. Com-
pare also [IRTU], where some restrictions on the fundamental group were found under
assumption that the symplectic structure is symplectically aspherical, i.e., the symplectic
form vanishes on all spherical homology 2-classes.

5. SYMPLECTIC GROUP ACTIONS

Isomorphisms in the category of symplectic manifolds is a diffeomorphism preserving
symplectic forms. Thus a symplectomorphism of (M, ω) is a diffeomorphism f : M → M
such that f ∗ω = ω. The group of all symplectomorphism will be denoted by Symp(M, ω).
For a compact manifold we consider the C1 topology on the group. This is always an
infinitely dimensional space, since for any path Ht of smooth functions the path Xt of
vector fields defined by ιXtω = dHt, the associated path of diffeomorphisms preserves
the form ω, compare the proof of Theorem 2.4.

If a group G acts smoothly on a symplectic manifold (M, ω), then we say that the
action is symplectic if ω is G−invariant. In particular, g ∈ Symp(M, ω) for any g ∈ G.
We restrict in this note to the case G = S1.
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For a smooth action of S1 there is a vector field V on M which generate the action,
i.e.,the action is the flow of V. It is the image of the unit invariant vector field tangent to
S1 under the differential of the action. The field V is tangent to orbits of the action and
its zero set is equal to the fixed point set. If it is a symplectic action, then the form ιV ω is
a closed 1-form, as it follows from the formula LV ω = ιV dω +dιV ω for the Lie derivative
LV ω. If the cohomology class [ιV ω] vanishes, then the action is called hamiltonian and its
moment map is defined as a map H : M → R such that dH = ιV ω. More generally, if we
assume that [ιV ω] is an integer class (it is in the image of H2(M ;Z)), then there exists
a generalized moment map H : M → S1 such that H∗θ = ιV ω, where θ is the standard
invariant 1-form on S1. Moment maps have nice properties: the set of critical points is
equal to the zero set of V, hence to the fixed point set of the action. The moment map
is a Morse-Bott function, i.e., it is nondegenerate in the normal bundle of the critical
point submanifold.

Certainly, a hamiltonian action must have fixed points, since in this case the moment
map is a real valued map on a closed manifold. In dimension 4 a symplectic action on
a closed manifold is hamiltonian if and only if it has fixed points. In dimension 6 an
example of a non-hamiltonian symplectic action with non-empty set of fixed points was
constructed by McDuff.

It is well-known that fixed points of a symplectic action are symplectic manifolds, cf.
[GuSt], Lemma 27.1.

Lemma 5.1. Let G be a compact Lie group. If G acts symplectically on a symplectic
manifold M , then the fixed point set MG is a symplectic submanifold.

Proof. Let x ∈ MG. Then, when an invariant Riemannian metric is chosen, G acts
on a normal slice via a faithful orthogonal representation. Thus U ∈ Tx(M) belongs
to Tx(M

G) if and only if g∗U = U for every g ∈ G. Moreover, vectors of the form
V − g∗V span a subspace of TxM transversal to MG. Hence for U ∈ Tx(M

G) we have
ω(U, V ) = ω(g∗U, g∗V ) = ω(U, g∗V ), and therefore ω(U, V − g∗V ) = 0 for any g ∈ G
and V ∈ TxM. So if ω(U,W ) = 0 for all W ∈ TxM

G, then also ω(U,W ′) = 0 for all
W ′ ∈ TxM and this implies U = 0. Thus ω|MG is symplectic. ¤

Corollary 5.2. Let G be a compact Lie group and let H be a closed subgroup of G. If
G acts symplectically on a symplectic manifold M , then the set of points with isotropy
equal to H is a symplectic manifold.

An analogous property for almost complex manifolds and actions is straightforward.

Lemma 5.3. If a compact Lie group G acts smoothly on an almost complex manifold M
preserving an almost complex structure J , then the fixed point set MG is a J-holomorphic
submanifold of M.

Proof. If J is G-invariant, then for U ∈ Tx(M
G) and any g ∈ G we have g∗(JU) =

g∗Jg−1
∗ g∗U = JU. ¤

Let us assume now that S1 acts freely and symplectically on (M, ω), V generates the
action and X = M/S1. The 1-form ιV ω is closed and descends to X to a closed nowhere
vanishing 1-form. This implies that X fibres over a circle [Ti].
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Conversely, if X admits a symplectic fibration over the circle, then X × S1 admits a
symplectic structure. A symplectic fibration over S1 is the torus T (f) of a symplecto-
morphism f : M → M. Thurston’s theorem gives a symplectic structure on S1 × T (f),
which is a symplectic fibration over S1 × S1 with fibre M . It suffices to check that
the cohomology class of the symplectic form on M is in the image of the cohomology
homomorphism i∗, where i : M → T (f) is the inclusion. The claim follows from the
Mayer–Vietoris exact sequence resulting from a decomposition of S1 into two intervals
(elements in cohomology which are invariant under the gluing map all are in the image
of i∗). No other examples of symplectic manifolds of the form X × S1 are known. See
also Section 7.

This extends to the case of a circle action with no fixed points, but then X is in general
an orbifold.

6. EXISTENCE QUESTIONS

As we have seen above, there are two basic obstructions to impose a symplectic struc-
ture on a closed manifold.

Definition 6.1. A closed manifold M of dimension 2n which is almost complex and has
a class u ∈ H2(M,R) such that un 6= 0 will be called homotopically symplectic.

The term cohomologically symplectic, or c-symplectic is used for a manifold with a
class u ∈ H2(M ;Z) such that un 6= 0, see e.g. [A]. The term ”homotopically symplectic”
refers to the homotopy type of the classifying map of the tangent bundle of M, which
we consider as a part of the structure of M. An oriented manifold M is almost complex
if and only if the classifying map τ : M → BGL(2n,R) of its tangent bundle lifts to a
map τ̃ : M → BGL(n,C) so that τ = P τ̃ , where P : BGL(n,C) → BGL(2n,R) is the
forgetful map. This condition depends on the homotopy type of the classifying map.

Question 6.2. Does any closed, homotopically symplectic manifold admit a symplectic
form?

Obviously the problem depends only on the diffeomorphism type of M. There is a
description of symplectic manifolds in topological terms as those manifolds which admit
so called topological Lefschetz pencils [G1], but to decide whether a manifold has such
a structure is as difficult as to construct a symplectic form.

In dimension 4 the answer to 6.2 is negative.

Example 6.3.

#3CP 2 is homotopically symplectic and has no symplectic structure.
That it is a homotopically symplectic manifold we have seen in Section 3. Nonexistence

of symplectic structure was proved using Seiberg - Witten invariants of diffeomorphism
type. They are defined for closed 4-manifolds via moduli spaces of a differential equation
related to the Dirac operator. The invariant is given by a function SWM : H2(M,Z) →
Z with finite support. See [S]. A powerful theorem providing a much more delicate
necessary condition than homotopy symplecticness to existence of a symplectic structure
was proved by Taubes [T].

Theorem 6.4. [Taubes] For any closed symplectic 4-manifold there exists a class u ∈
H2(M,Z) such that SW (u) = ±1.
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The fact that #3CP 2 does not satisfy the above condition follows from properties
of Seiberg - Witten invariant. Namely, for a connected sum of two closed 4-manifolds
with positive b+, Seiberg - Witten invariant vanish. Here b+ is the dimension of positive
defined part of H2(M,R) with respect to the intersection form (u, u′) 7→ (u ∪ u′)[M ].

In higher dimensions there is no known example of non-symplectic but homotopically
symplectic manifold. In particular it is unknown whether (#3CP 2) × S2 is symplectic
or not.

Seiberg-Witten invariants are defined only in dimension 4. In this dimension they
are equivalent to so called Gromov-Witten invariants. The latter was defined in any
dimension with a pseudocycle obtained form the moduli space of pseudoholomorphic
maps by Michel Gromov in a seminal paper [Gr]. See [MS1] for an exposition of the
theory.

We describe now how some related examples can be obtained.

Example 6.5.

Let M and N be two closed simply connected 4-dimensional smooth manifolds such
that the following condition holds.

(1) M and N are homeomorphic, but not diffeomorphic.
(2) M is not a symplectic manifold, but N admits a symplectic structure.
(3) The second Stiefel–Whitney class w2(M) vanishes.
(4) The cohomology H∗(M,Z) is torsion free.

Then M × S2 is diffeomorphic to N × S2, hence both are symplectic.
We refer to [W1]. Indeed, under our assumptions the diffeomorphism type is com-

pletely determined by the multiplicative structure of the cohomology ring with integer
coefficients and the first Pontriagin class. It follows from Theorem 3 in [W1] which can
be stated as follows. The diffeomorphism classes of closed simply connected 6-manifolds
M with torsion free integral cohomology, whose second Stiefel–Whitney class vanishes,
correspond bijectively to the isomorphism classes of an algebraic invariant consisting of:

• two free abelian groups H = H2(M ;Z) and G = H3(M ;Z),
• a symmetric trilinear map µ : H ×H ×H → Z given by the cup product,
• a homomorphism p1 : H → Z determined by the first Pontriagin class p1.

Note that p1(M × S2) is inherited from M and p1 is a topological invariant for closed
4-manifolds. Thus p1(M × S2) = p1(N × S2), w2(M × S2) = w2(M × S2) = 0 and thus
M × S2 is diffeomorphic to N × S2.

Some examples of pairs (M, N) as required above are obtained by applying to sym-
plectic 4-manifolds constructions such as logarithmic transformation or knot surgery. To
detect both non-diffeomorphism and non-symplecticness one uses Taubes’ theorem. (see
12.4 in [Sc] or [P]). An explicit example is the Barlow surface which is non-symplectic
and homeomorphic to CP 2 blown up in 8 points. There exists also a non-symplectic
manifold homeomorphic to K3 surface.

7. CIRCLE ACTIONS: SMOOTH VERSUS SYMPLECTIC

A more specific existence question is when does exist a symplectic structure on the
product of a manifold by the circle. As it was explained in Section 5, if a closed manifold
M with a free S1 action admits a invariant symplectic form, then X = M/S1 fibres over
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the circle. In the other direction, for the product X × S1, a fibration of X over a circle
enables us to construct a symplectic form on M.

Question 7.1. Let X be a closed manifold. Is it true that if X × S1 is symplectic, then
X fibres over S1?

For X of dimension 3 this question was posed by Taubes and answered positively, after
a series of partial results of many authors, by Friedl and Vidussi [FV]. Their proof uses
Seiberg -Witten invariants and it does not extend to higher dimensions.

Remark. Questions 6.2,7.1 cannot simultaneously have positive answers in higher
dimensions. Namely, there are manifolds which do not fibre over the circle, but their
products with the circle are homologically symplectic, e.g. the connected sum of two
copies of tori T 2k+1#T 2k+1.

A more general conjecture for dimension 4 was stated by Scott Baldridge in [B].

Conjecture 7.2. Every closed 4-manifold that admits a symplectic form and a smooth
circle action also admits a symplectic circle action (with respect to a possibly different
symplectic form).

In the same paper Baldgidge gave a partial answer.

Theorem 7.3. [B] If M is a closed symplectic 4-manifold with a circle action such that
the fixed point set is non-empty, then there exists a symplectic circle action on M .

It seems unlikely that this continue to be true in higher dimensions, but one can ask
the following question: under what condition a closed symplectic manifold with a smooth
circle action does admit a symplectic circle action?

There are examples of smooth circle actions on symplectic manifolds which have non-
symplectic sets of fixed points or non-symplectic sets of points with a given isotropy. By
Lemma 5.1 any such action is not symplectic with respect to any symplectic structure.

Example 7.4.

Let M, N be a pair of 4-manifolds described in Section 6. Then M × S2 × ...× S2 is
symplectic (since it is diffeomorphic to N×S2× ...×S2) and there is an action, given by
the standard action on each copy of S2, having a sum disjoint copies of M as the fixed
point set.

More examples can be found in [HPT].

8. SYMPLECTOMORPHISMS AND EXOTIC TORI

It is known that for any m ≥ 5, there are exotic tori, i.e., smooth manifolds T m which
are homeomorphic but not diffeomorphic to the standard torus Tm.

Question 8.1. Given a symplectic manifold T 2n homeomorphic to T2n, n > 2, is T 2n

diffeomorphic to T 2n?

This is motivated by the same question posed by Benson and Gordon in [BeG] for
Kähler manifolds. It has positive answer, a proof that there are no Kähler structures
on exotic tori can be obtained from the Albanese map M → T k by showing that for
a manifold homeomorphic to a torus the map is a homotopy equivalence. This implies
that it is in fact a diffeomorphism. More general results are given in [BC, C].

Let us look on Example 4.2 from that point of view. This leads to the following.
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Question 8.2. Given an exotic sphere Σf of dimension 2n − 1, is there a symplectic
structure on T = (T2n−1#Σf )× S1 ?

As we have seen in Section 4, the answer were positive when there exists a diffeo-
morphism f ∈ Diff(D2n−2, S2n−3) such that Σf is exotic and the diffeomorphism fT

obtained from f is isotopic to a symplectomorphism. Thus we come to the following
question.

Question 8.3. Given a symplectomorphism f : T2n−2 → T2n−2 supported in an embedded
disc, is f smoothly isotopic to the identity?

A similar problem whether a symplectomorphism of a torus which acts trivially on
homology is isotopic to the identity was mentioned in [MS], p. 328.

One can also ask under what assumptions a diffeomorphism of T2n is isotopic to a
symplectomorphism. We describe examples such there is no symplectomorphisms in the
isotopy class [HT].

Let π0(Diff+ (M)) denote the group of isotopy classes of orientation preserving diffeo-
morphisms of a smooth oriented manifold M . Assume now that M is 2n-dimensional
and admits almost complex structures, and let JM denote the set of homotopy classes
of such structures, compatible with the given orientation. Any diffeomorphism f acts
on the set of all almost complex structures by the rule

f∗J = dfJdf−1,

where df : TM → TM denotes the differential of f . This action clearly descends to the
action of π0(Diff+ (M)) on JM .

We show that there exist diffeomorphisms f : T8k → T8k supported in a disc which do
not preserve the homotopy class [J0] ∈ JM of the standard complex structure. Therefore,
they cannot be isotopic to symplectomorphisms with respect to the standard symplectic
structure ω0. Indeed, any symplectomorphism carries any almost complex structure
compatible with a symplectic form to another almost complex structure compatible
with the same symplectic form, but the space of all such almost complex structures is
contractible.

Let us a sketch the proof [HT] that such f exist. There is a necessary homotopic
condition on a diffeomorphism to preserve the homotopy class of J0.

Theorem 8.4. Let f ∈ Diff(T4n) be supported in a disc D4n ⊂ T4n. If f preserves J0,
then the differential df restricted to its support disc D4n gives in π4nGL(4n,R) the trivial
homotopy class.

To detect nontriviality of df we apply the generalized â genus (with values in KO(∗) ∼=
Z2. It is well known that there are exotic spheres such that â(T(fT )) 6= 0. We prove that
for such fT we have [df ] 6= 0. Thus there are f which do not preserve the homotopy class
of J0.
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ŻoÃlnierska 14A, 10-561 Olsztyn, Poland



14 BOGUSÃLAW HAJDUK

hajduk@math.uni.wroc.pl


