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Abstract. We study constructions of contact forms on closed manifolds. A notion of
strong symplectic fold structure is defined and we prove that there is a contact form
on M × X provided that M admits such a structure and X is contact. This result
is extended to fibrations satisfying certain natural conditions. Then, generalizing the
open book construction, we describe decompositions of manifolds into fibered pieces
which allow to construct contact forms.

Keywords: contact form, symplectic fold, open book decomposition
AMS classification (2010): Primary 53D05,53D10.

1. Introduction

In this paper we study constructions of contact forms on closed orientable manifolds.
An intricate question of contact topology is whether a closed almost contact manifold
admits a contact structure. It is solved positively only in dimensions three and five
[Ma, G1, CPP]. However, even in low dimensions, this is usually very non-trivial to
describe a contact form on a given almost contact manifold.

There are some obvious classes of almost contact manifolds. For instance, the product
of a stably almost complex manifold M with a contact manifold X is almost contact. In
the present paper this is the class we start with. Our main result, Theorem 3.1, gives a
construction of contact forms on M×X under an additional assumption: we require that
M admits a singular form called a strong symplectic fold of convex type (see Section 2
for the definition). Then we extend this result to strong symplectic folds of general type
and products replaced by fibrations satisfying some rather natural restrictions. Finally,
we compile these results into a description of a class of decompositions into fibered pieces
which allow to define a contact form on a manifold admitting such decomposition.

Our main construction is based on a generalization of a formula given in [GS] and uses
the Giroux open book form on X. It yields a confoliation on M ×X. Then we show that
it can be deformed to a contact form using the result of Altschuler and Wu [AW].

Motivations for this research can be described as follows. First of all, this gives some
new classes of contact structures on products, fibrations as well as a new approach to
some known results (for example, products of a surface by a contact manifold belong
to the class when our construction works. Another our starting point is related to the
description of contact manifolds in terms of open book decompositions [GM], see Section
2. However there are examples of standard topological constructions, as those of taking
products or fibrations, blow-ups or performing surgeries, which usually do not preserve
the open book decompositions. Our notion of piecewise fibered contact structure of
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Section 6 is an attempt to introduce a structure more flexible then the one given by
open books.

To give an example of problems where our constructions can be applied, consider the
following technical question. In the description of contact forms by open books we have a
fibration E → S1 with a compact fiber P of the complement E of a tubular neighborhood
of a codimension 2 submanifold. To get a contact structure, it is sufficient to give an
exact symplectic form on P, convex at the boundary and such that the monodromy of
the fibration is an exact diffeomorphism. But in fact this difficult requirement can be
replaced a weaker condition. It is enough to have a contact form on the fibration, equal
to etλ + dθ in a collar of the boundary (= ∂P × S1,) where λ is the contact form on
∂P and dθ is the standard orientation 1-form on S1. Our Proposition 5.4 shows that the
latter problem is easier than the usual fillability question. In particular we prove that
for some overtwisted form λ on S3 one can extend the form etλ + dθ to D4 × S1.

A preliminary version of this results was announced under the title ”Contact forms on
products” as arxiv:1204.1692 [math.SG]. The present version is considerably extended
and the assumption of triviality of the monodromy of the open book on X has been
removed.

The authors would like to thank Jonathan Bowden, Diarmuid Crowley and András
Stipsicz for interesting comments and pointing out an incorrect statement in the previous
version of this paper. Note also that in [BCS] an alternative approach to this subject is
given.

2. Preliminaries

We consider closed smooth manifolds equipped with (globally defined) contact forms.
Geiges and Stipsicz [GS] gave a formula which yields a contact form on products

M ×S1 for some closed M . Let us describe their construction in a slightly more general
setup.

Definition 2.1. A strong symplectic fold structure of convex type on a compact manifold
M is a decomposition M = W−∪N W+, where N = W−∩W+ is a hypersurface in IntM,
together with exact symplectic forms ω− = dγ−, ω+ = dγ+ on respectively W−, W+,
such that the forms satisfy the following convexity conditions on a tubular neighborhood
N × [−1, 1] of N and at ∂M :

(1) γ− = etλ on N × [−1, 0] = N × [−1, 1] ∩W− and γ+(t) = e−tλ on N × [0, 1] =
N × [−1; 1]∩W+, where t is the parameter of [−1, 1] and λ is a contact form on
N,

(2) the closure of every component of M − N containing a component of ∂M is an
exact symplectic cobordism (by (1), it is necessarily convex at the N−end), either
convex or concave at the component of ∂M.

The hypersurface N is called the fold locus.
An obvious example is the double W ∪ (−W ), where W is a compact manifold with
boundary and W admits an exact symplectic form satisfying convexity condition (1) at
∂W . Note that a strong symplectic fold does not determine the orientation, since the
orientations given by the symplectic forms on the two parts are opposite.
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In our terminology we follow Ana da Silva [dS]. She shows that on any closed stably
almost complex manifold there exists a symplectic fold, i.e. a decomposition into two
submanifolds as above and a 2-form which is symplectic except for the common boundary
of the two parts, where the form has fold singularities. In our definition, the forms ω±
agree only after restriction to N, and they do not give any globally defined smooth form
on M.

Theorem 2.2. [GS] If M2m admits a strong symplectic fold, then M × S1 is contact.

Proof. Let dφ denote the standard orientation form on S1 and p : M × S1 → M be
the projection. If ω± = dγ±, then p∗γ± + dφ are contact forms outside N × [−1, 1]× S1.

Choose smooth functions f, g : [−1, 1] → R such that:

(1) g is odd, equal to 1 near t = −1, equal to −1 near t = 1, and it is decreasing
from −1 to 1,

(2) f is even, positive, equal to e±t near ±1 and increasing on [−1, 0],
(3) f ′g − g′f > 0 on [−1; 1].

Then the formula

α = fλ + g dφ

on [−1, 1]×N × S1 yields a contact form on N × [−1, 1]× S1 (with contact form λ on
N) which extends those defined above. In fact, it is not difficult to calculate:

α ∧ (dα)n = nfn−1(f ′g − fg′)dt ∧ λ ∧ (dλ)n ∧ dθ > 0.

¤
Geiges and Stipsicz apply this formula together with the result of Baykur ([B]) to

show that for every closed orientable 4-manifold M the product M × S1 is contact.
In general, the existence of a strong symplectic fold structure seems to be a difficult

question. The following classical result of Eliashberg [E] (cf. also [W] and Ch. 6 of
[G2]) is the basic tool to construct some examples. Let us recall that W is the trace of a
(single) surgery of index k +1 on M2n+1 if W is obtained by attaching a handle of index
k + 1 to M × [0, 1]. It means that W is diffeomorphic to M × [0, 1]∪f (Dk+1×D2n−k+1),
where f : Sk ×D2n−k+1 → M × {1} is the attaching map of the handle. In particular,
∂W = M ∪ (−M ′), where M ′ = (M − f(Sk ×D2n−k+1)) ∪ (Dk+1 × S2n−k) is the result
of the surgery on M. The product M × [a; b] endowed with the form d(etλ) is called the
symplectization of a contact form λ on M.

Theorem 2.3. Let λ be a contact form on a (2n + 1)−dimensional manifold M and let
W be the trace of a surgery on M of index k +1 with 1 ≤ k ≤ n and n > 1. If the almost
complex structure on M × [0, 1] determined by λ extends to W, then there exists an exact
symplectic form ω on W such that ω is the symplectization of λ near M ×{0} as well as
the symplectization of a contact form in a collar of M ′. In particular, M ′ admits a contact
form. Furthermore, if V is a compact connected almost complex (2n + 2)-dimensional
manifold (n > 1) and V admits a Morse function maximal on ∂V such that indices of
all critical points are less or equal to n + 1, then V admits a symplectic structure with
convex boundary (the boundary is of contact type). A Morse function with the required
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properties exists if and only if V has the homotopy type of a CW-complex of dimension
at most n + 1.

Let us call any manifold V having the above properties of Weinstein type. Thus the
double of a manifold of Weinstein type admits a strong symplectic fold.

Remark 2.4. The contact surgery in dimension 4 requires some additional assumption
on framings of the attaching spheres of 2-handles, see [G2], Ch. 6.3,6.4.

Theorem 2.3 together with our result yield the existence of contact forms on products
of contact manifolds and strong symplectic folds. The ultimate aim of this paper is to
give the same conclusion for spaces endowed with a more general structure than strong
symplectic folds.

Our construction of contact forms uses Giroux’ description of contact structures in
terms of open book decompositions. We need an operation which changes the orientation
by reversing the direction of a vector field transversal to the contact distribution and
leaves the orientation of the latter fixed. In the dimension 4k + 1 one can change the
orientation by multiplying the form by −1, but this operation is not good enough. The
main additional property we need is a 1-parameter family connecting the given form
with the reversed one such that each form of the family has non-degenerate differential.

Let us recall Giroux’ description of contact forms.

Definition 2.5. An open book decomposition of X is given by

(1) a codimension two submanifold B ⊂ X (called the binding),
(2) a tubular neighborhood U of B diffeomorphic to B ×D2,
(3) a fibration π : E = X −B → S1 with fiber P (called the page)

such that the monodromy of the fibration π is equal to the identity in P ∩U and π|U can
be identified with the standard projection B × (D2 − {0}) → S1.

According to [Gi, GM], with any closed contact manifold X one can associate an open
book decomposition satisfying the following conditions:

(1) P is exact symplectic, i.e., P has 1-form β such that dβ is symplectic on P,
(2) a tubular neighborhood U of ∂P is of convex type, which means that in a collar

∂P × [0, ε) we have β = e−tβ with β contact on ∂P.
(3) the monodromy f : P → P of π is exact, which means that f ∗β − β = dϕ for

some function ϕ : P → R.

With such data we can associate a contact form on X in a way we describe in details
later in this section. The main theorem of [GM] says that any contact form is homotopic
(i.e., there exists a deformation through contact forms) to the form of this type described
below, which we shall refer to as the Giroux contact form.

Let us write a formula for such form.
If f : P → P is the monodromy of π, we identify E with the quotient of P × [0, R] for

some fixed R, by the identification Φ : (x, 0) ∼ (f−1(x), R).

On P × [0, R] we put ηE = β̂ + dφ where

β̂ = β + u(φ)dϕ(2.6)

for some non-decreasing function u : [0; R] → [0; 1] so that
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u(φ) =

{
0 for φ ∈ [0; ε)
1 for φ ∈ (R− ε; R].

(2.7)

The form β̂ descends to (P × [0, R])/ ∼ since Φ∗(β + dϕ + dφ) = β + dφ and ηE

defines a smooth form on E. Moreover, if dimension of P is 2n, then ηE ∧ (dηE)n =

dφ(dβ)n + nβ(dβ)n−1u′(φ)dφdϕ. As dβ
n

> 0 on P and for R big enough the derivative
|u′(φ)| can be made arbitrary small, ηE is contact. In addition, Φ∗(β+dϕ+l·dφ) = β+l·dφ

for any l ∈ R, so ηE = β̂ + l · dφ is well-defined on (P × [0, R])/ ∼ .

Remark 2.8. As far as we know, such ”enlarging the circle” trick has never been used
before in this context. When we tried to apply the formulae we could find in the literature
(as for example the one described in [G2]), then our main result required an additional
assumption. That version of this paper applied essentially only when the fibration E →
S1 was trivial. It was rather unexpected that the simple trick described above enabled
us to solve this problem.

In the sequel we will use a deformation of such form to one having the opposite
orientation of S1 in the fibration E → S1. For this reason we have to consider the family
of forms ηE = β + udϕ(φ) + ldφ depending on l ∈ [−a, a]. Again, Φ preserves each
form of this family, hence ηE is well-defined. Then we have ηE ∧ (dηE)n = ldφ((dβ)n −
nβ(dβ)n−1u′(φ)dϕ) and we get

Proposition 2.9. For R large enough the form ηE is contact if l 6= 0.

As the monodromy f near the boundary ∂P is the identity, the form β̂ + l · dφ (l ∈ R)
is equal to βer + l · dφ near the boundary of B ×D2 in polar coordinates (r, φ) on D2.

We easily now extend β̂ + l · dφ to B ×D2 by the formula

α = h1(r)β + l · h2(r)dφ,

where

h1(r) =

{
2 near r = 0

e1−r for r ∈ [1; R
2π

],

is strictly decreasing with all derivatives at 0 vanishing,

h2(r) =

{
r2 near r = 0
1 for r ∈ [1; R

2π
]

.

and h1(r)h
′
2(r)−h′1(r)h2(r) > 0. As another simple calculation shows, the resulting form

is contact on X.
If l = ±1 and R is big enough, for a suitable choice of u we get ηE = β̂ ± dφ contact.

They determine opposite orientations and we use this pair of forms in the sequel.

Definition 2.10. If ηE = β̂ + dφ is the Giroux contact form in the fibration part E of
the given open book decomposition, then by η̂ we denote the form given by the same open
book decomposition and the same form β on the page, but equal to β̂ − dφ in E.
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Let us explain constructions related to what we give later on. This provides a gen-
eralization of the Giroux construction and it is a simple example of a structure which
supports contact forms on more general structures than merely open books. This indi-
cates in what direction our search for flexible structures goes.

We will need the following definition. Let E → B be a smooth bundle with fiber
F and the structure group G ⊂ Diff(F ). We say that it is defined on a hypersurface
H ⊂ B if its restriction to B −H is trivial and there is a map a : H → G such that the
map A : H × F → H × F : (x, v) 7→ (x, a(x)v) is smooth and the bundle is obtained by
gluing the product pieces along H with A. The definition applies also in the case when
B − H is connected. If B is the circle, then as the hypersurface one can take a single
point.

Given an exact symplectic manifold (M, ω = dβ), denote by Ex(M, β) the group of ex-
act symplectomorphisms and by Ex(M,∂M, β) the group of exact symplectomorphisms
equal to the identity near the boundary.

Proposition 2.11. If π : E → B is a bundle with compact contact base (B, µ), compact
exact symplectic fiber (F, ω = dβ), the structure group contained in the group of exact
symplectomorphisms Ex(F, β) and defined on a hypersurface H ⊂ Int B, then E admits
a contact form. If the structure group is contained in Ex(F, ∂F, β), then the contact
form can be chosen equal to the product form Rµ + β on a collar of B × ∂F, where R is
a large enough constant.

Proof. Let A : H × F → H × F be the gluing diffeomorphism. By assumptions, for
any x ∈ H we have (A|{x}×F )∗β = β + dϕx, where ϕx ∈ C∞(F ). Actually, there exists
a smooth function ϕ̃ on H ×F such that this equality holds with ϕx = ϕ̃(x, ·). Consider
a tubular neighborhood U ∼= H × [−1, 1] of H. For any positive constant R the form
Rµ + β is contact on π−1(B − U) ∼= (B − U)× F. On U consider the form

η = Rµ + β + udϕ̃.

where u : [−1, 0] → [0, 1] is given by formula 2.7. If dimension of F is 2m and dimension
of B is 2n, then

ηdηn+m−1 = C1R
mµdµm−1dβn + C2R

m−1u′µdµm−2dβndtdϕ̃ +

C3R
m−2u′dµm−1βdβn−1dtdϕ̃ + C4R

m−1dµm−1dβndϕ̃,

where Ci, i = 1, 2, 3, 4 are constants depending only on m,n. For R large enough the
first term dominates the whole sum and consequently η is contact. By construction, the
forms on π−1U and on π−1(B − U) agree near H × {±1} × F, hence we obtain smooth
contact form on E. ¤

Consider now two compact manifolds X, Y with non-empty boundaries, of dimensions
2n, 2m respectively. Assume that they are endowed with exact symplectic forms ωX =
dβX , ωY = dβY , both with convex type boundaries. Let βX = esµ∂X , βY = e−sµ∂Y in
collars ∂X × (−1, 0], ∂Y × [0, 1) of boundaries, where µ∂X , µ∂Y are some contact forms.
In this notation s ∈ [−1, 1] and both boundaries correspond to s = 0. Let E be the
total space of a bundle over ∂Y with fiber X defined on a hypersurface H∂Y ⊂ ∂Y and
having the structure group Ex(X, ∂X, βX) of exact symplectomorphisms of X equal to
the identity near the boundary. Similarly, assume that the bundle F → ∂X with fiber Y
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is defined on a hypersurface H∂X ⊂ ∂X, and its structure group is Ex(Y, ∂Y, βY ). The
assumptions on structure groups imply that ∂E = ∂X × ∂Y = ∂F.

Proposition 2.12. Under the above assumptions, E ∪∂X×∂Y F is contact.

Proof. Consider X̃ = X ∪ ∂X × [0, log RX ] obtained from X by adding a long collar,
with βX = esµ∂X for s ∈ [−1, log RX ]. In this way the contact form on the boundary is
multiplied by the constant RX . Analogously, Y is enlarged to Ỹ = Y ∪∂Y × [− log RY , 0]
with βY = e−sµ∂Y for s ∈ [− log RY , 1] (we assume RX , RY ≥ 1). Let Ẽ denote the
obvious extension of E to a bundle with fiber X̃, and similarly F̃ the extension of
F. Applying Proposition 2.11 gives a contact form on Ẽ equal to RY µ∂Y + βX near
∂Ẽ = ∂Y ×∂X. The choice of RY which yields contactness is determined by the behavior
of the forms in the tubular neighborhood of H∂Y . We claim that the choice depends
only on X (not on X̃) regardless of RX . To see this, let us calculate ηEdηn+m−1

E for
ηE = RY µ∂Y + βX + udϕ in ∂X × [−1, log RX ] × H × [−1, 1]. Since βX = esµ∂X for
s ∈ [−1, log RX ],

ηEdηn+m−1
E = esnµ∂Xdµn−1

∂X

(
D1R

m
Y µ∂Y dµm−1

∂Y ds + D2R
m−1u′µ∂Y dµm−2

∂Y dsdtdϕ̃ +

D3R
m−2u′dµm−1

∂Y dtdϕ̃ + D4R
m−1dµm−1

∂Y dsdϕ̃
)
,

where Di, i = 1, 2, 3, 4 are again constants depending only on m,n.
It follows from this formula that the choice of RY is independent of the extension by

the long collar and our claim follows. Thus we can choose R = RX = RY such that there
are contact forms on Ẽ and F̃ that restrict to R(µ∂X + µ∂Y ) on ∂E = ∂F = ∂X × ∂Y.

For simplicity we replace now log R with K. After the change the parameter in [−K, 1]
replacing s with s+2K, the form ηF on ∂X×∂Y ×[K, 1+2K] becomes Rµ∂X +e−s+Kµ∂Y .

If ψ : [K, 1 + 2K] → R is a positive smooth function such that ψ = es−K near s = K
and ψ = 1 near 1 + 2K, then it can be regarded as a function on F (we simply extend
it from the collar ∂F × [0, 1] to whole F ). It yields that ψηF is contact and it smoothly
agrees with ηE along ∂E = ∂F = ∂X × ∂Y. Thus we get a smooth contact form on
E ∪ F. ¤
Remark 2.13. In some proofs in the sequel we use the following well-known fact: if
η1, η2 are contact and homotopic on X, then there is a topologically trivial symplectic
cobordism M = X × [0, 1] between (X, η1) and (X, η2). In particular, we can always
deform the symplectic form on a compact symplectic manifold with boundary of contact
type to have the Giroux form on the boundary. Later on we will often assume this
property tacitly, especially if we write λ̂ for a given contact form λ.

One of our tools is the heat flow deformation of a confoliation [AW]. On a closed
manifold Y 2m+1 consider a confoliation, i.e. a 1-form α satisfying the inequality α ∧
(dα)m ≥ 0. The points x ∈ Y where α∧ (dα)m > 0 are called contact (regular), the other
(non-contact) points are called singular and the set of singular points will be denoted by
Σ. Altschuler and Wu show that under some assumptions, the heat flow can deform the
confoliation to a contact form. To describe those assumptions we choose a Riemannian
metric g on Y and consider the form τ = ?(α ∧ (dα)m−1), where ? denotes the Hodge
star. Then at every point x ∈ Y we denote by D ⊂ TYx the orthogonal complement of
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Null(τ)p = {V ∈ TpY : ιV τ = 0}. At a contact point the subspace D has dimension 2m
and it is transversal to the Reeb vector of τ. At a point where rank of dα on ker α is
2m− 2, the dimension of D is 2, and D is zero at points where rank of dα|ker α is less
than 2m− 2. A point x is called accessible if there is a smooth curve σ : [0, 1] → Y such
that z′(t) ∈ D and is non-zero for all t ∈ [0, 1], z(0) = x and z(1) is a contact point.
Thus we see that in the case when the rank of dα|ker α is less than 2m− 2 no singular
point is accessible. Since we have to reduce the general case to that of corank at most
3, this is one of the main difficulties of our construction.

In the sequel we will use the following theorem.

Theorem 2.14. [AW] Suppose that Y is a closed manifold with a confoliation α. If every
non-contact point of Y is accessible, then Y supports a contact form C∞-close to α.

3. Main theorem

Our main theorem is the following.

Theorem 3.1. If (X2m+1, α) is a closed contact manifold and M2n admits a strong
symplectic fold of convex type, then X ×M is contact.

Proof. Consider the decomposition M = W1 ∪ (N × [−1; 1]) ∪ W2 and the forms
ω+, ω−, λ given by the strong symplectic fold on M. Here N is the common boundary of
W+,W−, N× [−1, 1] is a tubular neighborhood of N with N× [−1, 0] ⊂ W−, N× [0, 1]) ⊂
W+, W1 = W− −N × (−1, 0],W2 = W+ −N × [0, 1), ω± = dγ±.

We can assume that the contact form α is given by the Giroux construction with the
page P, the binding B using β, h1, h2, ϕ and u as described in Section 2. Recall that dβ
is symplectic on P and β restricts to a contact form β on ∂P.

We define a 1-form η̃ on X ×M by separate formulae on X × (W1 ∪W2); (X −B ×
D2)×N × [−1, 1]; B ×D2 ×N × [−1, 1].

On X ×W± we take η̃ = α + γ±. By the discussion in Section 2, for every l ∈ R the

form β̂ + l dφ is well-defined on X −B ×D2. Therefore on (X −B ×D2)×N × [−1; 1]
we can put η̃ = β + u(φ)dϕ + g(t)dφ + f(t)λ with f, g given in Theorem 2.2 .

Finally, let

η̃ = h1(r)β + f(t)λ + h2(r)g(t)dφ(3.2)

on B ×D2 ×N × [−1, 1].

Lemma 3.3. The form η̃ is smooth on X ×M and contact in the complement of (B ×
{0})× (N × {0}) ⊂ X ×M.

Proof. A direct inspection of the definition shows that the form is smooth and in
X × (W1 ∪W2) is contact.

In (X −B ×D2)×N × [−1; 1] we have

η̃ ∧ (dη̃)m+n = (m + n− 1)fn(f ′g − g′f)dφ(dβ)m ∧ λ ∧ (dλ)n−1 ∧ dt+

+(m + n)fn−1(dβ)mdϕ(dλ)n−1(g′(t)dtdφ + f ′(t)dtλ)u(φ) + u′(φ)κ

for some 2m + 2n + 1-form κ. As dβ
m

dϕ is a (2m + 1)-form on P, hence the middle
term vanishes. Furthermore, for R big enough |u′(φ)κ| can be made arbitrarily small,
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because κ does not depend on R. It follows that η̃(dη̃)m+n > 0, hence our formula defines
a contact form on this part.
It remains to examine η̃ on B ×D2 ×N × [−1; 1]. Direct computations give

η̃ ∧ (dη̃)m+n = c1(f
′g(h1h

′
2 − h′1h2) + fg′h′1h2)β ∧ dβm−1 ∧ dt ∧ λ ∧ dλn−1 ∧ dr ∧ dφ,

where c1 is a positive constant. Since h1h
′
2−h2h

′
1 > 0, f ′g ≥ 0, fg′h′1h2 ≥ 0, we see that

η̃ ∧ (dη̃)m+n ≥ 0 and it vanishes if and only if f ′g = 0 and fg′h′1h2 = 0. The equality
f ′g = 0 implies t = 0. Furthermore, for t = 0 we have fg′ > 0. To complete the proof
notice that our assumptions on h1, h2 yield h′1h2 = 0 ⇔ r = 0. ¤

We want to apply Theorem 2.14, so we need the accessibility condition to be satisfied.
First we need to establish that rank dη̃ | ker η̃ = 2(m+n−1) on Σ = B×{0}×N×{0}.
Unfortunately, rank dη̃ | ker η̃ < 2(m + n) − 2 since dη̃|T (X ×M)|Σ = 2dβ + dλ and
η̃|T (X×M)|Σ = 2β +λ. In order to remedy this we change the confoliation form making
it asymmetric with respect to the decomposition W1 ∪ (N × [−1; 1]) ∪ W2. Roughly
speaking, we impose in this way some more transversality along the singular set. Define
the form η on X ×M by the formula

η =





e−1(β̂ + dφ + γ−) on B ×D2 ×W1

k(t)(h1(r)β + f(t)λ + h2(r)g(t)dφ) on B ×D2 ×N × [−1; 1]

e(β̂ − dφ + γ+) on B ×D2 ×W2.

(3.4)

Here (r, φ) are polar coordinates on the disk D2 of radius 2, f, g are functions defined in
Theorem 2.2 and k : M → [e−1; e] is a positive, non-decreasing function satisfying

k(t) =





e−1 on W1

et on N × [−1 + ε; 1− ε], t ∈ [−1 + ε; 1− ε]
e on W2

with ε small enough.
This formula extends to X ×M as in Lemma 3.3. We get again a confoliation with the
critical set Σ = B × {0} ×N × {0}.
To apply the result of [AW] we need a Riemannian metric 〈·, ·〉 on X × M. Choose
〈·, ·〉 so that near Σ submanifolds N, I, B, D2 are pairwise orthogonal. We will check
that η satisfies the assumption of Theorem 2.14. In fact, we show that for every point
(b, v) ∈ B×{0}×N ×{0}, the radial path z(r) = (b, (r, φ), 0, v) ⊂ B×D2×N × I (with
z′(r) = ∂

∂r
∈ TD2 for r ∈ [0; 2] and any fixed φ ∈ [0, 2π)) satisfies z′(t) ∈ D, hence every

x ∈ Σ is accessible from a contact point. The proof is divided into two parts. First we
show that on Σ we have D = TD2 and then that z′(r) ∈ D for r ∈ (0; 2].

Lemma 3.5. Under the assumptions above, D = TD2 on Σ.

Proof. By Definition 3.4, η = etη̃, hence

dη = etdtη̃ + etdη̃ =(3.6)

= etdt(h1(r)β + f(t)λ + h2(r)g(t)dφ)+

+et(h′1(r)drβ + h1(r)dβ + f ′(t)dtλ + f(t)dλ + h′2(r)g(t)drdφ + h2(r)g
′(t)dtdφ).
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Substituting t = r = 0 in Formula 3.6 gives that η|T (X × M)|Σ = 2β + λ and
dη|T (X×M)|Σ = 2dβ+dλ+dt(2β+λ) with Σ = B×{0}×N×{0}. As dβm = 0, dλn = 0,
we easily calculate:

η ∧ (dη)m+n−1 = η ∧ (m + n− 1)(2dβ + dλ)m+n−2 ∧ dt ∧ (2β + λ) =

= η ∧ (m + n− 1)2m−1(dβ)m−1 ∧ (dλ)n−1 ∧ dt ∧ (2β + λ) =

= Cβ ∧ (dβ)m−1 ∧ λ ∧ (dλ)n−1 ∧ dt = CdvolB ∧ dvolN ∧ dt

for some positive constant C. Thus ?(η ∧ (dη)m+n−1) = ±CdvolD2 and D = TD2. ¤
It is not clear yet if we can extend our path z(r) beyond Σ since we do not know the

behavior of D on the complement of Σ, hence in the second part of the proof we deal
with the case r > 0. The proof is an elementary but long computation, hence we skip
some parts of it.

As η is contact on X ×M −Σ, we have that D is 2(m + n)-dimensional and the Reeb
field of τ is equal to D⊥. We will show that with respect to the previously chosen metric
〈·, ·〉 the Reeb field Rτ on B × (D2 − {0}) × N × {0} is perpendicular to ∂

∂r
. Therefore

once we show that for t = 0 the Reeb field Rτ is tangent to T = B × S1
r ×N × I (with

S1
r = {p ∈ D2 : |p| = r}), or equivalently, that τ is non-degenerate on T, the proof is

completed.

From now on we omit the wedge sign from the computations to make them more
compact.

As in Lemma 3.5, substituting t = 0 in Formula 3.6 gives η̃|T (X×M)|S = h1(r)β +2λ
and dη̃|T (X × M)|S = h′1drβ + h1dβ + dλ − h2dtdφ on S = B × D2 × N × {0}. We
obviously have (dη)m+n−1 = (dtη̃ + dη̃)m+n−1 = (dη̃)m+n−1 + (m + n − 1)(dη̃)m+n−2dtη̃
on S. Further, as dβm = 0, dλn = 0 we get

(dη̃)m+n−1 =

(
m + n− 1

n− 1

)
(dλ)n−1(h′1drβ + h1dβ − h2dtdφ)m+

+

(
m + n− 1

n− 2

)
(dλ)n−2(h′1drβ + h1dβ − h2dtdφ)m+1 =

= (dλ)n−1((dβ)m−1(D1drβ+D2dtdφ)+D3(dβ)m−2drβdtdφ)+D4(dλ)n−2(dβ)m−2drβdtdφ

for some functions Di (i ∈ {1, 2, 3, 4}) of variable r. In a similar manner we calculate
dtη̃(dη̃)m+n−2 :

dtη̃(dη̃)m+n−2 = dtη̃(h′1drβ+h1dβ+2dλ−h2dtdφ)m+n−2 = dtη̃(h′1drβ+h1dβ+2dλ)m+n−2

= dtη̃

((
m + n− 2

n− 1

)
(h1dβ)m−1(2dλ)n−1 + (m + n− 2)(h1dβ + 2dλ)m+n−3h′1drβ

)
.

After arduous, but elementary computation we get that

η ∧ (dη)m+n−1 = C1β(dβ)m−1drλ(dλ)n−1 + C2β(dβ)m−1dφ(dλ)n−1dt+

+C3(dβ)m−1dφλ(dλ)n−1dt + C4β(dβ)m−2drdφλ(dλ)n−1dt

+C5β(dβ)m−1drdφλ(dλ)n−2dt + C6β(dβ)m−1λ(dλ)n−1dt
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for some functions Ci, i = 1, . . . , 6 of variable r. Furthermore, β̂ = ?(β(dβ)m−2) in B

and λ̂ = ?(λ(dλ)n−2) in N both have maximal ranks equal to respectively 2m − 2 and
2n− 2. If we additionally set β1 = ?((dβ)m−2) in B and λ1 = ?((dλ)m−2) in N, then

τ = ?(η ∧ (dη)m+n−1) = E1dtdφ + E2λ1dr + E3drβ1 + E4β̂ + E5λ̂ + E6drdφ

again for some functions Ei, i = 1, . . . , 6 of variable r. The pullback of τ to T via the
inclusion T ↪→ M ×M to B × S1

r ×N × {0} yields

?(η ∧ (dη)m+n−1) = E1dtdφ + E4β̂ + E5λ̂.

The rank of this form is equal to 2(m− 1) + 2(n− 1) + 2 < 2(m + n), which completes
the proof.

¤
Theorem 3.1 has a generalization to the case of contact bundles over a strong sym-

plectic fold.

Theorem 3.7. Let (W,ω) be a compact exact symplectic manifold, π : E → W a bundle
over W with a compact contact fiber (X, η0). If the structure group of the bundle is
contained in the group Cont(X, η0) of diffeomorphisms preserving the contact form η0

(strict contactomorphisms), then E admits a contact form.

Proof. We will use the symplectization of the fiber and the well-known Thurston
construction of symplectic forms on bundles. By assumptions, ω = dα. Let {Us}s∈S

be an open cover of W with local trivializations Ψs : π−1(Us) ∼= Us × X. If {fs}s∈S

is the partition of unity subordinated to {Us}s∈S, then we define a symplectic form
ω = d(Kπ∗α + et(

∑
s∈S fsΨ

∗
sη0)) on E × [−ε, ε] for some K big enough and ε > 0.

Let R be the Reeb vector field of η0, so that the interior products with η0, dη0 are
ιRη ≡ 1, ιRdη0 ≡ 0. Since η0 is preserved by the structure group of the bundle, there is
a horizontal vector field R̃ on E such that its pushforward by Φs is equal to R for any
s ∈ S. This implies that R̃ is the Reeb field of Φ∗

sη0|π−1(w) for any s and w ∈ W. Thus,
if η =

∑
s∈S fsΨ

∗
sη0, then we have ιR̃dη ≡ 1, ιR̃η ≡ 0. Therefore for the Liouville vector

field L of ω we have ιLω = Kπ∗α + etη. If we additionally apply ιR̃ to the last equation,
we get −ιLιR̃ω = −ιLιR̃(etdtη + etdη) = etιLdt = et. This implies that L is transversal
to E, hence E ∼= E × {0} ⊂ E × R is contact. ¤
Now let (X, α) be a closed contact manifold and let (W±, N, λ±) be a strong symplectic
fold of convex type on W. Consider bundles E± → W± with fiber X, trivial over the
fold locus N = ∂W− ∩ ∂W+ and such that E− is contact with respect to (X,α), E+ is
contact with respect to (X,α′). Assume that α, α′ are homotopic to Giroux forms α0, α

′
0

homotopic to α̂0. Then we get the following extension of Theorem 3.1.

Theorem 3.8. Any contact bundle over a strong symplectic fold of convex type admits
a contact form.

In fact, over the collar N × [−1, 1] the bundles are product, thus the arguments used
in the product case hold. To be more precise, we start from the contact forms on E+

given by the contactness of those bundles. Since the bundles are trivial over N × [−1, 1],
we can use the homotopies α ∼ α0, α

′ ∼ α̂′0 to get the form β + α0 over N × [−ε, 0] and
β + α̂0 over N × [0, ε] for some ε > 0. Having established this, we can apply the same
arguments which were used to prove Theorem 3.1.
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In the next section we use this theorem in the following special case. Let (X, α) be
a contact manifold. Consider a contact bundle p : E → W with fiber (X,α) which
is trivial over W+. Thus over W+ we can change the (trivial) bundle so that the fiber
(X, α̂0) satisfies the assumptions of Theorem 3.8. In particular, Theorem 3.8 works for
any contact bundle over a sphere.

4. Some applications

Results of the previous section give a constructive way to show that some manifolds
are contact. We present now a series of examples.

Proposition 4.1. The following manifolds admit contact structures:

(1) Sk1 × ...× Skr , if k1 + ... + kr is odd;
(2) Sk1 × ...× Skr ×X if X is a closed contact manifold and k1 + ... + kr is even;
(3) M × Sk1 × ...× Skr , if M is a closed manifold with a strong symplectic fold and

k1 + ... + kr is odd;
(4) M ×X, if M is a closed orientable 4-manifold and X is contact;
(5) Σ×X, where Σ is a closed oriented surface (see [Bo]).

Proof. Both D2k and D2k+1 × S2l+1 with k ≥ l are Weinstein manifold, thus taking
the doubles we see that S2k and S2k+1×S2l+1 admit strong symplectic folds with any k, l.
Therefore the first three cases follow by induction. To get (4) one has to use [B]. In the
last statement it is enough to notice that any orientable surface has a strong symplectic
fold. This statement was first proved in [Bo] for genus g > 0. ¤

Any Lie group of odd dimension is obviously almost contact. However, no general
construction of contact forms on compact Lie group is known. In particular, except for
rank 1 there is no G-invariant contact forms on G. The product S3 × S3 × S3 is an
example of simply connected Lie group which admits a contact form but no G−invariant
contact form. Some examples of contact forms on quotient spaces G/H which do not
admit G−invariant contact forms can be obtained from Theorem 3.8. For instance, the
following is true.

Proposition 4.2. For any even n, the homogenous space SO(n + 3)/SO(n) is contact,
but admits no SO(n + 3)−invariant contact form.

Proof. The space SO(n + 2)/SO(n) has a SO(n + 2)−invariant contact form given
by the circle fibration SO(n + 2)/SO(n) → SO(n + 2)/(SO(n)×U(1)) with symplectic
base. Moreover, the space SO(n + 3)/SO(n) has no SO(n + 3)-invariant contact form.
Both statements follow from Alekseevski’s description of contact homogeneous spaces
[A], see [HT] for detailed explanations. Consider now the bundle SO(n + 3)/SO(n) →
SO(n + 3)/SO(n + 2) with fiber SO(n + 2)/SO(n). If n is even, then on the base
SO(n+3)/SO(n+2) = Sn+2 we have the obvious strong symplectic fold. The structure
group of the bundle is SO(n + 2), thus it is a contact bundle, trivial over the fold locus
Sn+1 ⊂ Sn+2. By Theorem 3.8, there exists a contact form on the total space of the
bundle. ¤

Another example is the space SO(2k + 1)/SU(k) of ”special unitary twistors” on S2k

which is fibered over SO(2k + 1)/SO(2k) = S2k with fiber SO(2k)/SU(k).
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We will describe now examples of a modification which can be performed on a manifold
with a strong symplectic fold. Assume that M2m admits a strong symplectic fold W− ∪
W+ with the fold locus N. We say that a surgery on a sphere Sk−1 ⊂ M is symmetric
of index k, if it is performed using an embedding φ : Sk−1 × D2m−k+1 → M such that
φ = φ0 × idD1 , where φ0 : Sk−1 ×D2m−k → N is an embedding and D1 corresponds to
the transversal disk of a tubular neighborhood of N.

Proposition 4.3. If M ′ is obtained from M by a symmetric surgery of index k ≤ m =
1
2
dimM such that the stable almost complex structure of M extends to M ′, then M ′ has

a strong symplectic fold structure.

Proof. Let M ′ = (M−φ(Sk−1×D2m−k+1))∪(Dk×S2m−k). Decompose S2m−k into the
sum of two disks D− ∪D+ such that the decomposition corresponds to cut of the sphere
by N. Since the surgery is symmetric, we get accordingly handles Dk ×D−, Dk ×D+ of
index k attached to respectively W−,W+, resulting in a decomposition W ′

− ∪W ′
+. Since

k ≤ m and almost complex structures on W−,W+ extend to these handles, thus given
contact forms extend to W±. ¤

Corollary 4.4. If M2m admits a strong symplectic fold, k + n = 2m, then so does the
connected sum M#(Sk × Sn).

Proof. The previous proposition can be applied, since the connected sum is obtained
by the surgery on a trivially embedded sphere Sk−1, and we can assume that k ≤ n. ¤

We should admit that we do not know any example of closed stably almost complex
manifold which admits no strong symplectic folds. The standard Morse - Smale theory
shows that for any closed manifold M2m one can find a decomposition M = W+ ∪N W−,
where N = ∂W+ = ∂W− = W+ ∩ W− with both W+,W− having the homotopy type
of complexes of dimension at most m. If M is stably almost complex, then W± are
almost complex, thus we have exact symplectic forms on both parts by contact surgery.
However, the resulting contact forms λ−, λ+ on N do not need to agree. What we do
know, it is that they define homotopic almost contact structures on N.

5. Concave folds and some further examples

In Section 3 we considered decompositions of a manifold M into the sum of two exact
symplectic cobordisms W1 and W2 having the same contact boundary N at their convex
ends. Then we constructed a contact form on M ×X = (W1 ∪N W2)×X, provided that
X is a contact manifold. Theorem 3.8 gives a slight improvement: we can assume that
we have fibrations over each cobordism, trivial at N and with appropriate restrictions
on the structure group.

Our purpose is now to extend this construction to the case when M is decomposed
into several pieces, each being a symplectic cobordism. In this case we have to allow
concave ends to meet at a common component of N.

In case when W1,W2 meet in such a way that one of the ends is concave and one is
convex (and the contact forms at the boundary are equal), we apply standard gluing
of two symplectic cobordisms, which assembles two symplectic cobordisms into one,
simplifying the decomposition.
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Consider now the case when concave ends of two symplectic cobordisms meet at (N, λ).
This means that in a collar neighborhood N × [−1, 1] of N we have the form e−tλ for

t ∈ [−1; 0] and etλ̂ for t ∈ [0; 1].
We explain now how to use Theorem 3.1 to obtain a contact form on the product of

the sum of such two cobordisms by a contact manifold X.

Lemma 5.1. Suppose that (X, α) and (N, λ) are closed contact manifolds. Then there

exists a contact form on X×N × [−1, 1] equal to e−tλ+α near N ×{−1} and to etλ̂+α
near N × {1}.

Proof. We apply Theorem 3.1 after switching the role of X and N.
In fact, define positive functions

g1(t) =

{
1 near t = −1
et near t = −1

2

,

on [−1,−1
2
] and

g2(t) =

{
e−t near t = 1

2
1 near t = 1

.

on [1
2
, 1].

The contact form g1(t)(α+e−tλ) on X×N×[−1,−1
2
] extends to etα+λ on X×N×[−1

2
, 0].

Similarly, the contact form g2(t)(α + etλ̂) on X × N × [1
2
, 1] extends to etα + λ̂ on

X ×N × [0, 1
2
]. Thus we can apply Theorem 3.1 to construct the required form.

¤
In Lemma 5.1, in order to get a contact structure on the product of this manifold by

a contact one, we need a contact form λ on one end of N × [−1, 1] and λ̂ on the second,
while on the contact factor the form does not depend on t ∈ [−1, 1]. We will show now
that the gluing is possible also if the two pairs of forms are equal to (λ, α) and (λ, α̂) on
the two sides. If a symplectic cobordism is just a symplectification of a contact form,
then one can consider both λ and λ̂ as the input of the symplectification. However, if
the symplectic cobordism is nontrivial, then such a swap is in general impossible. The
same happens if we do not have the product Wi×X, but a bundle. If we have λ̂+α over
a boundary component, then it can not change the cobordism to get at the boundary
the form λ + α̂.

Lemma 5.2. Suppose that (X, α) and (N, λ) are closed contact manifolds. Then there
exist two contact forms on X ×N × [−1, 1], both equal to e−tλ + α near N × {−1} and

one equal to etλ̂ + α, the other to etλ + α̂ near N × {1}.
Proof. In case e−tλ + α meets e−tλ̂ + α we apply Lemma 5.1. If it meets e−tλ + α̂ we

use Theorem 3.4 and Lemma 5.1 to X ×M × [−1, 1] divided into 4 parts:

(1) X ×N × [−1,−1
2
] with the form e−tλ + α,

(2) X ×N × [−1
2
, 0] with the form etλ̂ + α,

(3) X ×N × [0, 1
2
] with the form e−tλ̂ + α̂,

(4) X ×N × [1
2
, 1] with the form etλ + α̂.
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The forms are defined such that crossing the convex fold at 0 corresponds to passing
from (α, λ) to (α̂, λ) and crossing concave folds ±1

2
is the swap of (α, λ) to (α, λ̂) and

back. In all cases one of the previously described constructions works. Thus we get a
contact form on X ×N.

¤
All of this enables us to extend the notion of strong symplectic fold to allow concave

folds.
Consider a closed hypersurface N ⊂ intM and denote by Wi, i = 1, .., k the connected

components of M −N compactified by adding adjacent components of N. Hence Wi is
just a closure of a component of M −N. Let N =

⋃
s Ns denote the decomposition of N

into the sum of connected components.

Definition 5.3. A strong symplectic fold on a compact manifold M is given by:

(1) a decomposition {Wi}iof closed submanifolds, M =
⋃

i Wi, ∂Wi =
⋃

s Nis, ob-
tained by cutting M by a hypersurface N ⊂ Int M ;

(2) each component Ns of N is endowed with a contact form βs;
(3) exact symplectic forms ωi = dλi on Wi such that each ωi gives a symplectic

cobordism on Wi with some convex ends and some concave ends and each pair
ωi, ωj satisfies one of the following compatibility condition for every connected
component Ns of N with Ns ⊂ Wi ∩Wj:
(a) λi = etβs in Ns × [−1, 0] ⊂ Wi and λj = e−tβs in Ns × [0, 1] ⊂ Wj where t

is the parameter of [−1, 1] (convex fold: at Ns a convex end of Wi meets a
convex end of Wj);

(b) λi = e−tβs on Ns×[−1, 0] ⊂ Wi and λj = etβs on Ns×[0, 1] ⊂ Wj, where t is
the parameter of [−1, 1] (concave fold: a concave end of Wi meets a concave
end of Wj);

(c) the forms ωi are either convex or concave along any component of the bound-
ary of M .

As before, the hypersurface N is called the fold locus.
To illustrate usefulness of concave passes we consider a filling question. It is well-known

that no overtwisted contact form λ on a compact 3-manifold M is fillable, i.e., there is no
compact manifold with boundary of contact type (convex boundary) having overtwisted
contact form on the boundary. Constructions based on fibrations, for instance the open
book technique, lead to the following question. Is there a similar obstruction to fill up
the product of an overtwisted 3-manifold by S1? In other words, we ask if the form
e−tλ + dθ on M × [0, ε)× S1 can be extended to a contact form on a compact manifold
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W such that ∂W = M ×{0}× S1. Below we show examples that fillability in this sense
is possible. By dθ we denote the standard form on S1.

Given two connected contact manifolds (X, α), (X ′, α′) oriented compatibly with con-
tact structures, one can perform 1-surgery such that the resulting manifold is the con-
nected sum X#X ′. Then by the contact surgery (Theorem 2.3) we get a contact form
on the connected sum. Since we need some choices to perform such operation, the result
is not defined uniquely, but its homotopy class is already unique. By slight abuse of
language we denote the contact form obtained in this way by α#α′.

Proposition 5.4. If n > 0 and λ) is a contact form on S2n+1, then the form e−t(λ#λ̂)+
dθ on a collar of the boundary S2n+1#S2n+1 × [0, ε) × S1 ⊂ D2n+2 × S1 extends to a
contact form on D2n+2 × S1.

Proof. Consider the symplectizations e−tλ on S2n+1× [−1, 0] and etλ̂ on S2n+1× [0, 1].
Gluing these manifolds along S2n+1×{0} we get a manifold with a concave fold S2n+1×
{0} and boundary S2n+1 ∪ −S2n+1. We can perform contact 1-surgery by adding a 1-
handle to the boundary which makes the boundary connected, hence diffeomorphic to the
sphere. The manifold W obtained by the surgery is diffeomorphic to S2n+1×S1−D2n+2

and by Theorem 2.3 the resulting contact form on the boundary sphere is λ#λ̂ and the
boundary is convex (note that we still have the fold in the interior of W ). Denote by
S ⊂ IntW the circle given as the sum of intervals x0 × [−1, 1] ⊂ S2n+1 × [−1, 1] and
y0×[−1, 1] in the handle, where y0×{±1} are attached to x0×{±1} by the attaching map
of the handle. The (topological) surgery of index 2 on W with the attaching circle S and
the standard framing of the normal bundle (determined by the inclusion W ⊂ S2n+1×S1)
yields the disk D2n+2. Moreover, the standard almost complex structure on W extends
to the 2-handle. By Lemma 5.1, on W ×S1 we can find a contact form equal to λ#λ̂+dθ
on the boundary. To finish the proof we have to show that this contact form produces a
contact form on D2n+2 × S1, obtained from W × S1 by the 2-surgery multiplied by S1.
The product of a 2-handle attached to W by S1 corresponds to two surgeries on W ×S1,
one of index 2 on W × S1 and one of index 3 performed on the result of the first one.
Since the manifold W × S1 is of dimension at least 5 and almost contact structure is
compatible with the surgeries, we get a contact form on D2n+2×S1. Finally, the surgeries
are done in the interior, hence it preserves the form we have obtained previously in a
neighborhood of the boundary sphere.

¤

Corollary 5.5. There exists an overtwisted contact form λ on S3 such that the form
e−tλ + dθ extends from a collar S3 × S1 × [0, ε) to a contact form on D4 × S1.

This property can be applied to prove the following.

Proposition 5.6. If M5 is closed almost contact and admits an open book decomposition
with trivial monodromy, then it is contact.

Proof. Let P denote the page of the open book. The almost contact structure of M
gives a stably almost complex structure on P. But for an open manifold stably almost
complex structure determines an almost complex structure. It follows from basic facts
of the Morse - Smale theory that there exists a Morse function f : P → [0, 4] with one
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minimum (= 0), constant and maximal (= 4) on ∂P. This function has critical points
only of indices q = 0, 1, 2, 3 and such that the value of f at a critical point of index q is
q. Denote Wi = f−1[i − 1

2
, i + 1

2
], i = 0, 1, 2, 3, 4. Then W0 is diffeomorphic to D4, Wi

contains only critical points of indices i and W4 = ∂P × [7
2
, 4]. Let λ be an overtwisted

contact form on S3 such that etλ + dθ extends to a contact form on D4 × S1. Since P is
almost complex, then by the contact surgery we extend the form etλ to 1-handles of W1.
This makes W1 a symplectic cobordism with concave end f−1(1

2
) and convex end f−1(3

2
).

Since the surgeries can be performed far from overtwisted disks, the contact form on
the latter can be assumed again overtwisted. Because on an overtwisted 3-manifold one
can perform contact surgery on every framing, so the same holds for W2. In the same
manner we make W3 a symplectic cobordism with concave end f−1(7

2
) and convex end

f−1(5
2
). In this way we get symplectic structures which agree with the almost complex

structure of P. Since the homotopy class of an overtwisted form is determined by the
homotopy class of the contact distribution, the contact forms on f−1(5

2
) obtained from

W2 and W3 are homotopic, hence by Remark 2.13 can be assumed equal. Finally, on W4

we put symplectization of the form on f−1(5
2
) we used for W3. In this way we get a strong

symplectic fold on W1∪W2∪W3∪W4 with fold locus f−1(5
2
)∪ f−1(7

2
), where the fold at

f−1(5
2
) is convex and at f−1(1

2
) is concave. Therefore, by Theorem 3.1 and Lemma 5.1

we have a contact form on the product with S1. Since the form on f−1(1
2
)× S1 extends

to D4 × S1, we get also a contact form on P × S1. By the construction, this form is the
product of a convex form on W4 by the standard form on S1 at ∂P. It can be extended
to ∂P ×D2 ⊂ M exactly as it is done in the case of Giroux’ forms. This completes the
proof. ¤

6. Piecewise contact fibered structures

We will compile constructions of previous sections to obtain a notion generalizing both
Giroux’ structures and constructions of Section 3. This notion is still sufficient to provide
a contact form on a manifold endowed with such structure.

Let Y be a compact orientable manifold. Given a hypersurface H ⊂ IntY, let {Yi}
denote the collection of connected components of Y − H compactified by adding com-
ponents of H contained in the closure of Yi. Our basic assumption is that each Yi is a
fibration of one of the following two types:

(1) a contact fibration with a closed contact fiber (Xi, αi) over an exact symplectic
cobordism (Wi, dµi) trivial in a neighborhood of ∂Wi, or

(2) the fibration over a closed contact manifold (Xi, αi), defined on a hypersurface
in Xi, such that the fiber is an exact symplectic cobordism (Wi, dµi) and the
structure group is the group Ex(Wi, ∂Wi, µi) of exact symplectomorphisms equal
to the identity in a collar of ∂Wi.

If this is satisfied, then every component of H is the product of Xi by a component
of the boundary of the symplectic cobordism Wi. Let us denote by Nis, s = 1, .., ls
components of ∂Wi and by λis the contact form induced on Nis by µi (which is either
convex or concave at Nis).

If Nis = Njr is a connected component of the intersection Yi∩Yj ∩H, then we assume
that one of the following conditions is satisfied:
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(1) Nis is a convex end of Wj, Njr is a convex end of Wj and Xi = Xj;
(2) Nis is a concave end of Wi, Njr is a concave end of Wj and Xi = Xj;
(3) Nis is a convex end of Wi, Njr is a convex end of Wj, Nis = Xj, Njr = Xi;
(4) Nis is a concave end of Wi, Njr is a concave end of Wj, Nis = Xj, Njr = Xi;
(5) Nis is a concave end of Wi, Njr is a convex end of Wj and Xi = Xj;
(6) Nis is a convex end of Wi, Njr is a concave end of Wj and Xi = Xj.

Finally, we assume compatibility of the forms on the adjacent ends of Y ′
i s. In all the

cases above we require one the following conditions, according to the list above:

(1) λis = λjr and αi = α̂j or λis = λ̂jr and αi = αj;

(2) λis = λjr and αi = α̂j or λis = λ̂jr and αi = αj;
(3) λis = αj and αi = λjr;
(4) λis = αj and αi = λjr;
(5) λis = λjr and αi = αj;
(6) λis = λjr and αi = αj.

If ∂Yi contains a connected component of ∂Y, then in a collar of that component we
have the product of Xi and an end of Wi (either convex or concave).

Remark 6.1. We allow a component of H to be the boundary of two different ends of
one Yi (when i = j in the list above). In particular, it is possible that Y −H is connected.

One can explain our assumptions by saying that the fold locus H divides the manifold
M into a number of fibrations carrying contact fibered structure with both fibrations
and forms product near any component of H. Under our compatibility conditions we can
apply either Theorem 3.8 or Lemma 5.2.

Definition 6.2. A decomposition of M satisfying the assumptions above is called a
piecewise contact fibered structure on M.

Theorem 6.3. If M admits a piecewise contact fibered structure, then M is contact.

Proof. Consider a component Yi of the decomposition. As we explained in Sections 2
and 3, it admits a contact form equal to λε

ij +p∗αi, or to p∗λij +αi, in a collar of the j-th
component of ∂Yi, depending on the type of the fibration on Yi. Furthermore, ε = ±1
depending on convex/concave type of the fold. Under the compatibility conditions we
use Theorem 3.8 or Lemma 5.2 to extend those forms through H and we get a global
contact form on M.

Remark 6.4. One can allow that instead of equalities in the compatibility conditions
one assumes equality up to homotopy, for instance up to the multiplication by a constant.
This can be always reduced to the equality case by extending the adjacent end (which
is e±tλj, t ∈ [0, 1]) from [0, 1] to [0, R] for R appropriately chosen and applying the trick
of Lemma 5.2.

¤
Let us illustrate Theorem 6.3 by the following examples.

Example 6.5. Any Giroux’ structure is decomposable in the described way. One part
is D2×B, the other is the fibration over S1 with fiber P. In this case the fold locus is of
type 3.
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Example 6.6. If M is a S1-bundle over X ×N, where (X,λ), (N, λ′) are contact, then
M is contact (in particular, X × S1 × S1 is). Begin with the trivial bundle. Write
N ×S1 = N × [0, 1

4
]∪N × [1

4
, 1

2
]∪N × [1

2
, 3

4
]∪N × [3

4
, 1] with N ×{0} and N ×{1} glued.

On these four parts put etλ′, e−t+ 1
2 λ′, et− 1

2 λ̂′, e−t+1λ̂′ respectively. This gives a strong
symplectic fold structure on N×S1. Now take products with (X, λ) for N×[0, 1

4
], N×[3

4
, 1]

and with (X, λ̂) for N × [1
4
, 1

2
], N × [1

2
, 3

4
]. So we have the following sequence of forms:

etλ′ + λ, e−t+ 1
2 λ′ + λ̂, et− 1

2 λ̂′ + λ̂, e−t+1λ̂′ + λ.

This makes a piecewise contact fibered structure (with all fibrations trivial) on X ×
N × S1, hence there is a contact form on this manifold. By [G3], this extends to any
circle bundle over X ×N.

Example 6.7. Consider a closed contact manifold M of dimension 5 and a homotopically
trivial circle S embedded in M. Then the manifold M ′ obtained from M by the blow-up
along S is contact.

Proof. We can deform given contact form on M to one given by the Giroux structure
with page P and the fibration E → S1. Then S can be deformed to a section of the
fibration and, if we deform it to a collar U of ∂P × S1, we get a product of U ⊂ P with
the circle. On CP 2 there is a strong symplectic fold W− ∪ W+ of convex type by [B].
Cutting two small (Darboux) disks in Int P and W− and identifying obtained spheres

we get the connected sum P#CP
2
. By construction, we have a strong symplectic fold on

it and a piecewise fibered structure on M. The fibered pieces are: B ×D2, the product
neighborhood of the binding, (U −D4)×S1, (W−−D4)×S1,W+×S1 and the fibration
over S1 with fiber P − U given by the open book structure. Thus it yields a contact
form on M.

¤

Remark 6.8. Note that CP 2 − Int D4 does not admit any exact symplectic form with
contact type boundary, contrary to an incorrect statement in the previous version of
the paper. It was explained to us by András Stipsicz that this follows from the fact
that any spherical homology 2-class in a closed 4-manifold with self-intersection number
−1 is represented by a symplectic submanifold. The same argument, combined with a
result of McDuff [McD] shows that there is no strong symplectic fold of convex type
on CP 2 − Int D4. That is why to get Example 6.7 we need the general type of strong
symplectic folds.
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7. Open questions

The main purpose of the paper was to develop constructive techniques in contact
topology. Our constructions are based on the strong symplectic fold structures, which
exist only on stably almost complex manifolds. The natural question is

Question 7.1. Does any stably almost complex manifold of even dimension admits a
strong symplectic fold?

In particular, it is anything but obvious if a symplectic manifold has a strong sym-
plectic fold. For instance, is it true for complex projective spaces?

Perhaps more interesting questions concern locally fibered manifolds. For instance, is it
possible to construct locally fibered structure on an almost contact manifold starting from
open book decompositions with the structure obtained by the Donaldson construction
(cf. [MMP])?

8. Appendix: Computations

We present here some of the calculations which led us to the proof of Theorem 3.1.
The result was first checked using Mathematica’s package ”Differential forms” (Frank
Zizza and Ulrich Jentschura [FZ]) in low dimensions. Namely, for t1 = 0 (for technical
reasons we slightly change notation to adapt it for our purposes) and around a point
(b, d, n, 0) ∈ B×D2×N×I we take coordinate system in which β = d[z1]+x1d[y1], λ =
d[z2] + x2d[y2]. Further, on disk D2 we take coordinate system (x, y). In this system we
set h1 = 2 − (x2 + y2)2 and h2 = x2 + y2 (hence in the formula below h1 is equal to
2 − r4 near r = 0 so that it is of class C3). Then the following expressions are equal
respectively to η and dη :

eta1:=(2− (x∧2 + y∧2)∧2)(d[z1] + x1d[y1]) + (d[z2] + x2d[y2])eta1:=(2− (x∧2 + y∧2)∧2)(d[z1] + x1d[y1]) + (d[z2] + x2d[y2])eta1:=(2− (x∧2 + y∧2)∧2)(d[z1] + x1d[y1]) + (d[z2] + x2d[y2])

deta1:= (−4x3 − 4xy2) d[x] ∧ d[z1] + (−4x3x1− 4xx1y2) d[x] ∧ d[y1]+deta1:= (−4x3 − 4xy2) d[x] ∧ d[z1] + (−4x3x1− 4xx1y2) d[x] ∧ d[y1]+deta1:= (−4x3 − 4xy2) d[x] ∧ d[z1] + (−4x3x1− 4xx1y2) d[x] ∧ d[y1]+
(−4x2y − 4y3) d[y] ∧ d[z1] + (−4x2x1y − 4x1y3) x1d[y] ∧ d[y1]+(−4x2y − 4y3) d[y] ∧ d[z1] + (−4x2x1y − 4x1y3) x1d[y] ∧ d[y1]+(−4x2y − 4y3) d[y] ∧ d[z1] + (−4x2x1y − 4x1y3) x1d[y] ∧ d[y1]+
(2− x4 − 2x2y2 − y4) d[t1] ∧ d[z1] + (2− x4 − 2x2y2 − y4) d[x1] ∧ d[y1]+(2− x4 − 2x2y2 − y4) d[t1] ∧ d[z1] + (2− x4 − 2x2y2 − y4) d[x1] ∧ d[y1]+(2− x4 − 2x2y2 − y4) d[t1] ∧ d[z1] + (2− x4 − 2x2y2 − y4) d[x1] ∧ d[y1]+
(2x1− x4x1− 2x2x1y2 − x1y4) d[t1] ∧ d[y1] + d[x2] ∧ d[y2]+(2x1− x4x1− 2x2x1y2 − x1y4) d[t1] ∧ d[y1] + d[x2] ∧ d[y2]+(2x1− x4x1− 2x2x1y2 − x1y4) d[t1] ∧ d[y1] + d[x2] ∧ d[y2]+
d[t1] ∧ d[z2] + x2 d[t1] ∧ d[y2]− xd[t1] ∧ d[y] + yd[t1] ∧ d[x]d[t1] ∧ d[z2] + x2 d[t1] ∧ d[y2]− xd[t1] ∧ d[y] + yd[t1] ∧ d[x]d[t1] ∧ d[z2] + x2 d[t1] ∧ d[y2]− xd[t1] ∧ d[y] + yd[t1] ∧ d[x]

Now τ = ?(η ∧ (dη)3) can be computed in two steps: first we calculate

ExteriorProduct[eta1, deta1, deta1, deta1]ExteriorProduct[eta1, deta1, deta1, deta1]ExteriorProduct[eta1, deta1, deta1, deta1]

and later

HodgeStar[%, t[x1, x1] + t[y1, y1] + t[z1, z1] + t[x2, x2]+HodgeStar[%, t[x1, x1] + t[y1, y1] + t[z1, z1] + t[x2, x2]+HodgeStar[%, t[x1, x1] + t[y1, y1] + t[z1, z1] + t[x2, x2]+
t[y2, y2] + t[z2, z2] + t[x, x] + t[y, y] + t[t1, t1]]t[y2, y2] + t[z2, z2] + t[x, x] + t[y, y] + t[t1, t1]]t[y2, y2] + t[z2, z2] + t[x, x] + t[y, y] + t[t1, t1]]

where the percent sign refers to η ∧ (dη)3.

Then τ = ?(η ∧ (dη)3) is given by

(24 (x2 + y2)
2
) dx1 ∧ dy1 + (−96x(−1 + x1)x1y (x2 + y2)

2
) dt1 ∧ dx1+

(−24x1 (x2 + y2) (x2 + x1y2) ) dx1 ∧ dz1 + (6x (−2 + x4 + 2x2y2 + y4) ) dx ∧ dz1

+(6y (−2 + x4 + 2x2y2 + y4) ) dy ∧ dz1+(−24 (x2 + y2)
2
(−2 + x4 + 2x2y2 + y4) ) dx2 ∧ dy2+

(24x2 (x2 + y2)
2
(−2 + x4 + 2x2y2 + y4) ) dx2 ∧ dz2+(6x (−2 + x4 + 2x2y2 + y4)

2
) dx ∧ dz2+
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(6y (−2 + x4 + 2x2y2 + y4)
2
) dy ∧ dz2+(24x (x2 + y2) (−2 + x4 + 2x2y2 + y4) ) dt1 ∧ dy+

(−24y (x2 + y2) (−2 + x4 + 2x2y2 + y4) ) dt1 ∧ dx
+(−24(−1 + x1)x1y2 (x2 + y2) (−2 + x4 + 2x2y2 + y4) ) dx1 ∧ dz2

and τ 4 is equal to

(−1990656 (x2 + y2)
6
(−2 + x4 + 2x2y2 + y4)

3
) dt1 ∧ dx ∧ dx1 ∧ dx2 ∧ dy ∧ dy1 ∧ dy2 ∧ dz1+

(−1990656x2 (x2 + y2)
6
(−2 + x4 + 2x2y2 + y4)

3
) dt1 ∧ dx ∧ dx1 ∧ dx2 ∧ dy ∧ dy1 ∧ dz1 ∧ dz2+

(−1990656x1 (x2 + y2)
6
(−2 + x4 + 2x2y2 + y4)

4
) dt1 ∧ dx ∧ dx1 ∧ dx2 ∧ dy ∧ dy2 ∧ dz1 ∧ dz2+

(−1990656 (x2 + y2)
6
(−2 + x4 + 2x2y2 + y4)

4
) dt1 ∧ dx ∧ dx1 ∧ dx2 ∧ dy ∧ dy1 ∧ dy2 ∧ dz2,

As ιRdvolR9 = τ 4 for some R ∈ lin{ ∂
∂z1

, ∂
∂z2

, ∂
∂y1

, ∂
∂y2
}, hence the Reeb field Rτ of τ is

equal to R because ιRτ 4 = ιRιRdvolR9 = 0. The field Rτ is obviously perpendicular to ∂
∂r

(away from the degenerate set Σ).
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[Gi] E. Giroux, Géométrie de contact: de la dimension trois vers les dimensions

supérieures, in: Proceedings of the International Congress of Mathematicians (Beijing, 2002)
vol. II, Higher Education Press, Beijing (2002), 405 – 414

[GM] E. Giroux, J. Mohsen, Contact structures and symplectic fibrations over the circle ,
lecture notes.

[HT] B. Hajduk, A. Tralle, Homogeneous spaces and contact forms, in preparation.
[Ma] J. Martinet, Formes de contact sur les variétés de dimension 3, Proc. Liverpool Singularities

Sympos. II, Lecture Notes in Math. 209, Springer-Verlag, Berlin (1971), 142–163
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