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Abstract

Let M be a smooth closed 4-manifold with a free circle action gener-
ated by a vector field X. Then for any invariant symplectic form ω on
M the contracted form ιXω is non-vanishing. Using the map ω 7→ ιXω
and the related map to H1(M/S1,R) we study the topology of the
space Sinv(M) of invariant symplectic forms on M. For example, the
first map is proved to be a homotopy equivalence. This reduces ex-
amination of homotopy properties of Sinv to that of the space NL of
non-vanishing closed 1-forms satisfying certain cohomology condition.
In particular we give a description of π0Sinv(M) in terms of the unit
ball of Thurston’s norm and calculate higher homotopy groups in some
cases. Our calculations show that the homotopy type of the space of
non-vanishing 1-forms representing a fixed cohomology class can be
non-trivial for some torus bundles over the circle. This provides a
counterexample to an open problem related to the Blank-Laudenbach
theorem (which says that such spaces are connected for any closed 3-
manifold). Finally, we prove some theorems on lifting almost complex
structures to symplectic forms in the invariant case.
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1 Introduction

Consider a smooth compact manifold M. A symplectic form on M is a
closed nondegenerate differential (C∞) 2-form ω. A manifold equipped with
a symplectic form is called a symplectic manifold. Alternatively we can say
that the form yields a symplectic structure on the manifold. We will always
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assume that M is oriented and the symplectic forms are compatible with the
orientation. The space of all symplectic forms on M with the C∞ topology
is, if nonempty, infinite dimensional. The main motivation for writing this
paper was to get to understand the homotopy properties of this space. The
simplest question here is whether this space is connected (i.e. what is the
set of its connected components)? We say that two symplectic forms are
homotopic if they are in the same component of the space of symplectic forms
and isotopic if they are in the same component of the space of symplectic
forms in a given cohomology class in H2(M,R). Thus two symplectic forms
ω0, ω1 are homotopic if they can be joined by a continuous path of symplectic
forms ωt, t ∈ [0, 1] and isotopic if there is a path such that the cohomology
class of ωt is constant. Hence we can ask under what conditions two given
symplectic forms are homotopic (isotopic).

The only easy case is dimension two, when a symplectic form is an area
form. Two area forms are homotopic if and only if they give the same orien-
tation. Any two cohomologous area forms are isotopic. In higher dimensions
there are very few cases for which some answers are known. In dimension
4 the problem is open even for the torus T 4. A useful and often calculable
invariant is provided by almost complex structures (i.e. complex structures
on the tangent bundle TM). Thus an almost complex structure is a bundle
automorphism J of TM such that J2 = −Id. For any symplectic form ω
there exist almost complex structures J on M tamed by ω in the sense that
ω(V, JV ) > 0 for any nonzero tangent vector V. The set of almost complex
structures tamed by ω is a contractible infinitely dimensional space and for
any continuous path ωt there exists a path Jt such that Jt is tamed by ωt.
Thus Chern classes of (TM, J) are equal for J ′s tamed by homotopic sym-
plectic forms. Again, some simple questions are still open. For example on
T 4 there are homotopy classes of almost complex structures for which it is
not known whether they are tamed by symplectic forms.

When one studies the case of the torus, it is easy to find that the space
of harmonic (with respect to the canonical flat Riemannian metric) sym-
plectic forms compatible with a fixed orientation is connected. Such forms
have constant coefficients and the nondegeneracy condition is a quadratic
inequality which is easy to deal with. However, there is a larger class of
symplectic forms which it is not so easy to understand and which can serve
as an intermediate class between harmonic and general symplectic forms.
This is the space of those symplectic forms which are invariant with respect
to a linear action of the circle S1 on the torus.

The primary aim of this paper is to study the homotopy properties of the
space Sinv(M) of invariant symplectic forms compatible with the orientation
on a closed oriented 4-manifold M equipped with a free circle action.

Some theorems about existence and structure of such forms and mani-
folds were proved in [Ba1, Bo, FMG].

The basic observation is that a symplectic form ω on M invariant under a
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free circle action gives a non-vanishing closed 1-form ιXω under contraction
with the infinitesimal generator X of the action. Thus there is also a closed
non-vanishing form having rational periods, and this implies that M fibers
over the circle [Ti]. Moreover, since ιXω is invariant and vanishes on the
vertical bundle of the fibration by circles π : M → M/S1, there is a closed
non-vanishing 1-form α on M/S1 such that ιXω = π∗α. Thus the orbit
space M/S1 also fibers over S1. This is a severe topological restriction if
M is closed. In dimension four it implies that M is either aspherical or
diffeomorphic to S2 × T 2.

There is also a restriction for the cohomology class of α : we always have
c1(π) ∪ [α] = 0, where c1(π) is the first Chern class of the circle fibration
π (see Lemma 2.1). The last condition was proved in [Bo], by a kind of
inflation trick, to be sufficient for the existence of an invariant symplectic
form determined by a given non-vanishing and closed form α (see (2.2)).

In many instances the questions about the topology of the space of sym-
plectic forms lead to the problem that natural maps have unusual proper-
ties. For example, we have the map to H2(M,R) which associates to each
symplectic form its cohomology class or the map to the moduli space of sym-
plectic forms. If this map had nice properties (for example the lifting path
property), then one can apply the standard machinery of algebraic topol-
ogy to study the topology of the space of symplectic forms. Unfortunately,
examples as in [MD1] show that this is not true in general, for dimensions
greater than four.

In the invariant case the map ω 7→ α provides dimensional and degree
reduction so the problems on invariant symplectic forms can be expressed in
terms of 1-forms (cf. [MT]). We show that in dimension four this map as well
as the induced map to H1(N,R) have quite good homotopy properties. Our
main result is that this map is a homotopy equivalence between the space of
invariant symplectic forms Sinv(M) compatible with the given orientation
and the space NL of these non-vanishing closed 1-forms which belong to the
hyperplane

L = {x ∈ H1(N3,R) : x ∪ c1(π) = 0}

(Theorem 2.10). There are three principal ingredients in the proof. First is
Blank-Laudenbach’s theorem which says that any two closed cohomologous
non-vanishing 1-forms on a closed oriented 3-manifold are isotopic. Secondly,
the Thurston norm is used to decide which cohomology classes in H1(M,R)
are represented by non-vanishing closed 1-forms. Finally, to pass from 1-
forms to symplectic forms we use inflation formula (2.2). The main technical
step is that any path of 1-forms satisfying a necessary condition (2.1) lifts
to a path of symplectic forms (Lemma 2.5). To prove this theorem we also
need some kind of parametric version of Lemma 2.5. Namely, in order to
use the Whitehead theorem we prove that Lemma 2.5 holds when 1-forms
{αx}x∈X are parameterized by X = Sn−1 or X = Dn.
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As an immediate corollary we get that the map ω 7→ α provides a bijec-
tive correspondence between π0Sinv and π0NL, which in turn can be iden-
tified with the set of these fibred codimension one faces of Thurston’s norm
ball whose intersection with the hyperplane L is nonempty (Corollary 2.11).
Another application is given in Corollary 2.12: any two symplectic forms
on T 4 invariant with respect to any free circle action and determining the
same orientation are homotopic through invariant symplectic forms. Any
such form is also isotopic to a form with constant coefficients.

Next we use this result to give sample calculations. For the torus T 4 we
prove that Sinv is simply connected (Corollary 3.1) and for every nontrivial
circle bundle over T 3 we have π1(Sinv) = Z (Corollary 3.2). We also show a
class of closed oriented 3-manifolds for which Blank-Laudenbach’s theorem
does not extend to higher homotopy groups: 2-torus fibre bundles over the
circle with the monodromy

A =

(
1 k
0 1

)
, k ∈ Z.

For any such manifold Proposition 3.3 shows that the space of non-vanishing
1-forms in a fixed cohomology class has the homotopy type of Eilenberg-
Maclane space K(Z, 2) (assuming the class is represented by a fibration
over S1). Let us mention another interesting space which appears in our
considerations. It is the space of automorphisms of a codimension 1 foliation
on N3. We use calculations of this space for the foliation by (compact) fibers
of a fibration over S1, but possibly computations for Sinv can give some
information on automorphisms of foliations with noncompact leaves. If N
is a circle fibration over the torus T 2, we show contractibility of the space
of invariant symplectic forms for which the corresponding cohomology class
[α] is fixed (Corollary 3.5).

In the last section, we study, from the similar viewpoint, the corre-
spondence between symplectic forms and almost complex structures in the
invariant case. It is known that for a symplectic 4-manifold there exist ho-
motopy classes of almost complex structures not tamed by any symplectic
form. Nontrivial examples of that kind were given in [CLO]. They are ob-
tained by twisting a given J in a disc and calculating the Seiberg-Witten
invariant. If the given almost complex structure is tamed by a symplectic
structure, then Taubes’ theorem [TA1, TA2] shows that the twisted one can-
not be tamed. A similar twist can be done transversally along an orbit of
any linear circle action in an invariant way, but Seiberg-Witten invariants do
not change. It is not known whether the resulting almost complex structures
are tamed by (maybe not invariant) symplectic forms. Nevertheless, in the
invariant case, some interesting relations between the topology of almost
complex structures and that of Sinv exist. We prove the following lifting
property (Theorem 4.1). Suppose J0, J1 are tamed by invariant symplectic
structures ω1, ω2 and there is a continuous path Jt, t ∈ [0, 1] of invariant
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almost complex structures. In general it is not possible to lift the path to
a path ωt that tames Jt, but we show that there is another path of almost
complex structures with the same ends which does lift. In Theorem 4.6 we
also give a sufficient condition for an invariant J to be homotopic to one
which is tamed by an invariant symplectic form.

These results may be possibly continued in two directions. One is the
natural extension to locally free actions. In that case the orbit space is an
orbifold and the inflation trick does work. The problem is that Blank-
Laudenbach’s theorem and Thurston’s norm theory are known only for
smooth manifolds. Another potentially interesting extension is to the space
of forms that are invariant under the flow of a non-vanishing vector field.
Then the topological restrictions are relaxed (M still fibers over the circle,
but it may be nonaspherical). When M has no locally free circle action,
this can be thought of as a substitute for invariant forms. Even if we have a
free circle action on M, such a space may be interesting as an intermediate
space between invariant and general symplectic forms.

We would like to thank Dusa McDuff for helpful discussions at the early
stage of this work. We are also indebted to Jacek Świa̧tkowski and to the
referee for numerous comments on the previous version of the manuscript.

2 Homotopy classification of symplectic forms in-

variant under free circle actions on 4-manifolds

Throughout the article M will denote a compact oriented smooth 4-manifold
with a smooth free circle action and N ∼= M/S1. The space of invariant
symplectic forms consistent with the given orientation will be denoted by
Sinv.

Let π : M → N denote the principal S1-fibration given by the action.
For ω ∈ Sinv consider the non-vanishing closed 1-form α satisfying

π∗α = ιXω,

where X is the infinitesimal generator of the action.

Lemma 2.1 [Bo] If ω ∈ Sinv, then

[α] ∪ c1(π) = 0. (2.1)

Proof. Take any connection form η ∈ Ω1(M,R). By Chern-Weyl’s
theorem there exists a closed 2-form c1 ∈ H2(N,R) such that π∗c1 = dη
and c1 ∈ H2(N,R) is the first Chern class of the bundle π. There is also
a unique 2-form β′ ∈ Ω2(N,R) such that ω − η ∧ ιXω = π∗β′. This gives
dη ∧ ιXω = π∗dβ′ as required. �
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Let us recall the notion of Thurston’s norm ([Th], see also [MT]). If
N3 is a compact, connected and oriented manifold without boundary then
for any compact oriented n-component surface S = S1 ⊔ · · · ⊔ Sn embedded
in N define

χ−(S) =
∑

χ(Si)<0

|χ(Si)|.

Thurston’s norm (a seminorm, in fact) on H2(N3,Z) and, by Poincaré du-
ality, on H1(N3,Z) is given by

‖φ‖T = inf{χ−(S) | [S] = φ}.

It can be extended to H1(N3,R). Let BT = {φ : ‖φ‖T ≤ 1} denote the
unit ball in Thurston’s norm. It is an essential property of BT that this is a
(possibly noncompact) polyhedron in H1(N3,R). Suppose φ′ ∈ H1(N3,Z)
is represented by a fibration N3 → S1. Then φ′ is contained in the open cone
R+ · F over a face F of codimension one of BT or || · || vanishes everywhere
and φ′ 6= 0, F = H1(N3,R) − {0}. In these cases we say that F is a fibered
face of Thurston’s norm ball. We will say that a closed form α on N defines
a fibration, if α = π∗dt, where π : N → S1 is a fibration with connected fiber
and dt is the standard length form on S1. If a cohomology class belongs to
the open cone over a fibered face, then arbitrarily close to it there is a class
represented by a form which defines a fibration.

Another crucial property of Thurston’s norm is that it can be used to de-
cide whether two given closed non-vanishing 1-forms are homotopic through
closed non-vanishing 1-forms. Namely, their cohomology classes must lie in
the same fibered face BT or the norm must vanish everywhere [Th, BL], see
Lemma 2.3 below.

Let us define the subspace L ⊂ H1(N3,R) by

L = {x ∈ H1(N3,R) | x ∪ c1(π) = 0}.

Notation 2.2 For a given 3-dimensional manifold N let us define by N
the set of all closed and non-vanishing 1-forms, by NL ⊂ N the set of all
closed and non-vanishing 1-forms whose cohomology classes belong to L, by
NH ⊂ H1(N,R) the set of all cohomology classes which are represented by
non-vanishing, closed 1-forms, and finally by N x ⊂ N the set of all non-
vanishing, closed 1-forms representing x ∈ H1(N,R).

The correspondence ω 7→ α defines a continuous map Sinv → NL and a
large part of this section is devoted to study its properties. Later we will
need the following.

Lemma 2.3 Assume that a closed oriented 3-manifold N fibers over the
circle and we are given a path {xt}t∈[0,1] ⊂ NH . Then there is a path
{αt}t∈[0,1] ∈ N such that [αt] = xt for all t ∈ [0, 1]. We can also assume
that α0 and α1 are prescribed.
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Proof. Note that N is nonempty if and only if N fibers over the circle.
Next we notice that for each t ∈ [0, 1] there exists a path α′

t with the desired
property over a neighborhood (t − ǫ, t + ǫ) of t. Choose a finite subcover
and glue together these paths on their overlaps using Blank-Laudenbach’s
theorem [BL], which states that any two cohomologous, non-vanishing and
closed 1-forms on a 3-dimensional closed oriented manifold are isotopic. Iso-
topy here can be understood, as in the case of symplectic forms, in two ways.
The first is that two non-vanishing closed cohomologous 1-forms α0, α1 can
be joined by a path of non-vanishing closed cohomologous forms, while the
second means that we have a path of diffeomorphisms {φs}s∈[0,1] such that
φ0 = Id and φ∗tα0 = αt. By Moser’s argument [Mo], these two notions are
equivalent. The isotopy φt can be used to glue together local lifts to a path
with the required property. Suppose that we have two paths α′

t, α
′′
t in the

interval (t0 − ǫ, t0 + ǫ). Then there is an isotopy φt such that φ∗1α
′
t0 = α′′

t0 .
Hence the family defined as α′

t for t < t0 − ǫ, φ∗(t−t0+ǫ)/ǫα
′
t for t ∈ [t0 − ǫ, t0]

and as α′′
t when t > t0 is continuous and satisfies our conditions. The path

can be made smooth, since we can find an isotopy φt which extends smoothly
by identity for t < 0 and by φ1 for t > 1. �

Corollary 2.4 The map N → NH : α → [α] has the lifting property for
continuous maps S1 → NH .

We will now prove some technical lemmas related to the question whether
two symplectic invariant forms ω1, ω2 are homotopic in Sinv if the corre-
sponding 1-forms α1, α2 are homotopic. Recall that (see [MT]) there exist
examples of nonhomotopic non-vanishing closed 1-forms on a 3-dimensional
manifold N which are obtained from (nonhomotopic) symplectic forms on
N × S1.

Lemma 2.5 For any compact space X and any continuous map α : X →
NL, there exists a continuous map ω : X → Sinv such that π∗α(t) = ιXω(t)
for every t ∈ X.

Proof. The proof uses Bouyakoub’s formula [Bo]. In the spirit of the
inflation trick of Thurston [Th1] and McDuff [MD2], the formula consists of
enlarging a form along the foliation determined by kerα. Thus for a given
form α,

ω = η ∧ π∗α+ π∗(Kβ + φ) (2.2)

is an invariant symplectic form if η ∈ Ω1(M4,R) is a connection form for
the bundle π, β is a closed 2-form on N3 such that α ∧ β is a volume form
on N3, dφ = −c1 ∧ α and K is sufficiently large real number. Obviously,
π∗α = ιXω. Existence of β such as above is well-known [Pl, Su].
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Later we shall also need a parameter version, for a family of 1-forms parame-
terized by a disk. In fact, the parametrization space can be any paracompact
space.

Lemma 2.6 Let Nn be a closed and oriented manifold. Assume that a
closed and non-vanishing 1-form α on N is given. Then there is a closed
(n − 1)-form β such that α ∧ β is a volume form on N . Equivalently, β is
a volume form on leaves of the foliation defined by kerα. Moreover, given a
paracompact space X and a mapping φ1 : X → N into the space of closed
and non-vanishing 1-forms on N, there exists another mapping φ2 from X
into the space of closed (n − 1)-forms on N such that φ1(x) ∧ φ2(x) is a
volume form on N for each x ∈ X.

Proof. For each x there exists a closed 2-form βx such that φ1(y) ∧ βx

is a volume form for y in some neighborhood Ux of x. For the open covering
{Ux}x∈X we find a locally finite subcovering {Uξ} and an associated partition
of unity. Convex combinations of β′s given by the partition of unity yields
a family with the desired property. �

Consider now a path αt. By Lemma 2.6 there is a continuous path of closed
2-forms {βt}t∈[0,1] such that αt ∧ βt is a volume form for each t ∈ [0, 1].

If we choose a continuous path φt such that dφt = −c1∧αt then, for K large
enough,

ωt = η ∧ π∗αt + π∗(Kβt + φt)

is an invariant symplectic form for each t. This completes the proof of
Lemma 2.5. �

Later we will need the following easy lemma.

Lemma 2.7 If ω, ω′ ∈ Sinv and their corresponding 1-forms α, α′ are equal,
then ω, ω′ are homotopic in Sinv. The same is true in the parametric case
(i.e. for any pair of continuous maps f, f ′ : X → Sinv such that the corre-
sponding maps to N are equal, f is a homotopic to f ’).

Proof. Under our assumptions ω and ω′ can be joined in Sinv by the
convex combination. To see this write

ω = η ∧ π∗α+ π∗φ, ω′ = η ∧ π∗α+ π∗φ′

for some 2-forms φ, φ′ on N . Then

(λω + (1 − λ)ω′)2 = (η ∧ π∗α+ π∗(λφ+ (1 − λ)φ′))2 =

= λω2 + (1 − λ)ω′2 > 0.

�

More generally for cohomologous ω, ω′ we have the following.
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Lemma 2.8 Assume that ω and ω′ are cohomologous invariant symplectic
forms on 4-dimensional manifold. Then ω and ω′ are isotopic.

Proof. Let α, α′ correspond to ω, ω′. It follows from Blank-Laudenbach’s
theorem [BL] that there exists an isotopy {φt} such that φ∗1α

′ = α and

φ0 = Id. The path φt lifts to a path φ̃t of equivariant diffeomorphisms on
M, (φ̃t)∗X = X (recall that by X we denoted the infinitesimal generator of
the action). Then

ιX(φ̃1)∗ω′ = (φ̃1)∗ιXω
′ = (φ̃1)∗π∗α′ = π∗φ∗1α

′ = π∗α = ιXω

and ω, (φ̃1)∗ω′ are still in the same cohomology class. To finish the proof
apply Lemma 2.7 and the equivariant version of Moser’s theorem [Mo]. �

We now can prove our main results.

Theorem 2.9 Let M4 be a closed manifold equipped with a free circle ac-
tion. Assume that we are given a continuous path {xt}t∈[0,1] ⊂ H2(M4, R)
such that for each t ∈ [0, 1] there exists an invariant symplectic form ω′

t

in the class xt. Then there exists a continuous path {ωt}t∈[0,1] of symplec-
tic invariant forms such that [ωt] ∈ xt. Moreover, the forms ω0, ω1 can be
prescribed.

Proof. For every t ∈ [0, 1] there exists ǫ > 0 such that in the closed
interval [t−ǫ, t+ǫ] we have a path of symplectic and invariant forms satisfying
our conditions. By the standard compactness argument there exists an
increasing sequence 0 = t0 < t1 < . . . < tn = 1 such that in each closed
interval [ti, ti+1] the given path lifts. Using the isotopy given by Lemma 2.8
we can glue these partial lifts as in the proof of Lemma 2.3. �

In higher dimensions our arguments do not work. Let us recall an example
given by McDuff.
On M = S2 × S2 × T 2 we have a family of symplectic forms

τλ = λσ0 × σ1 × σ2, λ ≥ 1,

where σi are area forms of total area equal to 1. If we take the diffeomor-
phism φ : M →M given by the formula

φ(z, w, s, t) = (z, ρz,t(w), s, t)

where ρz,t : S2 → S2 is the rotation around the axis through z through the
angle 2πt, then τλ and φ∗τλ are isotopic when λ > 1 but are not isotopic
when λ = 1 [MD1].
Let us define on M a free circle action by the formula

θ(z, w, s, t) = (z, w, θs, t), θ ∈ S1.

9



Then φ commutes with the action and τλ is invariant when σ2 is chosen to
be invariant. Observe next that we have

ιXτλ = ιXφ
∗τλ = dt,

if X = ∂
∂s denotes the infinitesimal generator of the action. As in [MD1] one

can check that τλ and φ∗τλ are isotopic through invariant symplectic forms
for λ > 1, and that τ1, φ

∗τ1 are not isotopic.
It follows that the isotopy part of Lemma 2.7 does not hold in dimensions
greater than 4.

Theorem 2.10 The map

Φ : Sinv → NL,

defined by ω 7→ α, is a homotopy equivalence.

Proof. We will show that the map Φ∗ : πnSinv → πnNL is an iso-
morphism for every n. Since the spaces here have the homotopy type of
CW-complexes, we get the conclusion by Whitehead’s theorem.

To see that Φ∗ is injective assume we are given a map ∆ : (Sn, ⋆) →
(Sinv, ⋆) and a map δ : Dn+1 → NL such that Φ ◦ ∆ = δ ↾ Sn. By Lemma
2.6 δ has a lift δ̃ to Sinv and Lemma 2.7 gives an isotopy between ∆ and
δ̃|S1. Thus ∆ is null-homotopic as required. A proof that Φ∗ is onto follows
directly from Lemma 2.6. �

Corollary 2.11 Assume that M4 is a closed oriented manifold admitting
an invariant symplectic form. Then π0Sinv is in bijective correspondence to
the set of these fibered faces of Thurston’s norm ball whose intersection with
L is nonempty.

Proof. It follows from Theorem 2.10 and the discussion concerning
Thurston’s norm. �

Corollary 2.12 Let ω be a symplectic form on T 4 invariant under a free
linear action of S1. Then ω is homotopic to the standard structure ωst =
dx1 ∧ dy1 + dx2 ∧ dy2. Furthermore, ω is isotopic to a form with constant
coefficients.

Proof. If S1 acts linearly on T 4, then the quotient space is diffeomorphic
to T 3. Any non-zero class of H1(T 3) is represented by a 1-form with constant
coefficients. Since the standard generators of H2(T 3,Z) are represented
by tori, Thurston’s norm equals 0 everywhere (cf. [Th]). We get BT =
H2(T 3,R) and it implies that NL = N is connected. By Corollary 2.11 and
Lemma 2.8, our claim follows . �
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Remark 2.13 By linear action we mean an action equivalent to an action
of a subgroup of the torus considered as the Lie group. It follows from
Poincaré’s conjecture that any free action of the circle is linear. So if Perel-
man’s proof of the conjecture is correct, then Corollary 2.12 is valid for any
free circle action.

3 Symplectic forms and diffeomorphisms

The homotopy properties of Sinv can be calculated, in some cases, using the
action of Diff0 (= diffeomorphisms isotopic to the identity) on forms. This
leads us to consider maps which are defined by the action, which we refer
to as evaluation maps.

In the sequel we shall use the fact that, under some assumptions, the
evaluation maps are fibrations and thus exact sequences of homotopy groups
are available. We will consider evaluation maps of two kinds. First one is
the map ev : G → X given, for a G−space X and a base point x0 ∈ X, by
the formula ev(g) = gx0. In this case, if the action is transitive and there are
local sections of ev, then it is a locally trivial fibre bundle over X. Thus it is
a fibration when the base X is paracompact [Wh]. In our cases X is either a
connected component of Diff(M), the group of C2−diffeomorphisms of M,
or a closed subspace of C1−forms on M (with C1 topology). It is always an
(infinite dimensional) manifold modelled on a separable Banach space, cf.
[Pa]. Another type of evaluation is given by M → Y : f 7→ f(x0), where
M is a component of the space of all continuous maps from X to Y, x0 ∈ X.
It is a fibration if X,Y both are compact CW-complexes, cf. [Sp].

We will calculate some homotopy groups for the torus T 4 and some
S1-bundles over T 3. These cases are relatively easy because the inclusion
T k →֒ Diff0T

k, given by translations, is a homotopy equivalence for k ≤ 3
(see [EE, Ha]).

Consider the map
evα : Diff0N −→ N [α],

defined by
evα(φ) = φ∗α

(by Diff0 we denote the identity component of Diff). It is onto due to [BL]
and is a locally trivial fibration with fiber F equal to the space of these
diffeomorphisms of N which are isotopic to the identity and preserve the
form α. By the Whitehead theorem, N [α] is contractible if and only if the
inclusion κ : F → Diff0N is a homotopy equivalence.
If N is the 3-dimensional torus we claim that N [α] is contractible for any
closed and non-vanishing 1-form α defining a fibration (i.e., α = τ∗dt for
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a fibration τ : N → S1 and the standard 1-form dt on S1). This prop-
erty depends only on the cohomology class of α by [BL]. We will call any
cohomology class fibered if it is represented by such a fibered form.

Any fibration of T 3 over the circle is trivial, so we can assume α =
dx1. Then F consists of fiberwise diffeomorphisms which cover rotations
of S1. Any f ∈ F is uniquely determined by two parameters: an element
of the space Diff0T

2 × Ω0Diff0T
2 and the rotation angle θ ∈ S1, where Ω0

denotes the space of nullhomotopic loops. It follows from Diff0T
2 ∼ T 2

and the asphericity of T 2 that we have the following sequence of homotopy
equivalences:

Diff0T
2 × Ω0Diff0T

2 × S1 ∼ T 2 × Ω0T
2 × S1 ∼ T 2 × {⋆} × S1 ∼ T 3.

Furthermore, in the diagram

T 3 Id
−−−−→ T 3

y
y

F
κ

−−−−→ Diff0T
3

vertical maps induced by inclusions are homotopy equivalences, hence κ is
also a homotopy equivalence. Thus N [α] is contractible for a fibered class.

We now have the following corollary of Theorem 2.10:

Corollary 3.1 For any linear free action of S1 on T 4, Sinv is simply con-
nected.

Proof. Since in our case NL = N , it is enough to prove that π1N = 0.
We will show that a given loop α : S1 → N can be deformed continuously
to the subspace of non-vanishing forms with constant coefficients, which has
the homotopy type of S3. For every t0 ∈ S1, α(t0) is isotopic to a form with
constant coefficients. Moreover, there exists a neighborhood U of t0 and an
extension of the isotopy to a mapping

α : [0, 1] × U −→ N

such that α(0, t) = α(t), α(s, t) is an isotopy for fixed t ∈ U and α(1, t) is a
path of constant coefficients forms. This is given by α(s, t0) + δ(t) − δ(t0),
where δ(t) is the form with constant coefficients in the cohomology class of
α(t). If U is small enough, then the convex combination yields an isotopy
between α(t) and α(0, t) = α(t0) + δ(t) − δ(t0).

If we consider a finite cover by neighborhoods as above, we come to a
finite partition of S1 by t1, . . . , tk ∈ S1 such that on each interval [ti, ti+1]
we have the required homotopy. Over each point ti there are two isotopies
connecting α(ti) to the form of constant coefficients, thus we see a loop
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in N [α(ti)]. If we perturb the loop by a form u with constant coefficients,
then we get a loop in N [α+u]. If we choose u small enough and such that
(α + u) is a fibred class, then N [α+u] is contractible. For u small enough
the perturbation does not change the homotopy class of the loop and this
completes the proof. �

Similar arguments apply when M is a nontrivial bundle over T 3. Recall
(cf. Section 2) that NH ∩ L = R

2\{0} ∼ S1, since L is codimension one
subspace of H1(T 3,R). The homotopy described in the proof of Corollary 3.1
can be adjusted to preserve a base point. Moreover, any closed 1-form whose
cohomology class lies in NH ∩L can be approximated by a form representing
a fibered class in NH ∩ L and which is in addition fibered. This is possible
since the Chern class c1 is an integer class. Thus we get the following

Corollary 3.2 π1Sinv = Z for any nontrivial circle bundle over T 3.

In this context one can ask the following natural question: does Laudenbach-
Blank’s theorem [BL] hold in the parametric case (i.e. do higher homotopy
groups of N [α] always vanish)? In the next proposition we give a counter
example. Namely, we will show that for some torus bundles over S1 and
any 1-form α defining a fibration, the space N [α] has homotopy type of the
classifying space of the circle BS1.

Let N3 be a torus bundle over S1 with the monodromy given by the matrix

A =

(
1 k
0 1

)
,

where k is a nonzero integer. Let also α be a closed and non-vanishing
1-form defining a fibration τ : N3 → S1, so that α = τ∗dt.

Proposition 3.3 If k 6= 0, then N [α] is homotopy equivalent to the Eilen-
berg-MacLane space K(Z, 2).

Proof. It is well known that the monodromy of τ is conjugated to A,
so we can assume that it is equal to A and N = T 2 × [0, 1]/(Ax, 0) ≈ (x, 1),
where T 2 × {t} correspond to fibers of τ. In this description generators of
π1N are given by generators of π1T

2 and the lift of the generator of π1S
1

given by t 7→ (0, 0, t). Denote the latter by γ. Consider the fibration given
by (3.1):

F
κ

−→Diff0N
3 evα−→ N [α]. (3.1)

Any diffeomorphism f ∈ F induces on S1 an orientation preserving dif-
feomorphism preserving the form dt, hence a rotation. We get a fibration

13



F
π′

−→SO(2) with fiber F0 consisting of these φ ∈ Diff0N
3 which preserve

fibers of τ . Its monodromy is given by φ 7→ Aφ, where by Aφ we under-
stand the composition of φ with the diffeomorphism of N equal to A on each
fiber. Thus any diffeomorphism φ ∈ F0 can be identified with an isotopy of
T 2 connecting a diffeomorphism φ0 to A−1φ0A. For example constant paths
equal to An are in F0. The map F0 → DiffT 2 given by φ 7→ φ0 yields in
turn a fibration of F0 over a sum of some connected components of Diff(T 2).
Its fiber is a subset (in fact, a sum of connected components) of the space
of smooth loops ΩDiff0T

2. Note that one can easily decide whether a loop
is null-homotopic, namely by applying it to the map π1Diff0T

2 → π1T
2 de-

fined by φt 7→ φt(x0), where x0 ∈ T 2. For a loop corresponding to φ ∈ F
the map is given by φ∗(γ). Since any φ ∈ F acts trivially on the homotopy
we see that the fiber of F0 → DiffT 2 is equal to Ω0Diff0 T

2. It is con-
tractible, thus F0 is homotopy equivalent to the base. It remains to decide
what are the components where φ0 lives. We claim that the isotopy class
of φ0 is equal to that of a power of A. This gives homotopy equivalences
F0 ∼ Diff0T

2 ×Ω0Diff0T
2 ×Z ∼ T 2 ×Z, where the factor Z is generated by

[A] ∈ π0DiffT 2.
Let a, b be (standard) generators of H1(T 2) such that Aa = a and Ab =

b+ ka. The fibration τ gives the following presentation

H1(N3) ∼=< a, b, γ | ka >∼= Zk ⊕ Z
2,

where γ is the lift described above. The homomorphism i∗ : H1(T 2) →
H1(N3) induced by inclusion is given by the formula

< a, b >→< a, b, 0 > in Z ⊕ Z → Zk ⊕ Z ⊕ Z ∼= H1(N3)

Any diffeomorphism φ ∈ F0 acts trivially on H1(N), hence for its restriction
φ0 to T 2 (= the fiber of τ : N → S1) we have

(φ0)∗u ≡ u mod ker i∗

for any u ∈ H1(T 2). This is the case if and only if

(φ0)∗ =

(
1 nk
0 1

)
,

since ker i∗ =

{(
nk
0

)
| n ∈ Z

}
. Thus φ0 is isotopic to An.

It implies that the monodromy group of π′ acts transitively on π0F0, thus
F is connected. So we obtain homotopy equivalences

F ∼ Diff0T
2 × Ω0Diff0T

2 × R ∼ T 2.
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Consider now N as a principal S1−bundle over T 2, given by the circle in
T 2 invariant under A. Equivalently, N can be described as the orbit space
of the action of Z

2 on R
2 × S1 given by

(1, 0)(x, y, θ) = (x+ 1, y, θ) (3.2)

(0, 1)(x, y, θ) = (x, y + 1, e−2πikxθ)

This presentation is asymmetric, but the bundle is not. In particular, there
is a bundle isomorphism, covering the identity of the base, between the
bundle given by (3.2) and the one obtained form the action

(1, 0)(x, y, θ) = (x+ 1, y, e−2πikyθ)

(0, 1)(x, y, θ) = (x, y + 1, θ).

Denote by Aut0(N) the set of automorphisms of the bundle which are
isotopic to the identity as diffeomorphisms of N . It was proved by Hatcher
[Ha] that the inclusion Aut0(N) ⊂ Diff0(N) is a homotopy equivalence.

We will calculate, using Hatcher’s theorem, the homotopy type of Diff0N .

Consider the fibration

π : Aut(N) → Diff(T 2), (3.3)

where π sends ψ ∈ Aut(N) to the induced diffeomorphism of the base. The
fiber Fπ is equal to the space C1(T 2, S1) of C1-maps with C1-topology. Its
homotopy type can be calculated using the following lemma which gives the
homotopy type of its connected component (of contractible maps).

Lemma 3.4 The evaluation map

ev : C1
0 (X,S1) → S1 : f 7→ f(∗)

is a homotopy equivalence for any compact connected manifold X and any
base point ∗ ∈ X.

Proof. The map ev is a fibration with the fiber equal to C1
0 ((X, ∗), (S1, ∗)).

Since the mapping

C1
0 ((X, ∗), (S1, ∗)) → C1

0 ((X, ∗), (R, ∗)),

which sends φ ∈ C1
0 ((X, ∗), (S1, ∗)) to its lift φ̃ : X → R, is a homeomor-

phism, thus the fiber is contractible. The lemma follows. �

Since any two components of C1(T 2, S1) are homeomorphic, Lemma 3.4
implies that C1(T 2, S1) ∼ S1 ×H1(T 2,Z) = S1 × Z

2. Note that the factor
S1 corresponds to constant maps, hence, with our identifications, it is given
by the circle action on N. In particular, the circle lies in the fiber F of the
fibration (3.1).
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We want to calculate now the homotopy groups of Aut0(N). To this end
consider the fibration

Aut0N → Diff0T
2

which is the restriction of the fibration (3.3) to the identity component. The
nontrivial part of its long homotopy exact sequence

· · · → 0 → π1S
1 → π1Aut0(N) → π1Diff0T

2 → π0Fπ → · · ·

gives a complete calculation once we know that the homomorphism
π1Diff0T

2 → π0Fπ given by monodromy is a monomorphism.
In order to compute this homomorphism we have to lift the loops α, β rep-
resenting standard generators of Diff0(T 2) to paths α̃, β̃ in Aut(N). Using
(3.2) we can define the lift as

αt(x, y, θ) = (x+ t, y, θ).

Since it commutes with the action (3.2), hence defines a path in Aut0(N)
starting at the identity. The element of α̃1 ∈ Fπ is given, as a map T 2 → S1,
by the formula

(θ1, θ2, ) 7→ θk
1 .

For the other path β we get the map

(θ1, θ2, ) 7→ θk
2 ,

since the bundle is symmetric with respect to change of factors in the base
torus. We see that the map π1Diff0T

2 → π0Fπ is equal, under the identifi-
cation of both groups with Z

2, to (a, b) 7→ (ak, bk).
Consider now the fibration Aut0N → Diff0T

2. Since Aut0(N) is con-
nected by Hatcher’s theorem, we see that its fiber is equivalent to S1×kZ×
kZ ⊂ Fπ and Aut0(N) ∼ ([0, 1] × [0, 1] × S1 × kZ × kZ)/ ≈, where

(0, y, θ, p, q) ≈ (1, y, θ, p+ k, q),

(x, 0, θ, p, q) ≈ (x, 1, θ, p, q + k).

Thus Aut0N is homotopy equivalent to S1 ×R×R. Another way to see this
is to consider the homotopy exact sequence which gives that πrAut0(N) is
trivial for r 6= 1 and π1Aut0(N) ∼= Z.

Coming back to fibration 3.1 we started with, we easily see that in its
homotopy exact sequence the only nontrivial part is

0 → π2N
[α] → Z

2 → Z → π1N
[α] → 0.

The middle homomorphism is onto, because the inclusion of the circle S1

(corresponding to constant maps) into Diff0(N) factorizes through F. Thus
N [α] is homotopy equivalent to K(Z, 2). �

Let Sx ⊂ Sinv be the subset of all invariants symplectic forms for which
the cohomology class of the associated 1-form is equal to x ∈ H1(M ; R).
The argument used in the proof of Lemma 2.10 gives
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Corollary 3.5 Assume that N is a principal S1-bundle over T 2. If M is
the total space of any circle bundle over N such that [α] ∈ L and α is fibered,
then S [α] is contractible.

Higher homotopy groups of Sinv might be nontrivial as the following simple
example shows.

Example 3.6 Consider the 4-dimensional torus T 4 with the circle acting
on the last coordinate. Let us define the map S2 → Sinv by

(θ1, θ2, θ3) 7→ θ1(dx1 ∧ dx4 + dx2 ∧ dx3) + θ2(dx2 ∧ dx4 + dx3 ∧ dx1)+

+θ3(dx3 ∧ dx4 + dx1 ∧ dx2),

where θ2
1 + θ2

2 + θ2
3 = 1. The map descends to a nontrivial element of π2NH ,

hence it is not null-homotopic.

Classification of invariant symplectic forms in the case where c1(ξ) is
a torsion element in H2(N3,Z) is much easier because there is a closed
connection form in the fibre bundle M → N .

4 Almost complex structures

We now apply Thurston’s norm theory to prove that in the invariant case
the existence of a path between two almost complex structures yields a
homotopy of symplectic forms which are tamed by these structures.

Theorem 4.1 Let M be a closed 4-manifold equipped with a free circle ac-
tion. Given two invariant almost complex structures J0 and J1 tamed by
some invariant symplectic forms ω0 and ω1 respectively. If there exists a path
of invariant almost complex structures {Jt}t∈[0,1] connecting J0 to J1, then
ω0 and ω1 lie in the same component of Sinv (they are homotopic through
invariant symplectic forms).

Proof. As before, X will denote the vector field generating the action
and αi = ιXωi, i = 0, 1. We have on N = M/S1 the family of vector fields
Yt = π∗(JtX), t ∈ [0, 1] such that αi(Yi) > 0 and for i = 0, 1 for all x ∈ N.
Our problem can be reduced to the following one. Assume we are given
two non-vanishing and closed 1-forms α0 and α1 on a 3-dimensional closed
manifold together with a path of non-vanishing vector fields Yt such that
αi(Yi) > 0 for i ∈ {0, 1}. The question is whether α0 and α1 are homotopic
through closed and non-vanishing 1-forms. We claim that the answer is
positive.

Denote by e(α) ∈ H1(N,Z) the Euler class of the 2-dimensional oriented
subbundle ker(α) of TN. Let us recall Thurston’s theorem [Th] in slightly
more convenient form [MT]:

17



Theorem 4.2 Suppose α ∈ H1(N3, Z) can be represented by a fibration
over the circle N3 → S1. If F ⊂ H1(N3,R) is the codimension one face of
the norm ball BT containing α, then φ(e(α)) = −1 for all φ ∈ F.

Corollary 4.3 Let α0 and α1 be two non-vanishing and closed 1-forms on
closed 3-dimensional manifold N3. If e(α0) = e(α1), then α0 and α1 are
homotopic through closed and non-vanishing 1-forms.

Proof. Assume first that Thurston’s norm on N does not vanish iden-
tically and that α0 and α1 are in the codimension one faces F0 and F1

respectively. Then, for any φ ∈ F0, ψ ∈ F1 we have φ(e) = ψ(e) = −1,
where e = e(α0) = e(α1). Thus the functional

H1(N,R) → R : η 7→ η(e)

restricted to either F0 or F1 is constant and equal to −1. Thus F0 = F1 and
α0 and α1 lie in the same face. Hence they are homotopic by [Th].

If Thurston’s norm on N vanishes identically, then each nonzero class is
represented by a closed and non-vanishing 1-form, so α0 and α1 are homo-
topic by Lemma 2.3. �

If almost complex structures J0, J1 are homotopic, then the correspond-
ing symplectic forms ω0, ω1 can be joined by a path of non-vanishing (not
necessarily closed) 2-forms. We have in turn a path of non-vanishing 1-forms
between α0 and α1, thus e(α0) = e(α1). To finish the proof of Theorem 4.1
it is enough to apply Corollary 4.3 and Theorem 2.10. �

One may ask whether there is ωt which is a lift of Jt (i.e. Jt is tamed
by ωt for each t). We will give an example of a path Jt of invariant almost
complex structures which has no lifts, but there exists another invariant
path J ′

t with the same ends which can be lifted.

Example 4.4 On the 3-dimensional torus T 3 there are closed, non-vani-
shing 1-forms α0, α1 and a path Yt, t ∈ [0, 1] of non-vanishing vector fields
such that the following conditions are satisfied:

1. αi(Yi) > 0 for i ∈ {0, 1},

2. there is no path {αt}t∈[0,1] of closed, non-vanishing 1-forms connecting
α0 to α1 such that αt(Yt) > 0 for all t ∈ [0, 1].

Having such data we will define ω0, ω1, Jt on T 4 = T 3 × S1 invariant
under the action of the S1 factor, having the desired properties as follows.
First, let Bt denote the subbundle of TT 3 orthogonal (with respect to, say,
standard Riemannian metric) to Yt. It is oriented and of dimension 2, hence
there is a continuous path J⊥

t of complex structures on Bt. Since the space
of almost complex structures compatible with a given orientation on R

2 is
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contractible, we can assume J⊥
0 J⊥

1 to be prescribed. We extend J⊥
t to an

almost complex structure on T 3 × S1 by putting JX = Yt, where X is the
unit vector field on S1. The forms α0, α1 and η = dt give, by Corollary 2.2,
invariant symplectic forms ω0, ω1 compatible with J0 and J1 respectively.
Existence of a lift of Jt would contradict Condition 2.
Denote the standard coordinates on T 3 by x1, x2, x3, the coordinate on S1

by t, and define

α0 = dx1, α1 = dx2, Y0 =
∂

∂x1
, Y1 =

∂

∂x2
,

ω0 = dx1 ∧ dt+ dx2 ∧ dx3, ω1 = dx2 ∧ dt+ dx3 ∧ dx1,

J⊥
0

(
∂

∂x2

)
=

∂

∂x3
, J⊥

1

(
∂

∂x3

)
=

∂

∂x1
.

Choose an unknotted circle

S1 ⊂ D3 ⊂ T 3

and a nonzero vector field tangent to it. The vector field extends to a vector
field Y 1

2

on the torus T 3 and to a path Yt of vector fields such that the ends

are Y0, Y1 defined above. Due to contractibility of the circle
∫
S1 α = 0 for

any closed 1-form α, thus Conditions 1 and 2 hold.

Corollary 4.5 The set of invariant symplectic forms in a fixed homotopy
class of invariant almost complex structures on a closed 4-manifold is con-
nected.

Consider the following simpleminded existence question: if J is an almost
complex structure, does M admit a symplectic structure in the homotopy
class of J? In general the answer is negative, for instance on T 4 there
are almost complex structures having nonzero first Chern class, while it is
zero for those compatible with a symplectic structure. In the invariant case
one can give an answer in terms of the quotient manifold N . The obvious
necessary condition is the existence of a closed 1-form α ∈ NL such that
α(π∗JX) > 0 on N3 ∼= M4/S1. We shall prove that this condition is also
sufficient. Together with Theorem 4.1 this gives a description of π0Sinv as
π0 of a subspace of invariant almost complex structures on M.

Theorem 4.6 Let M4 be a closed manifold equipped with a free circle action
with infinitesimal generator X and an invariant almost complex structure
J . Assume that there exists a closed and non-vanishing 1-form α ∈ NL

such that α(π∗JX) > 0. Then J is homotopic (through invariant almost
complex structures) to an almost complex structure tamed by some invariant
symplectic form.
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Proof. Consider an invariant hermitian metric < ·, · > for the complex
bundle (TM, J). Let A be the orthogonal complement of X. Observe that A
is invariant, J-invariant and together with LinR{JX} defines a connection
η for the principal circle bundle M →M/S1 ∼= N. It enables us to lift kerα
to a subbundle of TM , denoted by S.
Next let β be a closed 2-form on N such that β ∧ α is non-vanishing. As in
(2.2), we define an invariant form by

ω = η ∧ π∗α+ π∗(Kβ + φ), (4.1)

where K is large enough to guarantee that ω is symplectic. The constant K
will still require some modification. We do it later.

We will check that an invariant almost complex structure J ′′ is tamed by ω
if the following conditions are met:

1. α(π∗J
′′X) > 0,

2. J ′′(S) = S,

3. π∗(Kβ + φ)(W,J ′′W ) > 0 for all nonzero W ∈ S,

4. π∗J
′′X ∈ H.

To this end we use the decomposition TM = LinR{X, J
′′X} ⊕ S. By Con-

ditions 3 and 2 we get

ω(X, J ′′X) = η ∧ π∗α(X, J ′′X) > 0

and
ω(W,J ′′W ) = π∗(Kβ + φ)(W,J ′′W ) > 0

for any nonzero W ∈ S. The following equations:

η ∧ π∗α(X,W ) = 0,

η ∧ π∗α(J ′′X,W ) = 0,

π∗(Kβ + φ)(X,W ) = 0,

π∗(Kβ + φ)(J ′′X,W ) = 0

hold for all W ∈ S. This is a consequence of vanishing of α on π∗X and S
and Condition 4 above. It is easy to calculate that ω tames J.

We now show that given J can be deformed to J ′′ satisfying our con-
ditions. Firstly we deform J to another almost complex complex structure
preserving S. Thus we homotop J to J ′ such that

J ′(S) = S and J ′ ↾ Lin{X, JX} = J ↾ Lin{X, JX}.
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Since in ker η we have A ⊥ {JX} and (by the assumptions) S ⊥ {JX}, we
can homotop J to J ′ using the map S 7→ A given by the projection parallel
to JX. We can proceed for example as follows. The tangent bundle TM
decomposes as LinC{X}⊕S and LinC{X}⊕A, so J orients S. Furthermore,
whenever we choose unique orthonormal vectors UA = A⊥ and US = S⊥

in ker η appointed by choices of orientations, we have that UA + US 6= 0.
Then the shortest path {Ut}t∈[0,1] of orthonormal vectors connecting UA to

US gives the path U⊥
t of oriented, 2-dimensional subbundles in ker η. We

induce almost complex structures on each U⊥
t from A using the projection

A 7→ Ut parallel to JX.

Next we immediately see that β(π∗W,π∗J
′W ) is of constant sign for nonzero

W ∈ S, so replacing β by −β if necessary we can assume that

β(π∗W,π∗J
′W ) > 0.

We also choose K in (4.1) large enough to satisfy Condition 3. We now
deform J ′ to J ′′ satisfying Condition 4.

The form Kβ + φ has maximal rank, so the two-sided kernel

H = {u | ∀v (Kβ + φ)(u, v) = 0}

is a one dimensional subbundle of TN . Furthermore, H is oriented because
it is transversal to the canonically oriented bundle kerα by the condition
α(π∗J

′X) > 0. Thus we are able to choose a section Z of the bundle H such
that α(Z) > 0. We deform J ′ to J ′′ satisfying the conditions

J ′′(S) = S and π∗J
′′X = Z.

Both the vector fields Z and π∗J
′X are positive on α and so is the convex

path {Zt}t∈[0,1] connecting these fields. By transversality of kerα and Z we

get that {Z̃t}t∈[0,1] are transversal to S for all t ∈ [0, 1]. Hence we define

J ′
tX = Z̃t,

where J ′
0 = J ′ and J ′

1 = J ′′. �

To complete this section we give an example of an invariant almost com-
plex structure on T 4 which is not tamed by any invariant symplectic form,
hence does not satisfy the assumption of Theorem 4.6. Almost complex
structures on T 4 correspond to maps T 4 → GL(4,R)/GL(2,C) ∼ S2. Take
the standard trivialization of the tangent bundle of T 4 = T 3 ×S1, the stan-
dard almost complex structure J and the action of the circle given by the
S1 factor. Twist J on D3 × S1 ⊂ T 3 × S1 to correspond to the map

T 4 → D3 × S1/∂(D3 × S1)
projection

−→ D3/∂D3Hopf
−→ S2.

It follows directly from Corollary 2.12 that no invariant symplectic form
tames the resulting almost complex structure. More generally, any invari-
ant almost complex structure nonhomotopic to the standard one cannot be
tamed by an invariant symplectic form.
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