7 Problem estymacji fazy oraz kwantowa transformacja Fouriera

7.1 Sformulowanie zagadnienia i wstepna analiza

Pytanie 7.1. Dany obwdd kwantowy reprezentujacy operator unitarny U oraz dany stan [¢), o ktérym
wiemy ze jest wektorem wlasnym U. Wyznaczy¢ odpowiednia wartoé¢ wlasna.

Z unitarnosci U wynika, ze warto§¢ wlasna A odpowiadajaca wektorowi |¢) jest liczba zespolona o
module 1, tzn. A = exp(27if) gdzie 6 € [0, 1). Poszukujemy m pierwszych cyfr znaczacych 6 zapisanego
w postaci utamka binarnego ¢ ~ 5%, gdzie y € {0,1,2,...,2™ — 1} C Ny jest reprezentowane w postaci

ciggu binarnego dlugosci m.
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Zalozmy, ze dysponujemy kontrolowana wersja bramki U i na prébe przeanalizujmy kolejne etapy
ewolucji stanu poczatkowego [1) ® |0) przy przechodzeniu przez kolejne czesci obwodu przedstawionego
na rysunku powyzej

L0y @10) + 18) ® [1)) O3 ma) = — (19) ® [0) + exp(@riB) ) ® 1)) 5
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Prawdopodobienistwa pomiaru 0 oraz 1 wynosza wiec odpowiednio
1 211 2 1— o7i 2
PO) = ‘+6XP<7”9>‘ —co(mf),  P(1)= ’exp(m@‘ _ gin(nf). (72)

W szczegblnoscei, jesli 8 = 0 lub 6§ = % (czyliy =01lub y =1 dla m = 1) to otrzymujemy dobra odpowiedz.
Jedli 6 = i to P(0) = P(1) = %, wiec przestawiony powyzej obwdd nie moze byé uzyty do otrzymania
odpowiedzi i musi by¢ zmodyfikowany. Zauwazmy, ze wtedy 26 = %, co wobec réwnosci A? = exp(4mif))
sugeruje dwukrotne uzycie bramki C' — U. Ze wzgledu na okresowo$¢ funkcji exp ograniczy to zakres

argumentu 6 do odcinka [0, §)
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Zauwazmy, ze jesli wiemy iz zachodzi dokladnie jedna z dwoéch mozliwosci: & = 0 lub 6 = %, to mozemy
te wartosci zidentyfikowac je§li zmierzymy 0 lub 1, odpowiednio.

7.2 Dwukubitowa estymacja fazy

Polaczmy oba obwody i przeprowadzmy analize kolejnych etapéw ewolucji stanu
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gdzie x = 2ay + a1. Zalézmy, 7e wiemy iz zachodzi jednen z nastepujacych przypadkow: 0 = 4, gdzie
y € {0,1,2,3}. Dla kazdego z nich mozemy zdefiniowa¢ odpowiedni stan

3
04) = 5 O exp(2mizy)lr) (7.4)

x=0

Zapisujac te wektory w sposéb jawny, mamy

60y = 5 (10) + 1) +12) +13)), 161 = 5 (0) +il1) — [2) — if3))
B2) =5 (0 = 1) +12) =13, Igs) =5 (10) —il1) —[2) +il3)).

Zauwazmy, ze tworzg one baze ortonormalng w C*, wiec istnieje transformacja unitarna przeprowadzajaca
je w baze obliczeniowa {|00),]01), |10}, |11)}, czyli w obecnym zapisie {|0), |1),]2), |3)}. Macierz unitarna
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ktore kolumnami sa wektory |¢,), v = 0,1,2,3, dziala jako M|y) = |¢,). Jej odwrotnosé, czyli M,
przeprowadza baze {|¢,)}3_, w standardows baze obliczeniows MT|py) = |y).

Macierz M jest znang w matematyce macierza dyskretnej transformacji Fouriera w C*. W kontekscie
obliczen kwantowych oznacza sie ja QFT, (kwantowa transformacja Fouriera). Dwukubitowa estymacja
fazy ma wiec obwod kwantowy w postaci

ly> U u?
0> — ] .
= QFT
0> —H|—e®

>

Daje ono rozwigzanie doktadne dla 6 = ¥, gdzie y € {0,1,2,3}. Jesli 6 przybiera inne wartosci, to
odpowiedz daje jej aproksymacje, np. w przypadku y = % otrzymujemy wartosci 1 lub 2 z prawdopodo-

bienstwami bliskimi 3.
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7.3 Dyskretna transformacja Fouriera

Dyskretna transformacja Fouriera jest odwzorowaniem unitarnym Fy: CV — CV szeroko uzywanym w
analizie danych i transmisji sygnatéw. Niech

2 2
wy = exp(2wi/N) = cos (;) + isin <]\7[T> ) (7.6)
bedzie pierwotnym pierwiastkiem stopnia N z jednosci, wtedy oznaczajac wektory standardowej bazy
ortonormalnej w CV kolejno jako |0), [1), ..., [N — 1), definiujemy Fy wzorem
1
Fylz) = — W |y, z=0,1,...,N — 1. 7.7
wle) = o= > i) (7.7

Przyklad 7.1. W przypadku N = 4 mamy w4 = ¢ oraz kolejno
(10) +é[1) = 12) —i[3)) = [¢1),
(10) = i[1) = |2) +i[3)) = |¢s).

F4]0) = (|0> +[1)+12) +13) =l¢o),  Full) =

m\r—\w\
DN = Do =

Fy|2) = 5 (10) = 1) +[2) = [3)) = [d2),  Ful3) =

Mozemy wiec zapisa¢ macierz odwzorowania w postaci

1 1 1 e 1
1wy w3 .. w]]\\fl
2(N-1
Fy=-—L |1 o} o} Wyt (7.8)
VN : . :
1 w]]\\fl w?\,(N_l) . wng_l)(N_l)

Jesli N = 2 to otrzymujemy transformate Hadamarda, a w przypadku N = 4 macierz M rozwazang
powyzej.
Warunek unitarnoéci macierzy F sprowadza sie do znanego wzoru
14wy +wd+--+wi =0 (7.9)
Macierz F&l = F};, otrzymujemy zamieniajac wy na jej sprzezenie zaspolone, ktére w tym przypadku jest

rowne jej odwrotnosci @y = wy'. Otrzymujemy wiec wzor na transformacje odwrotna postaci
J€) N ymujemy wig

N
1 —
FM@:WE wy¥ly),  x=0,1,...,N—1. (7.10)

7.4 Kwantowa transformacja Fouriera

W przypadku N = 2™ dyskretna transformacja Fouriera (DFT) moze by¢ efektywniej przedstawiona jako
tzw. szybka transformacja Fouriera (FFT), a takze zaimplementowana jako obwod kwantowy, co jeszcze
bardziej przyspiesza obliczenia. Jesli reprezentujemy

T = [Tm, Tm—1,-..,T2,T1] = T2V 2y 12M T2 4 202 + 1y (7.11)

w notacji binarnej, to odpowiednia transformacja (uzywamy oznaczenia QFT) jest postaci

Q0+ w1 =
Fkr 1 ! (7.12)

(0) +o2 ) @ (0) + w2 ) @@ (j0) + Wl ),

QFT(|zm) ® ... |z2) ® |21))

1
Vv
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gdzie wykorzystujemy fakt, ze wh = 1.

Chcac budowa¢ obwodd nie mozemy wykorzystywaé¢ wczesniej zmienionych kubitéw. Zauwazmy, ze w
przedstawionym powyzej wzorze modyfikujemy zawartosé pierwszego kubitu, w ktérym przechowywali§my
Ty, kKtérego bedziemy potrzebowaé pézniej. Zamierimy wiec kolejnosé kubitéw otrzymujac w pierwszym
etapie transformacje, w ktorej nie wykorzystujemy zmienionych kubitow

7172[ 2m71

(T ey @2, 11) > —==(|0) + W™ TN @@ (0) 4wl PP @ (10) +wrp P,

1
A /2m
co zrekompensujemy po6zniej bramkami SWAP. Ostatecznie, obwody reprezentujace QFT w przypadkach
m = 2,3, gdzie Rj, oznacza bramke

Ry, = ((1) exp(??ri/?k)) 7 (7.13)

przedstawione sg ponizej (w przypadku m = 1 mamy transformacje Hadamarda)

x> H R,

x> ‘ H

x> —— H R, R;
|X2> ‘ H R2
|x,> ® ‘ H
Transformacje dla wiekszych m otrzymujemy analogicznie doktadajac bramke H oraz bramki Rs,..., Ry,

kontrolowane kolejnymi kubitami, pamietajac o odpowiednich bramkach SWAP na koniec. Obwod trans-
formacji odwrotnej otrzymujemy zapisujac bramki w odwrotnej kolejnosci i zamieniajac Ry na R;l.

7.5 Analiza kwantowej estymacji fazy

Wréémy do zagadnienia estymacji fazy w przypadku m-kubitowym. Przeprowadzmy analize wykorzysty-
wanego obwodu

|\V> U Uz Uszl
0> —{u] .
. QFT},
|0> |£| ® 2
—{n}—e

|0>
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H®™ U2
) ®10%™) "= exp(2mib, 0 )|b)
S s Y
1 2" -1 U c Uzm—l
® — exp(2mi(2bs + b)O)B) T 7Y 7.14
1) \/Z—mbz:% p(27i(2b2 + b1)0)[b) (7.14)
;e 2m_1
) ® — exp (278 (2™ by 4 -+ 209 4+ b1)0)|b) = |¢) @ — exp(2mibh)|b).
e %
Zauwazmy, ze ciag bramek C,, — U,Cyn_1 — U2,...,C; — U?" ' mozna zapisa¢ w postaci
2m 1
Uc= Y |k)kl@U". (7.15)
k=0
Uwaga. Jedli 0 = 5%,y € {0,1,...,2™ — 1} jest utamkiem binarnym dtugosci m, to otrzymujemy stan
;] T
) ® — wil, |b), (7.16)
R
ktorego prawa czeSé¢ (ostatnie m kubitow) jest dyskretna transformata Fouriera wektora |y) = |ym, .-, y1)

reprezntujacego liczbe y = 2™ Ly, + - - + 22 + y1. Stosujac odwrotna dyskretna transformacje Fouriera
otrzymamy wiec szukana warto$¢ y z prawdopodobienstwiem 1.

Przeprowdzmy dokladna analize. Jesli zastosujemy odwrotna dyskretng transformacje Fouriera do
stanu

2m—1
1
— exp(2mibl)|b), (7.17)
A /2m
b=0
to otrzymamy stan
= ;2 2m—1
— Z exp(2mibl) —— exp(—2mikb/2™)|k) = Z Cilk), (7.18)
A V2T
gdzie
| 2=
o Z exp (—2mib(k — 2™0)/2™). (7.19)
b=0
Oznaczmy
1
2"0 = a+2"5, 0<[2"0] < 5, (7.20)
gdzie a jest liczba catkowita najblizsza 2™60, wtedy
=
Ce =5 > exp (=2mib(k — a)/2™) exp(2ibs). (7.21)
b=0

Jesli 6 = 0, to otrzymujemy doktadng warto$é¢ a z prawdopodobienstwem réwnym 1, co wynika ze wzoru

2m—1
2m dla k=
3" exp (~2mibk/2™) = N 0 (7.22)
= 0 dla k=#0.
Jesli 0 # 0 to prawdopodobienistwo zmierzenia a wynosi
R Ll [ —exp@rio2™) [P 1 |sin(roe2m) |2
Pla) = |Cy)> = — 2mibd)| = = — |— 2
(@) =1Cal" = 5am ; exp(2mib0)| = So | T exp(2rid) ‘ 22m | sin(rd) (7.23)
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Biorge pod uwage oszacowanie stuszne dla z € [0, 7]

2
—x <sinz < z, (7.24)
™
to dla rozwazanych |6 < 57t mamy
1 [s2mtl 2 4
Pa) > — = —. 7.25
@2 g |5 | =% (7.25)
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