Birkhoff polytope

and its subset of unistochastic matrices

Karol Życzkowski

 in collaboration withCharles Dunkl (University of Virginia)

$$
\text { J. Math. Phys. 50, } 123521 \text { (2009). }
$$

Uniwersytet Warmińsko-Mazurski, Olsztyn

$$
\text { June 21, } 2012
$$

Stochastic matrices \& Markov chains

Stochastic matrices

Classical states: N-point probability distribution, $\mathbf{p}=\left\{p_{1}, \ldots p_{N}\right\}$, where $p_{i} \geq 0$ and $\sum_{i=1}^{N} p_{i}=1$
Discrete dynamics - a Markov chain: $p_{i}^{\prime}=S_{i j} p_{j}$, where S is a stochastic matrix of size N and maps the simplex of classical states into itself, $S: \Delta_{N-1} \rightarrow \Delta_{N-1}$.

Frobenius-Perron theorem

Let S be a stochastic matrix:
a) $S_{i j} \geq 0$ for $i, j=1, \ldots, N$,
b) $\sum_{i=1}^{N} S_{i j}=1$ for all $j=1, \ldots, N$.

Then
i) the spectrum $\left\{z_{i}\right\}_{i=1}^{N}$ of S belongs to the unit disk,
ii) the leading eigenvalue equals unity, $z_{1}=1$,
iii) the corresponding eigenstate forms a probability vector $\mathbf{p}_{\text {inv }}$, which is invariant, $S \mathbf{p}_{\text {inv }}=\mathbf{p}_{\text {inv }}$.

Spectra of stochastic matrices

Let Σ_{N} denotes a subset of the unit disk which supports the spectra of stochastic matrices of size N.
Let Z_{k} be a regular polygon centered at 0 with a corner at $z=1$.
a) $N=2$: the spectrum of S is real, $\Sigma_{2}=[-1,1]=Z_{2}$
b) $N=3$: the spectrum contains an interval and a triangle, $\Sigma_{3}=Z_{2} \cup Z_{3}$
c) $N=4$: the spectrum contains an interval, a triangle, and a square $\Sigma_{4} \supset Z_{2} \cup Z_{3} \cup Z_{4}$ but it is contained in the convex hull of this set.

$$
N=3
$$

The boundary of the non-convex set Σ_{N} was derived by Karpelevich (1951), a simplified proof given by Djokovic in 1990.

Set \mathcal{B}_{N} of bistochastic matrices of size N

The Birkhoff polytope

A square matrix B is called bistochastic (doubly stochastic) if

- it has positive elements $B_{i j} \geq 0$,
- the sum in each column and each row is equal to unity,

$$
\sum_{i} B_{i j}=\sum_{j} B_{i j}=1
$$

Birkhoff theorem. Every bistochastic matrix can be written as a convex combination of permutation matrices $P_{k}, \quad B=\sum_{k} q_{k} P_{k}$. Thus the set \mathcal{B}_{N} is called the Birkhoff polytope

In general a matrix $B \in \mathcal{B}_{N}$ is described by $(N-1)^{2}$ parameters, so the Birkhoff polytope $\mathcal{B}_{N} \subset \mathbb{R}^{(N-1)^{2}}$.

Bistochastic matrices for $N=2$

$B_{2}=(a)=\left[\begin{array}{cc}a & 1-a \\ 1-a & a\end{array}\right]=a \mathbb{1}+(1-a) P_{12}$, for $a \in[0,1]$.
Thus $N=2$ Birkhoff polytope is equivalent to unit interval, $\mathcal{B}_{2}=[0,1]$.

Set \mathcal{B}_{N} of bistochastic matrices of size N

Bistochastic matrices for $N=3$, for which $\mathcal{B}_{3} \subset \mathbb{R}^{4}$

$B_{3}\left(b_{1}, b_{2}, b_{3}, b_{4}\right):=\left[\begin{array}{ccc}b_{1} & b_{2} & 1-b_{1}-b_{2} \\ b_{3} & b_{4} & 1-b_{3}-b_{4} \\ 1-b_{1}-b_{3} & 1-b_{2}-b_{4} & \sum_{i=1}^{4} b_{i}-1\end{array}\right] \in \mathcal{B}_{3}$
The set \mathcal{B}_{3} is the convex hull of $3!=6$ permutation matrices, $\left\{\mathbb{1}, P=P_{123}, P^{2}=P_{132}, P_{12}, P_{13}, P_{23}\right\}$.

W denotes the flat bistochastic matrix, $W=\frac{1}{3}[1,1,1 ; 1,1,1 ; 1,1,1]$, located at the center of the Birkhoff polytope \mathcal{B}_{3}.

Spectra of bistochastic matrices

Let Σ_{N}^{\prime} denotes a set which supports the spectra of bistochastic matrices of size N.
Since any bistochastic matrix is stochastic, the support Σ_{N}^{\prime} is contained in Σ_{N}

Are both sets equal for each N ??

Superimposed spectra of 3000 random bistochastic matrices

$$
\text { of size } N=3 \text { and } N=4 \text {. }
$$

Markov chains and (underlying) unitary dynamics

Consider discrete dynamics described by a Markov chain, $p_{i}^{\prime}=B_{i j} p_{j}$, represented by a bistochastic matrix $B_{i j} \geq 0$, sum in each column (each row) equal to unity, $\sum_{i} B_{i j}=\sum_{j} B_{i j}=1$.

In physical problems, such a dynamics is often governed by a unitary matrix V,
such that the measurable transition probabilities
read $B_{i j}=\left|V_{i j}\right|^{2}$, for $i, j=1, \ldots, N$.
A natural mathematical question arises:
Given a bistochastic matrix \mathbf{B} find out if there exists
a corresponding unitary matrix V such that $\left|V_{i j}\right|^{2}=\mathbf{B}_{\mathrm{ij}}$ and check, whether such a unitary V is orthogonal.

Unistochastic and orthostochastic matrices

Definitions

A bistochastic matrix $B \in \mathcal{B}_{N}$ is called unistochastic if there exists a unitary $\mathrm{U} \in U(N)$ such that

$$
B_{i j}=\left|\mathbf{U}_{\mathrm{ij}}\right|^{2}, \text { written } B=f(U) .
$$

A bistochastic matrix $B \in \mathcal{B}_{N}$ is called orthostochastic if there exists an orthogonal $\mathbf{O} \in O(N)$ such that

$$
B_{i j}=\mathbf{O}_{\mathrm{ij}}{ }^{2}, \text { written } B=f(O) .
$$

Let \mathcal{U}_{N} and \mathcal{O}_{N} denote the sets of unistochastic and orthostochastic matrices of size N, respectively.

By definition the following inclusion relation hold

$$
\mathcal{O}_{N} \subset \mathcal{U}_{N} \subset \mathcal{B}_{N}
$$

Quantized 1-d dynamical systems

Quantum evolution (of a closed system!) is unitary, $\left|\psi^{\prime}\right\rangle=U|\psi\rangle$, and it is reversible, $|\psi\rangle=U^{*}\left|\psi^{\prime}\right\rangle$.
To find a quantum analogue of a dynamical system $g: \mathbb{R} \rightarrow \mathbb{R}$ one a) finds its Markov partition and transition matrix B and verifies, whether it is bistochastic.
b) if it is so one cheks if B is unistochastic, i.e. there exists unitary U such that $B_{i j}=\left|\mathbf{U}_{\mathrm{ij}}\right|^{2}$.

The matrix U describes a quantum analogue of the classical system g.

Examples: a) quantizable, b) non-quantizable classical system

Non-quantizable 1-d dynamical system

A counterexample (for quantization)

$$
B=\frac{1}{6}\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 2 & 2 \\
3 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 3 & 3
\end{array}\right]
$$

The transition matrix B is not unistochastic !
There is no quantum analogue - no corresponding unitary matrix $U \ldots$

Quantized 1-d dynamical systems II

Example 3: Four legs map and its quantization
Pakoński, Kuś, K.Ż. (2001)

Uni- and ortho-stochastic matrices for $N=2$

Proposition For $N=2$ all three sets coincide, $\mathcal{O}_{2}=\mathcal{U}_{2}=\mathcal{B}_{2}=[0,1]$.
Proof. Take any $a \in[0,1]$ and set $B=\left[\begin{array}{cc}a & 1-a \\ 1-a & a\end{array}\right]$.
The corresponding orthogonal matrix reads

$$
O=\left[\begin{array}{cc}
\cos \vartheta & \sin \vartheta \\
-\sin \vartheta & \cos \vartheta
\end{array}\right], \quad \text { where } a=\cos ^{2} \vartheta
$$

In other words
every $N=2$ bistochastic matrix is orthostochastic
(and thus also unistochastic).

Uni- and ortho-stochastic matrices for $N=3$

Proposition. For $N=3$ both inclusion relations

$$
\begin{aligned}
& \mathcal{O}_{3} \subset \mathcal{U}_{3} \subset \mathcal{B}_{3} \text { are proper. } \\
& \quad \text { a) b) }
\end{aligned}
$$

Proof by demonstration.
a) Fourier matrix $F_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega & \omega^{2} \\ 1 & \omega^{2} & \omega\end{array}\right]$ with $\omega=e^{2 \pi i / 3}$ is unitary and corresponds to the flat bistochastic matrix $W=f\left(F_{3}\right)$, as $W_{i j}=1 / 3$.

Thus W is unistochastic but not orthostochastic, since for $N=3$ there are no Hadamard matrices.
b) Example of Schur: the bistochastic matrix B_{S},
$B_{S}=\frac{P+P^{2}}{2}=\frac{1}{2}\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
is bistochastic but not unistochastic.

Unistochasticity and chain-link condition for $N=3$

Unitarity condition $U U^{\dagger}=\mathbb{1}$ can be written as $\left\langle u_{\mu} \mid u_{\nu}\right\rangle=\delta_{\mu, \nu}$

Diagonal elements $\left\langle u_{\mu} \mid u_{\mu}\right\rangle=1$, impose bistochasticity, $\sum_{i} B_{i \mu}=1$ while orthogonality relation $\left\langle u_{\mu} \mid u_{\nu}\right\rangle=0$ imposes further constraints for elements of $B=f(U)$!

What constraints for unistochasticity?
As the sum $\left\langle u_{1} \mid u_{2}\right\rangle=\sum_{j=1}^{3} U_{j 1} U_{j 2}^{*}=L_{1} e^{i \chi_{1}}+L_{2} e^{i \chi_{2}}+L_{3} e^{i \chi_{3}}$ of three complex numbers should vanish, their (ordered) moduli $L_{1} \geq L_{2} \geq L_{3}$ satisfy the following chain link condition (triangle inequality)

$$
L_{1} \leq L_{2}+L_{3} \quad \text { with } L_{k}:=\sqrt{B_{1 k} B_{2 k}}
$$

a) unistochastic matrix with a positive area of the unitarity triangle, $A^{2}>0$, b) limiting case: an orthostochastic matrix with $A^{2}=0$,

Unitarity triangle formed by links L_{1}, L_{2}, L_{3}

The length of the links of the unitarity triangle read

$$
\begin{equation*}
L_{1}=\sqrt{b_{1} b_{2}}, \quad L_{2}=\sqrt{b_{3} b_{4}}, \quad L_{3}=\sqrt{\left(1-b_{1}-b_{2}\right)\left(1-b_{3}-b_{4}\right)} \tag{1}
\end{equation*}
$$

Let $p=\left(L_{1}+L_{2}+L_{3}\right) / 2$ denotes its semiperimeter.
Making use of the Heron's formula for the area of the triangle

$$
\begin{equation*}
A=\sqrt{p\left(p-L_{1}\right)\left(p-L_{2}\right)\left(p-L_{3}\right)} \tag{2}
\end{equation*}
$$

we arrive with a compact expression for the squared area A^{2},

$$
\begin{equation*}
A^{2}=\left[4 b_{1} b_{2} b_{3} b_{4}-\left(b_{1}+b_{2}+b_{3}+b_{4}-1-b_{1} b_{4}-b_{2} b_{3}\right)^{2}\right] / 16 \tag{3}
\end{equation*}
$$

The chain-links conditions

are equivalent to a single condition for unistochasticity:

$$
A^{2}(B) \geq 0
$$

(if a triangle exists its area is real and positive !)

The set \mathcal{U}_{3} of unistochastic matrices of size $N=3$

cross-sections of \mathcal{U}_{3} (implied by $A^{2}(B) \geq 0$)

a)

Nonconvex 3-Hypocycloid obtained by the cross-section of \mathcal{U}_{3} along the plane spanned by the equilateral triangle $\triangle\left(P, P^{2}, \mathbb{1}\right)$, b) a similar cross-section along totally orthogonal plane, c) a view 'from above'.

The set \mathcal{O}_{3} of orthostochastic matrices

Proposition. For $N=3$ the set \mathcal{O}_{3} of orthostochastic matrices forms the boundary of the $4 D$ set \mathcal{U}_{3} of unistochastic matrices.

Unistochastic matrices

are useful for quantizing classical dynamical systems (which lead to bistochastic transition matrices).

Prot Pakoński, Ph.D. Thesis 2002, Pakoński, Życzkowski, Kuś, 2001,

The set \mathcal{U}_{3} of $N=3$ unistochastic matrices

was investigated in Bentgsson, Ericsson, Kuś, Tadej, Życzkowski, Commun. Math. Phys. (2005).

The set \mathcal{U}_{3} of unistochastic matrices of size $N=3$ occupies (with respect to the Lebesgue measure) more than $3 / 4$ of the corresponding Birkhoff polytope \mathcal{B}_{3},

$$
\begin{equation*}
\frac{\operatorname{vol}\left(\mathcal{U}_{3}\right)}{\operatorname{vol}\left(\mathcal{B}_{3}\right)}=\frac{8 \pi^{2}}{105}=0.751969 \ldots \tag{4}
\end{equation*}
$$

Dunkl, Życzkowski, 2009

Unitarity triangle and Jarlskog invariant (for $N=3$)

Jarlskog invariant

For any unitary $U \in U(3)$ define the number $J(U):=\operatorname{Im}\left(U_{11} U_{22} U_{12}^{*} U_{21}^{*}\right)$ called Jarlskog invariant.

Equivalent unitary matrices

Two unitary matrices U and U^{\prime} are called equivalent if there exist two diagonal unitary matrices, D_{A} and D_{B}, and two permutations P_{A} and P_{B} such that

$$
\begin{equation*}
U \sim U^{\prime}=D_{A} P_{A} U P_{B} D_{B} \tag{5}
\end{equation*}
$$

The following relation holds: if $U \sim U^{\prime}$ then $J(U)=J\left(U^{\prime}\right)$, Jarlskog 1985
Simple calculation shows that the Jarlskog invariant is related to the area of the unitarity triangle,

$$
J^{2}(U)=4 A^{2}(B), \quad \text { where } B=f(U)
$$

Spectra of unistochastic matrices

Since any unistochastic matrix is bistochastic, the support of the spectra of matrices from \mathcal{U}_{N} is contained in the support Σ_{N}^{\prime} of spectra of bistochastic matrices.

$$
N=4:
$$

Superimposed spectra of 3000 Haar random unistochastic matrices of size $N=3$ and $N=4$.

N-hypocycloids again...

Speculations on the set of unistochastic matrices

The set \mathcal{B}_{N} of Bistochastic matrices (Birkhof Polytope)

 $\mathcal{B}_{N}=$ convex hull of the set of N ! permutation matrices
wilde speculation:

The set \mathcal{U}_{N} of Unistochastic matrices

 perhaps$$
\begin{aligned}
\mathcal{U}_{N}= & \text { a "special, non-convex" hull } \\
& \text { of the set of } N!\text { permutation matrices }
\end{aligned}
$$

example $N=3$:

What kind of "special, non-convex", hull ??

Speculation 1. Cayley-convex set

Cayley transform

Let S be a skew hermitian matrix, $S=-S^{\dagger}$.
Then its Cayley transform is unitary,

$$
C(S)=\frac{\mathbb{1}-S}{\mathbb{1}+S}=U
$$

The inverse Cayley transform sends a unitary U into skew hermitian S :

$$
C^{-1}(U)=\frac{\mathbb{1}-U}{\mathbb{1}+U}=S
$$

Cayley combination of two unitaries, U and W

$$
V(a)=C\left[a C^{-1}(U)+(1-a) C^{-1}(W)\right]=\frac{\mathbb{1}-a \frac{\mathbb{1}-U}{\mathbb{1}+U}-(1-a) \frac{\mathbb{1}-W}{\mathbb{1}+W}}{\mathbb{1}+a \frac{\mathbb{1}-U}{\mathbb{1}+U}+(1-a) \frac{\mathbb{1}-W}{\mathbb{1}+W}}
$$

Speculation 2. Log-convex set

Logarithm of a unitary matrix

Any unitary matrix U can be diagonalized, $U=W D W^{\dagger}$.
Define the \log arithm $L=\log U=W^{\dagger}(\log D) W$ such that $U=\exp (L)$.
technial assumption: the spectrum D does not contain -1

Log-convex combination of two unitaries, U and W

$$
W^{\prime}=U^{a} V^{1-a}
$$

or

$$
\begin{array}{r}
W=\exp [a \log U+(1-a) \log V] \\
\text { is unitary ! }
\end{array}
$$

Speculation 3. Ando-convex set

Ando mean of

Geometric mean of two matrices of a full rank reads

$$
A \# B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1 / 2} A^{1 / 2}
$$

see (Ando 1978) but also Pusz and Woronowicz (1975)

Ando-convex combination of two unitaries, U and W

$$
U \#_{t} W=U^{1 / 2} \exp \left(t \log \left(U^{-1 / 2} W U^{-1 / 2}\right)\right) U^{1 / 2}
$$

is unitary !

Is the set \mathcal{U}_{N} of unistochastic matrices related to Cayley/log/Ando-combinations of permutation matrices ??

Some open question

- What is the set of Cayley/log/Ando-combinations of all permutation matrices of order N ?
- What is the (minimal) set of unitary matrices such that their Cayley/log/Ando-combinations form the entire set of unitary matrices
- Are bistochastic matrices obtained from Cayley/log/Ando-combinations of permutation matrices at the boundary of the set \mathcal{U}_{N} of unistochastic matrices of size N ?
Consider, for instance the Cayley combination of matrices. Is the following implication true:

$$
B=\sum_{i} a_{i} P_{i} \in \partial \mathcal{B}_{N} \Rightarrow f\left(C\left[\sum_{i=1}^{M} a_{i} C^{-1}\left(U_{i}\right)\right]\right) \in \partial \mathcal{U}_{N}
$$

Concluding Remarks

- A bistochastic matrix B corresponds to a unitary matrix if it is unistochastic, $B=f(U)$ so that $B_{i j}=\left|U_{i j}\right|^{2}$.
- for $N=2$ every bistochastic matrix is orthostochastic.
- The set \mathcal{U}_{3} of unistochastic matrices of size $N=3$ is explicitely characterized by the unitarity triangle condition:

$$
B \in \mathcal{U}_{3} \Leftrightarrow A^{2}(B) \geq 0
$$

- For $N=3$ the boundary of the set \mathcal{U}_{3} consists of orthostochastic matrices, for which $A^{2}(B)=0$.
Thus a generic unistochastic matrix of is not orthostochastic
- For $N=3$ we computed the volume of the set \mathcal{U}_{3} and the average value of the Jarlskog invariant J for a random Haar unitary matrix $U \in U(3)$.
- For $N \geq 4$ the unistochasticity problem remains open!

