
Birkhoff polytope
and its subset of unistochastic matrices
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Stochastic matrices & Markov chains

Stochastic matrices

Classical states: N-point probability distribution, p = {p1, . . . pN},
where pi ≥ 0 and

∑N
i=1 pi = 1

Discrete dynamics – a Markov chain: p′i = Sijpj , where S is a stochastic
matrix of size N
and maps the simplex of classical states into itself, S : ∆N−1 → ∆N−1.

Frobenius–Perron theorem

Let S be a stochastic matrix:
a) Sij ≥ 0 for i , j = 1, . . . ,N,

b)
∑N

i=1 Sij = 1 for all j = 1, . . . ,N.
Then
i) the spectrum {zi}Ni=1 of S belongs to the unit disk,
ii) the leading eigenvalue equals unity, z1 = 1,
iii) the corresponding eigenstate forms a probability vector pinv,

which is invariant, Spinv = pinv.
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Spectra of stochastic matrices

Let ΣN denotes a subset of the unit disk which supports the spectra of
stochastic matrices of size N.
Let Zk be a regular polygon centered at 0 with a corner at z = 1.

a) N = 2: the spectrum of S is real, Σ2 = [−1, 1] = Z2

b) N = 3: the spectrum contains an interval and a triangle, Σ3 = Z2 ∪ Z3

c) N = 4: the spectrum contains an interval, a triangle, and a square
Σ4 ⊃ Z2 ∪ Z3 ∪ Z4 but it is contained in the convex hull of this set.

N = 3 N = 4:

The boundary of the non–convex set ΣN was derived by Karpelevich
(1951), a simplified proof given by Djokovic in 1990.
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Set BN of bistochastic matrices of size N

The Birkhoff polytope

A square matrix B is called bistochastic (doubly stochastic) if
– it has positive elements Bij ≥ 0,
– the sum in each column and each row is equal to unity,∑

i Bij =
∑

j Bij = 1.

Birkhoff theorem. Every bistochastic matrix can be written as a convex
combination of permutation matrices Pk , B =

∑
k qkPk .

Thus the set BN is called the Birkhoff polytope

In general a matrix B ∈ BN is described by (N − 1)2 parameters,
so the Birkhoff polytope BN ⊂ R(N−1)2

.

Bistochastic matrices for N = 2

B2 = (a) =

[
a 1− a

1− a a

]
= a1+ (1− a)P12, for a ∈ [0, 1].

Thus N = 2 Birkhoff polytope is equivalent to unit interval, B2 = [0, 1].
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Set BN of bistochastic matrices of size N

Bistochastic matrices for N = 3, for which B3 ⊂ R4

B3(b1, b2, b3, b4) :=

 b1 b2 1− b1 − b2

b3 b4 1− b3 − b4

1− b1 − b3 1− b2 − b4
∑4

i=1 bi − 1

 ∈ B3

The set B3 is the convex hull of 3! = 6 permutation matrices,
{1, P = P123, P2 = P132, P12, P13, P23}.

W denotes the flat bistochastic matrix, W = 1
3 [1, 1, 1; 1, 1, 1; 1, 1, 1],

located at the center of the Birkhoff polytope B3.
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Spectra of bistochastic matrices

Let Σ′N denotes a set which supports the spectra of bistochastic matrices
of size N.
Since any bistochastic matrix is stochastic,
the support Σ′N is contained in ΣN

Are both sets equal for each N ??

N = 3 N = 4:

Superimposed spectra of 3000 random bistochastic matrices
of size N = 3 and N = 4.
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Markov chains and (underlying) unitary dynamics

Consider discrete dynamics described by a Markov chain, p′i = Bijpj ,
represented by a bistochastic matrix Bij ≥ 0,
sum in each column (each row) equal to unity,

∑
i Bij =

∑
j Bij = 1.

In physical problems, such a dynamics is often governed by
a unitary matrix V ,

such that the measurable transition probabilities
read Bij = |Vij |2, for i , j = 1, . . . ,N.

A natural mathematical question arises:

Given a bistochastic matrix B find out if there exists
a corresponding unitary matrix V such that |Vij |2 = Bij

and check, whether such a unitary V is orthogonal.
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Unistochastic and orthostochastic matrices

Definitions

A bistochastic matrix B ∈ BN is called unistochastic if there exists a
unitary U ∈ U(N) such that

Bij = |Uij|2, written B = f (U).

A bistochastic matrix B ∈ BN is called orthostochastic if there exists an
orthogonal O ∈ O(N) such that

Bij = Oij
2, written B = f (O).

Let UN and ON denote the sets of unistochastic and orthostochastic
matrices of size N, respectively.

By definition the following inclusion relation hold
ON ⊂ UN ⊂ BN .
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Quantized 1-d dynamical systems

Quantum evolution (of a closed system!) is unitary, |ψ′〉 = U|ψ〉,
and it is reversible, |ψ〉 = U∗|ψ′〉.

To find a quantum analogue of a dynamical system g : R→ R one
a) finds its Markov partition and transition matrix B and verifies,
whether it is bistochastic.
b) if it is so one cheks if B is unistochastic,

i.e. there exists unitary U such that Bij = |Uij|2.
The matrix U describes a quantum analogue of the classical system g .

Examples: a) quantizable, b) non-quantizable classical system
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Non-quantizable 1-d dynamical system

A counterexample (for quantization)

The transition matrix B is not unistochastic !

There is no quantum analogue – no corresponding unitary matrix U...
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Quantized 1-d dynamical systems II

Example 3: Four legs map and its quantization
Pakoński, Kuś, K.Ż. (2001)
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Uni- and ortho-stochastic matrices for N = 2

Proposition For N = 2 all three sets coincide, O2 = U2 = B2 = [0, 1].

Proof. Take any a ∈ [0, 1] and set B =

[
a 1− a

1− a a

]
.

The corresponding orthogonal matrix reads

O =

[
cosϑ sinϑ
− sinϑ cosϑ

]
, where a = cos2 ϑ.

In other words
every N = 2 bistochastic matrix is orthostochastic

(and thus also unistochastic).
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Uni- and ortho-stochastic matrices for N = 3

Proposition. For N = 3 both inclusion relations
O3 ⊂ U3 ⊂ B3 are proper.

a) b)

Proof by demonstration.

a) Fourier matrix F3 = 1√
3

 1 1 1
1 ω ω2

1 ω2 ω

 with ω = e2πi/3 is unitary and

corresponds to the flat bistochastic matrix W = f (F3), as Wij = 1/3.
Thus W is unistochastic but not orthostochastic, since for

N = 3 there are no Hadamard matrices.
b) Example of Schur: the bistochastic matrix BS ,

BS = P+P2

2 = 1
2

 0 1 1
1 0 1
1 1 0

 is bistochastic but not unistochastic.
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Unistochasticity and chain–link condition for N = 3

Unitarity condition UU† = 1 can be written as 〈uµ|uν〉 = δµ,ν

Diagonal elements 〈uµ|uµ〉 = 1, impose bistochasticity,
∑

i Biµ = 1
while orthogonality relation 〈uµ|uν〉 = 0 imposes further constraints for
elements of B = f (U) ! What constraints for unistochasticity?
As the sum 〈u1|u2〉 =

∑3
j=1 Uj1U

∗
j2 = L1e

iχ1 + L2e
iχ2 + L3e

iχ3 of three
complex numbers should vanish, their (ordered) moduli L1 ≥ L2 ≥ L3

satisfy the following chain link condition (triangle inequality)

L1 ≤ L2 + L3 with Lk :=
√

B1kB2k .

a) unistochastic matrix with a positive area of the unitarity triangle,
A2 > 0, b) limiting case: an orthostochastic matrix with A2 = 0,
c) bistochastic matrix B not included into U3 for which A2 < 0.KŻ (Olsztyn) Birkhoff polytope & unistochastic matrices 20.06.2012 14 / 25



Unitarity triangle formed by links L1, L2, L3

The length of the links of the unitarity triangle read

L1 =
√

b1b2, L2 =
√

b3b4, L3 =
√

(1− b1 − b2)(1− b3 − b4), (1)

Let p = (L1 + L2 + L3)/2 denotes its semiperimeter.
Making use of the Heron’s formula for the area of the triangle

A =
√

p(p − L1)(p − L2)(p − L3) , (2)

we arrive with a compact expression for the squared area A2,

A2 = [4b1b2b3b4 − (b1 + b2 + b3 + b4 − 1− b1b4 − b2b3)2]/16. (3)

The chain–links conditions

are equivalent to a single condition for unistochasticity:
A2(B) ≥ 0

(if a triangle exists its area is real and positive !)
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The set U3 of unistochastic matrices of size N = 3

cross-sections of U3 (implied by A2(B) ≥ 0 )

Nonconvex 3-Hypocycloid obtained by the cross-section of U3 along the
plane spanned by the equilateral triangle 4(P,P2,1), b) a similar
cross-section along totally orthogonal plane, c) a view ’from above’.

The set O3 of orthostochastic matrices

Proposition. For N = 3 the set O3 of orthostochastic matrices
forms the boundary of the 4D set U3 of unistochastic matrices.
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Unistochastic matrices

are useful for quantizing classical dynamical systems
(which lead to bistochastic transition matrices).

Prot Pakoński, Ph.D. Thesis 2002,
Pakoński, Życzkowski, Kuś, 2001,

The set U3 of N = 3 unistochastic matrices

was investigated in Bentgsson, Ericsson, Kuś, Tadej, Życzkowski,
Commun. Math. Phys. (2005).

The set U3 of unistochastic matrices of size N = 3 occupies
(with respect to the Lebesgue measure)
more than 3/4 of the corresponding Birkhoff polytope B3,

vol(U3)

vol(B3)
=

8π2

105
= 0.751969... (4)

Dunkl, Życzkowski, 2009
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Unitarity triangle and Jarlskog invariant (for N = 3)

Jarlskog invariant

For any unitary U ∈ U(3) define the number J(U) := Im(U11U22U
∗
12U

∗
21)

called Jarlskog invariant.

Equivalent unitary matrices

Two unitary matrices U and U ′ are called equivalent if there exist two
diagonal unitary matrices, DA and DB , and two permutations PA and PB

such that
U ∼ U ′ = DAPAUPBDB (5)

The following relation holds: if U ∼ U ′ then J(U) = J(U ′), Jarlskog 1985

Simple calculation shows that the Jarlskog invariant is related to the
area of the unitarity triangle,

J2(U) = 4A2(B), where B = f (U).
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Spectra of unistochastic matrices

Since any unistochastic matrix is bistochastic,
the support of the spectra of matrices from UN

is contained in the support Σ′N of spectra of bistochastic matrices.

N = 3 N = 4:

Superimposed spectra of 3000 Haar random unistochastic matrices
of size N = 3 and N = 4.

N–hypocycloids again...

KŻ (Olsztyn) Birkhoff polytope & unistochastic matrices 20.06.2012 19 / 25



Speculations on the set of unistochastic matrices

The set BN of Bistochastic matrices (Birkhof Polytope)

BN = convex hull of the set of N! permutation matrices

wilde speculation:

The set UN of Unistochastic matrices

perhaps

UN = a ”special, non-convex” hull
of the set of N! permutation matrices

example N = 3:

What kind of ”special, non-convex” hull ??
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Speculation 1. Cayley–convex set

Cayley transform

Let S be a skew hermitian matrix, S = −S†.
Then its Cayley transform is unitary,

C (S) =
1− S

1+ S
= U.

The inverse Cayley transform sends a unitary U into skew hermitian S :

C−1(U) =
1− U

1+ U
= S

Cayley combination of two unitaries, U and W

V (a) = C
[
aC−1(U) + (1− a)C−1(W )

]
=
1− a1−U

1+U − (1− a)1−W
1+W

1+ a1−U
1+U + (1− a)1−W

1+W

is unitary !
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Speculation 2. Log–convex set

Logarithm of a unitary matrix

Any unitary matrix U can be diagonalized, U = WDW †.
Define the logarithm L = log U = W †(log D)W such that U = exp(L).

technial assumption: the spectrum D does not contain −1

Log–convex combination of two unitaries, U and W

W ′ = UaV 1−a

or
W = exp[a log U + (1− a) log V ]

is unitary !
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Speculation 3. Ando–convex set

Ando mean of

Geometric mean of two matrices of a full rank reads

A#B = A1/2 (A−1/2BA−1/2)1/2 A1/2,

see (Ando 1978) but also Pusz and Woronowicz (1975)

Ando–convex combination of two unitaries, U and W

U#tW = U1/2 exp
(
t log(U−1/2WU−1/2)

)
U1/2.

is unitary !

Is the set UN of unistochastic matrices related to
Cayley/log/Ando-combinations of permutation matrices ??
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Some open question

What is the set of Cayley/log/Ando-combinations of all permutation
matrices of order N ?

What is the (minimal) set of unitary matrices such that their
Cayley/log/Ando-combinations form the entire set of unitary matrices

Are bistochastic matrices obtained from
Cayley/log/Ando-combinations of permutation matrices at the
boundary of the set UN of unistochastic matrices of size N?

Consider, for instance the Cayley combination of matrices.
Is the following implication true:

B =
∑

i

aiPi ∈ ∂BN ⇒ f
(
C
[ M∑
i=1

aiC
−1(Ui )

])
∈ ∂UN .
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Concluding Remarks

A bistochastic matrix B corresponds to a unitary matrix if it is
unistochastic, B = f (U) so that Bij = |Uij |2.

for N = 2 every bistochastic matrix is orthostochastic.

The set U3 of unistochastic matrices of size N = 3 is explicitely
characterized by the unitarity triangle condition:

B ∈ U3 ⇔ A2(B) ≥ 0.

For N = 3 the boundary of the set U3 consists of orthostochastic
matrices, for which A2(B) = 0.
Thus a generic unistochastic matrix of is not orthostochastic

For N = 3 we computed the volume of the set U3 and the average
value of the Jarlskog invariant J for a random Haar unitary matrix
U ∈ U(3).

For N ≥ 4 the unistochasticity problem remains open !
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