Application of residue calculus to integrability analysis of rational potentials

Andrzej J. Maciejewski¹, Maria Przybylska², Michał Studzński³

¹Institute of Astronomy, University of Zielona Góra

²Institute of Physics, University of Zielona Góra

³National Quantum Information Centre of Gdańsk Wł. Andersa 27, PL-81-824 Sopot, Poland

Olsztyn, June 21-22, 2012

Integrability of homogeneous Hamiltonian equations

Integrability of Hamiltonian systems given by

$$H=rac{1}{2}\sum_{i=1}^n p_i^2+V(oldsymbol{q}), \qquad (oldsymbol{q},oldsymbol{p})\in\mathbb{C}^{2n},$$

$$V \in \mathbb{C}(\mathbf{q})$$
, $\deg V = k \in \mathbb{Z}$,

V — homogeneous function i.e.

$$V(\lambda q_1,\ldots,\lambda q_n)=\lambda^k V(q_1,\ldots,q_n).$$

Search of integrable potentials

Problem

$$V=\sum_{i_1,\ldots,i_n}v_{i_1\cdots i_n}q_1^{i_1}\cdots q_n^{i_n},$$

where $i_1, \ldots, i_n \in \{0, 1, \ldots, k\}$ and the sum is taken over such elements that $i_1 + \cdots + i_n = k$.

How to find coefficients $v_{i_1 \cdots i_n}$ for which potential is integrable?

Morales-Ramis theorem

Theorem

Assume that a Hamiltonian system is meromorphically integrable in the Liouville sense in a neighbourhood of the analytic phase curve Γ . Then the identity component of the differential Galois group of the variational equations along Γ is Abelian.

Other Morales-Ramis Theorem

If the Hamiltonian system with homogeneous potential is meromorphically integrable then each (k, λ_i) belong to the following list:

case	k	λ	
1.	±2	λ	
2.	k	$p + \frac{k}{2}p(p-1)$	
3.	k	$\frac{1}{2}\left(\frac{k-1}{k}+p(p+1)k\right)$	
4.	3		$-\frac{1}{24} + \frac{3}{32} \left(1 + 4p\right)^2$
		$-\frac{1}{24}+\frac{3}{50}(1+5p)^2,$	$-\frac{1}{24} + \frac{6}{25} \left(1 + 5\rho\right)^2$
5.	4	$-\frac{1}{8}+\frac{2}{9}(1+3p)^2$	/ D / A / E / E E

Morales-Ramis table

case
$$k$$
 λ

6. $5 - \frac{9}{40} + \frac{5}{18} (1 + 3p)^2$, $-\frac{9}{40} + \frac{2}{5} (1 + 5p)^2$

7. $-3 \frac{25}{24} - \frac{1}{6} (1 + 3p)^2$, $\frac{25}{24} - \frac{3}{32} (1 + 4p)^2$
 $\frac{25}{24} - \frac{3}{50} (1 + 5p)^2$, $\frac{25}{24} - \frac{6}{25} (1 + 5p)^2$

8. $-4 \frac{9}{8} - \frac{2}{9} (1 + 3p)^2$

9. $-5 \frac{49}{40} - \frac{5}{18} (1 + 3p)^2$, $\frac{49}{40} - \frac{2}{5} (1 + 5p)^2$

where p is an integer and λ an arbitrary complex number.

 Morales Ruiz, J. J., Differential Galois theory and non-integrability of Hamiltonian systems, Birkhäuser, 1999.

Weakness of this theorem in applications

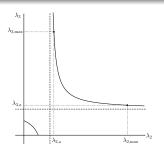
$$\begin{split} V &= \frac{1}{3}aq_1^3 + \frac{1}{2}q_1^2q_2 + \frac{1}{3}cq_2^3. \\ \lambda_1 &= \frac{1}{c}, \qquad \lambda_{2,3} = \frac{2c-1}{1+a^2\mp\Delta}, \qquad \Delta = \sqrt{a^2(2+a^2-2c)} \\ \lambda_1, \lambda_2, \lambda_3 &\in \mathbb{M}_3 := \left\{ p + \frac{3}{2}p(p-1) \right\} \cup \left\{ \frac{1}{2} \left(\frac{2}{3} + 3p(p+1) \right) \right\} \\ \cup \left\{ -\frac{1}{24} + \frac{1}{6} \left(1 + 3p \right)^2 \right\} \cup \left\{ -\frac{1}{24} + \frac{3}{32} \left(1 + 4p \right)^2 \right\} \\ \cup \left\{ -\frac{1}{24} + \frac{3}{50} \left(1 + 5p \right)^2 \right\} \cup \left\{ -\frac{1}{24} + \frac{3}{50} \left(2 + 5p \right)^2 \right\}. \end{split}$$

$$c = \frac{1}{\lambda_1}, \quad a = \pm \sqrt{\frac{(\lambda_1 + \lambda_1 \lambda_i - 2)^2}{2\lambda_1 \lambda_i (2 - \lambda_1 - \lambda_i)}}, \quad i = 2, 3.$$

'A parametric problem'

Observation

$$\frac{1}{\lambda_1 - 1} + \frac{1}{\lambda_2 - 1} + \frac{1}{\lambda_3 - 1} = -1$$



Observation

There is at most a finite number of choices for λ_1 , λ_2 and λ_3 from the Morales-Ramis table!!!

Our observations for n = 2

For n=2, each $[\mathbf{d}] \in \mathcal{D}^*(V)$ gives one non-trivial eigenvalue $\lambda(\mathbf{d})$. Set $\Lambda(\mathbf{d}) = \lambda(\mathbf{d}) - 1$.

Theorem

Assume that a polynomial homogeneous potential $V(q_1, q_2)$ of degree k > 2 satisfies two conditions:

- C1 it has $0 < l \le k$ Darboux points and all of them are simple;
- **C2** if W or U is factorisable by $(q_2 \pm i q_1)$, then multiplicity of this factor is one.

Then the following relation holds

$$\sum_{[\boldsymbol{d}]\in\mathcal{D}^{\star}(V)}\frac{1}{\Lambda(\boldsymbol{d})}=-1.$$

Our results for an arbitrary *n*

$$\mathcal{D}^{\star}(V) \ni [\mathbf{d}] \longmapsto \Lambda(\mathbf{d}) = (\Lambda_{1}(\mathbf{d}), \dots, \Lambda_{n-1}(\mathbf{d}))$$

where $\lambda_i(\mathbf{d}) := \Lambda_i(\mathbf{d}) + 1$, are the non-trivial eigenvalues of $V''(\mathbf{d})$.

 τ_i is the elementary symmetric polynomial of degree i in (n-1) variables.

Our results for an arbitrary n

Theorem

Let $V \in \mathbb{C}_k[q]$ be a homogeneous potential of degree k > 2 and let all its Darboux points be proper and simple. Then

$$\sum_{[\boldsymbol{d}]\in\mathcal{D}^{\star}(V)}\frac{\tau_{1}(\boldsymbol{\Lambda}(\boldsymbol{d}))^{r}}{\tau_{n-1}(\boldsymbol{\Lambda}(\boldsymbol{d}))}=(-1)^{n-1}(-n-(k-2))^{r},$$

and

$$\sum_{[\boldsymbol{d}]\in\mathcal{D}^{\star}(V)}\frac{\tau_r(\boldsymbol{\Lambda}(\boldsymbol{d}))}{\tau_{n-1}(\boldsymbol{\Lambda}(\boldsymbol{d}))}=(-1)^{r+n-1}\sum_{i=0}^r\binom{n-i-1}{r-i}(k-1)^i,$$

for
$$r = 0, ..., n-1$$
.

Our results for an arbitrary n

Theorem

For a generic homogeneous $V \in \mathbb{C}[\mathbf{q}]$ of degree k set of admissible $\{\Lambda(\mathbf{d}) \mid [\mathbf{d}] \in \mathcal{D}^*(V)\} =: \mathcal{I}_{n,k}$ is finite.

↓ +many other things

New integrable potentials for k = n = 3

Do exist relations for rational potentials?

$$V=rac{W(oldsymbol{q})}{U(oldsymbol{q})},$$

- $W, U \in \mathbb{C}[\boldsymbol{q}], \text{ deg } W = r, \text{ deg } U = s,$
- Assumption: W and U are relatively prime,
- *V* homogeneous function of degree $k = r s \in \mathbb{Z}$,

Question: Do exist relations for rational potentials?

Darboux points for rational potentials

Definition

 $[\mathbf{d}] \in \mathbb{CP}^{n-1}$ is a Darboux point of the potential V = W/U iff

0

$$\mathbf{d} \wedge V'(\mathbf{d}) = \frac{1}{U^2(\mathbf{d})} \mathbf{d} \wedge (W'(\mathbf{d})U(\mathbf{d}) - U'(\mathbf{d})W(\mathbf{d})) = 0$$

or

$$V'(\mathbf{d}) = \gamma \mathbf{d}$$

for some $\gamma \in \mathbb{C}$

- V(q) is well defined at q = d
- 3 all components of V'(q) are well defined at q = d

Integrability obstructions due to improper Darboux points

Theorem

Assume that homogeneous potential $V \in \mathbb{C}(\mathbf{q})$ of degree $k \in \mathbb{Z} \setminus \{-2,0,2\}$ possesses an improper Darboux point \mathbf{d} . If V is integrable in Liouville sense with rational first integrals, then all eigenvalues of $V''(\mathbf{d})$ vanish.

Relation for n=2

Theorem

Assume that a rational homogeneous potential $V(q_1, q_2)$ of degree $k \in \mathbb{Z}$ satisfies three conditions:

- C1 it has $0 < l \le r + s$ proper Darboux points and all of them are simple;
- **C2** *U* is not factorisable neither by $(q_2 + iq_1)$, nor by $(q_2 iq_1)$;
- C3 if W is factorisable by $(q_2 + iq_1)$, or by $(q_2 iq_1)$ then multiplicity of these factor is one.

Then

$$\sum_{i=1}^{l} \frac{1}{\Lambda_i} = -1$$

Generalised Relation for n = 2. Notation

$$\theta_{x,y} := \begin{cases} 0 & \text{for} \quad x < y, \\ 1 & \text{for} \quad x \ge y. \end{cases}$$

Let r_{\pm} and s_{\pm} be the respective multiplicities of linear factors $(q_2 \pm i q_1)$ of W and U, respectively.

Generalised Relation for n=2

Theorem

Assume that a rational homogeneous potential $V(q_1, q_2)$ of degree $k = r - s \in \mathbb{Z}$ satisfies three conditions:

- C1 it has $0 < l \le r + s$ proper Darboux points and all of them are simple;
- C2 neither r_+ , nor r_- is equal to k/2;
- C3 neither s_+ , nor s_- is equal to -k/2.

Then

$$\sum_{i=1}^{l} \frac{1}{\Lambda_{i}} = -1 - \theta_{r_{+},2} \frac{r_{+}}{k - 2r_{+}} - \theta_{r_{-},2} \frac{r_{-}}{k - 2r_{-}} + \theta_{s_{+},1} \frac{s_{+}}{k + 2s_{+}} + \theta_{s_{-},1} \frac{s_{-}}{k + 2s_{-}}.$$

Darboux points in affine coordinates

affine coordinate $z = q_2/q_1$ conditions on Darboux point

$$\begin{split} \left(\boldsymbol{q}\wedge V'(\boldsymbol{q})\right)_1 &= q_1\frac{\partial V}{\partial q_2} - q_2\frac{\partial V}{\partial q_1} = \frac{q_1^{r-s}}{u(z)^2}g(z),\\ g(z) &= (1+z^2)\left[w'(z)u(z) - u'(z)w(z)\right] - kzw(z)u(z),\\ \frac{\partial V}{\partial q_1} &= \frac{q_1^{r-s-1}}{u^2}h(z),\ h(z) = kw(z)u(z) - z\left[w'(z)u(z) - u'(z)w(z)\right]\\ \frac{\partial V}{\partial q_2} &= \frac{q_1^{r-s-1}}{u^2}\left[w'(z)u(z) - u'(z)w(z)\right] \end{split}$$

Sketch of the proof of theorem on relation

nontrivial eigenvalue of Hessian

$$\Lambda = \frac{g'}{h}.$$

ullet meromorphic form that takes form in affine part of \mathbb{CP}^1

$$\omega = \frac{h(z)}{g(z)} dz.$$

- Application of global residue theorem for meromorphic one-form ω on \mathbb{CP}^1
- residues calculated at Darboux points are 1/Λ_i
- residue at the infinity is 1.

Finiteness theorem

Theorem

Let us consider relation

$$\sum_{i=1}^{l} \frac{1}{\Lambda_i} = -1, \quad or$$

$$\sum_{i=1}^{I} \frac{1}{\Lambda_{i}} = -1 - \theta_{r_{+},2} \frac{r_{+}}{k - 2r_{+}} - \theta_{r_{-},2} \frac{r_{-}}{k - 2r_{-}} + \theta_{s_{+},1} \frac{s_{+}}{k + 2s_{+}} + \theta_{s_{-},1} \frac{s_{-}}{k + 2s_{-}}.$$

as an equation for $(\Lambda_1, \dots, \Lambda_l) \in \underbrace{\mathbb{C}^* \times \dots \times \mathbb{C}^*}$. Then, for

 $k \in \mathbb{Z} \setminus \{-2, 2\}$, it has at most a finite number of solutions contained in $\underbrace{\mathbb{J}_k \times \cdots \times \mathbb{J}_k}$. $\mathbb{J}_k = \{\Lambda \in \mathbb{Q} \mid \Lambda + 1 \in \mathbb{M}_k\}$

What for n > 2?

Problem with calculation of # proper Darboux points

for polynomial potentials

$$f_i = rac{\partial V}{\partial q_i} - q_i, \qquad \deg f_i = k - 1, \quad i = 1, \dots, n,$$
 $\#D \leq rac{(k-1)^n - 1}{k-2}$

for rational potentials

$$f_i = \frac{\partial W}{\partial q_i} U - \frac{\partial U}{\partial q_i} W - q_i U^2.$$

from the above solutions remove

$$U=W=0$$
, and $\left\{U=0, \frac{\partial U}{\partial q_i}=0, i\in 1,\ldots,n\right\}$

What for n > 2?

Conjecture

Let $V \in \mathbb{C}_k(\mathbf{q})$ be a homogeneous potential of degree $k \in \mathbb{Z}$ and let all its Darboux points be proper and simple. Then

$$\sum_{[{\boldsymbol d}]\in {\mathcal D}^\star(V)} \frac{\tau_1(\Lambda({\boldsymbol d}))^i}{\tau_{n-1}(\Lambda({\boldsymbol d}))} = (-1)^{n-1}(-n-(r+s-2))^i,$$

for
$$i = 0, ..., n - 1$$
.

Problems with application of the residue calculus

$$f_i = \frac{\partial W}{\partial q_i} U - \frac{\partial U}{\partial q_i} W - q_i U^2.$$

form

$$\omega = \frac{p(\mathbf{q})}{f_1(\mathbf{q})\cdots f_n(\mathbf{q})}$$

polar loci of this form – elements of $\mathcal{V}(f_1, \ldots, f_n)$.

But $\mathbf{0} \in \mathcal{V}(f_1, \dots, f_n)$ is not a simple point because $\mathbf{f}'(\mathbf{0}) = \mathbf{0}$ and not isolated because $\mathbf{0} \in \mathcal{V}(W, U)$

Problem: How to calculate residue for non-isolated point?

Example

$$V = q_1^{-s} \sum_{i=0}^{r} v_{r-i} q_1^{r-i} q_2^i, \quad v_i \in \mathbb{C}, k = r - s \in \mathbb{Z}_- \setminus \{-2\}.$$
 (1)

We chose

$$\Lambda := \lambda - 1 = \frac{1}{2} \left(-\kappa \rho^2 + (\kappa + 2)\rho - 2 \right), \quad k = -\kappa.$$
 (2)

and assume maximal number of r+1 simple proper Darboux points different from $\pm {\rm i}$ such that

$$r+1 = -\frac{1}{2}\left(-\kappa p^2 + (\kappa+2)p - 2\right),$$
 (3)

$$\sum_{i=1}^{r+1} \frac{1}{\Lambda} = -1 \tag{4}$$

Example

Reconstruction gives potential

$$V(q_1,q_2)=q_1^{-\kappa}v(\mathrm{i}z)=q_1^{-\kappa}P_r^{(\alpha,\beta)}\left(\mathrm{i}rac{q_2}{q_1}
ight),$$

where

 $\kappa > 2/(p-1)$.

$$P_r^{(\alpha,\beta)}(x) = 2^{-r} \sum_{i=0}^r \binom{r+\alpha}{i} \binom{r+\beta}{r-i} (x-1)^{r-i} (x+1)^i.$$

are Jacobi polynomials with parameters

$$\alpha = \beta = \frac{2(p-1) + \kappa(2+p-p^2)}{4}, \qquad r = \frac{p(\kappa(p-1)-2)}{2}$$

Integrable family

for
$$p=2$$
, $r=\kappa-2$ and $\alpha=\beta=1/2$

$$P_r^{\left(\frac{1}{2},\frac{1}{2}\right)}(z) = \frac{1}{(r+1)!} \left(\frac{3}{2}\right)_r U_r(z), \ \ U_r(z) = \sum_{i=0}^{\left[\frac{r}{2}\right]} \frac{(-1)^i (r-i)! (2z)^{r-2i}}{i! (r-2i)!}$$

$$\begin{split} V(q_1,q_2) &= q_1^{-r-2} P_r^{\left(\frac{1}{2},\frac{1}{2}\right)} \left(\mathrm{i} \frac{q_2}{q_1} \right) = \frac{C}{q_1^{2r+2}} \sum_{i=0}^{\left[\frac{r}{2}\right]} 2^{-2i} \frac{(r-i)!}{i!(r-2i)!} q_1^{2i} q_2^{r-2i} \\ &= \frac{C}{q_1^{2r+2} \rho} \left[\left(\frac{\rho + q_2}{2} \right)^{r+1} + (-1)^r \left(\frac{\rho - q_2}{2} \right)^{r+1} \right] \end{split}$$

where
$$ho=\sqrt{q_1^2+q_2^2}$$

Integrable family

$$V_n = \frac{1}{\rho} \left[\left(\frac{\rho + q_2}{2} \right)^{n+1} + (-1)^n \left(\frac{\rho - q_2}{2} \right)^{n+1} \right], \tag{5}$$

for negative n = -r - 2.

$$\begin{split} V_{-3}(q_1,q_2) &= q_1^{-3} P_1^{\left(\frac{1}{2},\frac{1}{2}\right)} \left(\mathrm{i} \frac{q_2}{q_1}\right) = \frac{q_2}{q_1^4}, \\ V_{-4}(q_1,q_2) &= q_1^{-4} P_2^{\left(\frac{1}{2},\frac{1}{2}\right)} \left(\mathrm{i} \frac{q_2}{q_1}\right) = \frac{q_1^2 + 4q_2^2}{q_1^6}. \end{split}$$

with the corresponding first integrals

$$I_{-3}(q_1, q_2, p_1, p_2) = p_1(q_2p_1 - q_1p_2) + \frac{q_1^2 + 4q_2^2}{2q_1^4},$$

$$I_{-4}(q_1, q_2, p_1, p_2) = p_1(q_2p_1 - q_1p_2) + \frac{4q_2(q_1^2 + 2q_2^2)}{q_1^4}.$$