Lie-Poisson pencils related to semisimple Lie agebras: towards classification

$$
\begin{aligned}
& \text { INTEGRABLE SYSTEMS } \\
& \text { UWM, } \\
& 21-22 \text { June } 2012
\end{aligned}
$$

Andriy Panasyuk

Faculty of Mathematics and Computer Science
University of Warmia and Mazury
Poland
and
Pidstryhach Institute for the Applied Problems of Mathematics and Mechanics, Lviv, Ukraine

Motivation: algebraic mechanisms for bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair $\eta_{1}, \eta_{2} \in \Gamma(T M)$ such that $\eta_{1}, \eta_{2}, \eta_{1}+\eta_{2}$ are Poisson.

Historically: Particular hamiltonian integrable system on a Poisson manifold $\left(M, \eta_{1}\right) \rightarrow$ second hamiltonian structure $\eta_{2} \hookrightarrow$ general algebraic mechanism relating η_{1}, η_{2}

Example

KdV \rightarrow Magri's second hamiltonian structure \hookrightarrow "argument translation method": η_{2} is canonical linear, $\eta_{1}=\eta_{2}(a)\left(M=\mathfrak{g}^{*}\right.$, where g^{*} is the Virasoro Lie algebra, $a \in \mathfrak{g}^{*}$ a particular point)

Motivation: algebraic mechanisms for bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair $\eta_{1}, \eta_{2} \in \Gamma(T M)$ such that $\eta_{1}, \eta_{2}, \eta_{1}+\eta_{2}$ are Poisson.

Historically: Particular hamiltonian integrable system on a Poisson manifold $\left(M, \eta_{1}\right) \rightarrow$ second hamiltonian structure $\eta_{2} \hookrightarrow$ general algebraic mechanism relating η_{1}, η_{2}

Motivation: algebraic mechanisms for bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair $\eta_{1}, \eta_{2} \in \Gamma(T M)$ such that $\eta_{1}, \eta_{2}, \eta_{1}+\eta_{2}$ are Poisson.

Historically: Particular hamiltonian integrable system on a Poisson manifold $\left(M, \eta_{1}\right) \rightarrow$ second hamiltonian structure $\eta_{2} \hookrightarrow$ general algebraic mechanism relating η_{1}, η_{2}

Example

KdV \rightarrow Magri's second hamiltonian structure \hookrightarrow "argument translation method": η_{2} is canonical linear, $\eta_{1}=\eta_{2}(a)\left(M=\mathfrak{g}^{*}\right.$, where \mathfrak{g}^{*} is the Virasoro Lie algebra, $a \in \mathfrak{g}^{*}$ a particular point)

Motivation: algebraic mechanisms for bihamiltonian structures

Hierarchy of mechanisms (by complexity of structures):

- constant+constant (rather not interesting)
- constant+linear (proved to be powerful, eg. "argument translation")
- linear+linear (topic of present talk)
- linear+quadratic (eg. argument translation of quadratic bracket towards " vanishing direction")
- etc.

Motivation: pairs of linear structures

Definition

A bi-Lie structure is a triple ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$, where \mathfrak{h} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{h} which are compatible, i.e. so that $[]+,[,]^{\prime}$ is a Lie bracket.

Main motivating example
Let $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{K}), A \in \operatorname{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure.

Motivation: pairs of linear structures

Definition

A bi-Lie structure is a triple ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$, where \mathfrak{h} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{h} which are compatible, i.e. so that $[]+,[,]^{\prime}$ is a Lie bracket.

Example

Let $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$
[x, A y]=x A y-y A x
$$

Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{K}), A \in \operatorname{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure.

Motivation: pairs of linear structures

Definition

A bi-Lie structure is a triple ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$, where \mathfrak{h} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{h} which are compatible, i.e. so that $[]+,[,]^{\prime}$ is a Lie bracket.

Example

Let $\mathfrak{g}=\mathfrak{g l}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$
[x, A y]=x A y-y A x
$$

Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{K}), A \in \operatorname{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g},[],,[, A])$ is a bi-Lie structure.

Motivation: pairs of linear structures

Semisimple case

Applications of the $\mathfrak{s o}(n, \mathbb{R})$ bi-Lie structure:

- Manakov top (n-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (due to Bolsinov 1992)
- Landau-Livshits PDE $(n=3)$ (due to Holod 1987)
\square
Nonsemisimple case
Works of Golubchik, Odesskii, Sokolov ~ 2004-2006
- Matrix integrable ODE's
- Classification of "bi-associative structures" (\cdot, \circ) on $\mathfrak{g l}(n, \mathbb{K}) \Longrightarrow$ Examples of bi-Lie structures on $\mathfrak{g l}(n, \mathbb{K})$ (which do not restrict to $\mathfrak{s l}(n, \mathbb{K}))$

Motivation: pairs of linear structures

Semisimple case

Applications of the $\mathfrak{s o}(n, \mathbb{R})$ bi-Lie structure:

- Manakov top (n-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (due to Bolsinov 1992)
- Landau-Livshits PDE $(n=3)$ (due to Holod 1987)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov ~ 2004-2006

- Matrix integrable ODE's
- Classification of "bi-associative structures" (\cdot, \circ) on $\mathfrak{g l}(n, \mathbb{K}) \Longrightarrow$ Examples of bi-Lie structures on $\mathfrak{g l}(n, \mathbb{K})$ (which do not restrict to $\mathfrak{s l}(n, \mathbb{K}))$

Motivation: Kantor-Persits theorem

Kantor-Persits 1988 (announced only)

The list of irreducible closed (technical assumptions) vector spaces of Lie structures:

- $\mathfrak{g}=\mathfrak{s o}(n, \mathbb{K}),\{[, A]\}_{A \in \operatorname{Symm}(n, \mathbb{K})}$
- $\mathfrak{g}=\mathfrak{s p}(n, \mathbb{K}),\{[, A]\}_{A \in \mathfrak{m}(n, \mathbb{K})}$
- several nonsemisimple cases
here

$$
[X, A]:=X A Y-Y A X
$$

$\mathfrak{s p}(n, \mathbb{K})=\left\{X \in \mathfrak{g l}(2 n, \mathbb{K}) \mid X J+J X^{T}=0\right\}$ the symplectic Lie algebra,
$\mathfrak{m}(n, \mathbb{K}):=\left\{X \in \mathfrak{g l}(2 n, \mathbb{K}) \mid X J-J X^{T}=0\right\}$ its orthogonal complement in $\mathfrak{g l}(2 n, \mathbb{K})$ w.r.t. "trace form"

Semisimple bi-Lie structures and operators

Useful notations

Let \mathfrak{g} be a Lie algebra and $N: \mathfrak{g} \rightarrow \mathfrak{g}$ a linear operator. Put

$$
\begin{gathered}
{[x, y]_{N}:=[N x, y]+[x, N y]-N[x, y],} \\
T_{N}(\cdot, \cdot):=[N \cdot, N \cdot]-N[\cdot, \cdot]_{N} .
\end{gathered}
$$

Obvious or Easy:

Let $(\mathfrak{g},[]$,$) be a semisimple Lie algebra, [,]' a bilinear skew-symmetric$ bracket. Then
$\left(\mathfrak{g},[],,[,]^{\prime}\right)$ is a bi-Lie str. $\Longleftrightarrow[,]^{\prime}=[]$,$w for some W \in \operatorname{End}(\mathfrak{g})$ and
$T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}$ for some $P \in \operatorname{End}(\mathfrak{g})$.
Moreover, the operators W, P are defined up to adding of inner differentiations ad x

Semisimple bi-Lie structures and operators

Useful notations

Let \mathfrak{g} be a Lie algebra and $N: \mathfrak{g} \rightarrow \mathfrak{g}$ a linear operator. Put

$$
\begin{gathered}
{[x, y]_{N}:=[N x, y]+[x, N y]-N[x, y],} \\
T_{N}(\cdot, \cdot):=[N \cdot, N \cdot]-N[\cdot, \cdot]_{N} .
\end{gathered}
$$

Obvious or Easy:

Let $(\mathfrak{g},[]$,$) be a semisimple Lie algebra, [,]' a bilinear skew-symmetric$ bracket. Then
$\left(\mathfrak{g},[],,[,]^{\prime}\right)$ is a bi-Lie str. $\Longleftrightarrow[,]^{\prime}=[]$,$w for some W \in \operatorname{End}(\mathfrak{g})$ and $T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}$ for some $P \in \operatorname{End}(\mathfrak{g})$.

Moreover, the operators W, P are defined up to adding of inner differentiations ad x.

Semisimple bi-Lie structures: two more examples

Definition

- A semisimple bi-Lie structure ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$;
- the leading operator W;
- the primitive operator P;
- the main identity $T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}$.
\square
 Put $\left.W\right|_{\mathfrak{g}_{i}}=i \operatorname{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ and $\left.P\right|_{\mathfrak{g}_{i}}=\frac{1}{2} i(n-i) \operatorname{Id}_{\mathfrak{g}_{i}}$. One checks MI directly.

Example

Let $\mathfrak{a}=\mathfrak{a}_{1} \oplus g_{2}$ (sum of subalgebras). Put $\left.W\right|_{g_{i}}=\lambda_{i} I_{g_{i}} ; i=1,2$, where $\lambda_{1,2}$ are any scalars. Then $T_{W}=0$ (so put $P=0$ in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_{1} a parabolic subalgebra and \mathfrak{g}_{2} its "complement"

Semisimple bi-Lie structures: two more examples

Definition

- A semisimple bi-Lie structure ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$;
- the leading operator W;
- the primitive operator P;
- the main identity $T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}$.

Example

(Golubchik-Sokolov) Let $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a $\mathbb{Z} / n \mathbb{Z}$-grading on \mathfrak{g}. Put $\left.W\right|_{\mathfrak{g}_{i}}=i \operatorname{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ and $\left.P\right|_{\mathfrak{g}_{i}}=\frac{1}{2} i(n-i) \operatorname{Id}_{\mathfrak{g}_{i}}$. One checks MI directly.

Example

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ (sum of subalgebras). Put $\left.W\right|_{\mathfrak{g}_{i}}=\lambda_{i} \mathrm{Id}_{\mathfrak{g}_{i}}, i=1$, 2, where $\lambda_{1,2}$ are any scalars. Then $T_{W}=0$ (so put $P=0$ in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_{1} a parabolic subalgebra and \mathfrak{g}_{2} its "complement

Semisimple bi-Lie structures: two more examples

Definition

- A semisimple bi-Lie structure ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$;
- the leading operator W;
- the primitive operator P;
- the main identity $T_{W}(\cdot, \cdot)=[\cdot, \cdot]_{P}$.

Example

(Golubchik-Sokolov) Let $\mathfrak{g}=\mathfrak{g}_{0} \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a $\mathbb{Z} / n \mathbb{Z}$-grading on \mathfrak{g}. Put $\left.W\right|_{\mathfrak{g}_{i}}=i \operatorname{Id}_{\mathfrak{g}_{i}}, i=0, \ldots, n-1$ and $\left.P\right|_{\mathfrak{g}_{i}}=\frac{1}{2} i(n-i) \operatorname{Id}_{\mathfrak{g}_{i}}$. One checks MI directly.

Example

Let $\mathfrak{g}=\mathfrak{g}_{1} \oplus \mathfrak{g}_{2}$ (sum of subalgebras). Put $\left.W\right|_{\mathfrak{g}_{i}}=\lambda_{i} \operatorname{Id}_{\mathfrak{g}_{i}}, i=1$, 2, where $\lambda_{1,2}$ are any scalars. Then $T_{W}=0$ (so put $P=0$ in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_{1} a parabolic subalgebra and \mathfrak{g}_{2} its "complement".

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g})=\operatorname{ad} \mathfrak{g} \oplus C$, where $C=(\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to ad $\mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called principal if $W \in C$.

Example
For the $\mathfrak{s o}(n, \mathbb{K})$ bi-Lie structure we have $W=(1 / 2)\left(L_{A}+R_{A}\right)$ (operators of left and right multiplication by A).

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g})=\operatorname{ad} \mathfrak{g} \oplus C$, where $C=(\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to ad $\mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called principal if $W \in C$.

Theorem

(1) There exists a unique principal operator W with the property $[,]^{\prime}=[,]_{W}$. Call it the principal (leading) operator of a bi-Lie structure ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$.
(2) If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the Killing form B on \mathfrak{g}.

For the $\mathfrak{s o}(n, \mathbb{K})$ bi-Lie structure we have $W=(1 / 2)\left(L_{A}+R_{A}\right)$ (operators of left and right multiplication by A)

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g})=\operatorname{ad} \mathfrak{g} \oplus C$, where $C=(\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to ad $\mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called principal if $W \in C$.

Theorem

(1) There exists a unique principal operator W with the property $[,]^{\prime}=[,]_{W}$. Call it the principal (leading) operator of a bi-Lie structure ($\mathfrak{g},[],,[,]^{\prime}$).
(2) If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the Killing form B on \mathfrak{g}.

Example

For the $\mathfrak{s o}(n, \mathbb{K})$ bi-Lie structure we have $W=(1 / 2)\left(L_{A}+R_{A}\right)$ (operators of left and right multiplication by A).

Some properties of the principal operator

Definition

We say that bi-Lie structures $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ and $\left(\mathfrak{g},[],,[,]^{\prime \prime}\right)$ are isomorphic if there exists an automorphism of the Lie algebra $(\mathfrak{g},[]$,$) sending the$ bracket [,] to [,]".

Theorem

Let $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ and (g, [,], [,]") be two semisimple bi-Lie structures and let $W^{\prime}, W^{\prime \prime}$ be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra ($\mathfrak{g},[$,$]) with the property$ $\phi \circ W^{\prime}=W^{\prime \prime} \circ \phi$

In particular, classification of semisimple bi-Lie structures up to isomorphism \Longleftrightarrow classification of principal operators satisfyting MI up to action of automorphisms.

Some properties of the principal operator

Definition

We say that bi-Lie structures $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ and $\left(\mathfrak{g},[],,[,]^{\prime \prime}\right)$ are isomorphic if there exists an automorphism of the Lie algebra ($\mathfrak{g},[$,$]) sending the$ bracket [,]' to [,]".

Theorem

Let ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ and ($\left.\mathfrak{g},[],,[,]^{\prime \prime}\right)$ be two semisimple bi-Lie structures and let $W^{\prime}, W^{\prime \prime}$ be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra ($\mathfrak{g},[]$,$) with the property$ $\phi \circ W^{\prime}=W^{\prime \prime} \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to
isomorphism \Longleftrightarrow classification of principal operators satisfyting MI up to action of automorphisms.

Some properties of the principal operator

Definition

We say that bi-Lie structures $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ and $\left(\mathfrak{g},[],,[,]^{\prime \prime}\right)$ are isomorphic if there exists an automorphism of the Lie algebra $(\mathfrak{g},[]$,$) sending the$ bracket [,]' to [,]".

Theorem

Let ($\left.\mathfrak{g},[],,[,]^{\prime}\right)$ and ($\left.\mathfrak{g},[],,[,]^{\prime \prime}\right)$ be two semisimple bi-Lie structures and let $W^{\prime}, W^{\prime \prime}$ be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra ($\mathfrak{g},[]$,$) with the property$ $\phi \circ W^{\prime}=W^{\prime \prime} \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \Longleftrightarrow classification of principal operators satisfyting MI up to action of automorphisms.

Gradings and Main assumptions

Definition

Let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading of a Lie algebra $(\mathfrak{g},[$, $])$, i.e. $\left[\mathfrak{g}_{i}, \mathfrak{g}_{\mathfrak{j}}\right] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma, \Gamma$ an abelian group. We say that a linear operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ preserves the grading if $W \mathfrak{g}_{i} \subset \mathfrak{g}_{i}$ for any $i \in \Gamma$.
\square Theorem
Let $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ be a semisimple bi-Lie structure and let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading. Then, if the principal operator $W: \mathfrak{h} \rightarrow \mathfrak{h}$ preserves the grading, so does its symmetric primitive ?

Main assumptions:

\square

- The principal operator $W \in \operatorname{End}(g)$ preserves the root grading $\mathfrak{g}=\mathfrak{h}+\sum_{\alpha \in R} \mathfrak{g}_{\alpha}$
- The operator $\left.W\right|_{\mathfrak{h}}$ is diagonalizable

Gradings and Main assumptions

Definition

Let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading of a Lie algebra $(\mathfrak{g},[$, $])$, i.e. $\left[\mathfrak{g}_{i}, \mathfrak{g}_{\mathfrak{j}}\right] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma, \Gamma$ an abelian group. We say that a linear operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ preserves the grading if $W \mathfrak{g}_{i} \subset \mathfrak{g}_{i}$ for any $i \in \Gamma$.

Theorem

Let $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ be a semisimple bi-Lie structure and let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading. Then, if the principal operator $W: \mathfrak{h} \rightarrow \mathfrak{h}$ preserves the grading, so does its symmetric primitive P.

Main assumptions:

- The principal operator $W \in \operatorname{End}(\mathfrak{g})$ preserves the root grading
- The operator W / n is diagonalizable.

Gradings and Main assumptions

Definition

Let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading of a Lie algebra $(\mathfrak{g},[]$,$) , i.e. \left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma, \Gamma$ an abelian group. We say that a linear operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ preserves the grading if $W \mathfrak{g}_{i} \subset \mathfrak{g}_{i}$ for any $i \in \Gamma$.

Theorem

Let $\left(\mathfrak{g},[],,[,]^{\prime}\right)$ be a semisimple bi-Lie structure and let $\mathfrak{g}=\bigoplus_{i \in \Gamma} \mathfrak{g}_{i}$ be a grading. Then, if the principal operator $W: \mathfrak{h} \rightarrow \mathfrak{h}$ preserves the grading, so does its symmetric primitive P.

Main assumptions:

($\mathbb{K}=\mathbb{C}$)

- The principal operator $W \in \operatorname{End}(\mathfrak{g})$ preserves the root grading

$$
\mathfrak{g}=\mathfrak{h}+\sum_{\alpha \in R} \mathfrak{g}_{\alpha} .
$$

- The operator $\left.W\right|_{\mathfrak{h}}$ is diagonalizable.

Consequences of the Main assumptions

Bi-Lie structure ($\left.\mathfrak{g},[],,[,]^{\prime}\right) \Longrightarrow$ Pencil of Lie brackets $\left(\mathfrak{g},[,]^{t}\right),[,]^{t}:=[,]^{\prime}-t[],, t \in \mathbb{C}$.

Definition

The elements of the finite set $T:=\left\{t \in \mathbb{C} \mid \operatorname{ker} B^{t} \neq\{0\}\right\}$ are called the times of the bi-Lie structure, here B^{t} is the Killing form of $\left(\mathfrak{g},[,]^{t}\right)$.

Theorem

- Given an element $E_{\alpha} \in \mathfrak{g}_{\alpha}, \alpha \in R$, such that $B\left(E_{\alpha}, E_{-\alpha}\right)=1$, there exist exactly two (up to multiplicity) times $t_{1, \alpha}, t_{2, \alpha}$ such that $E_{\alpha} \in \operatorname{ker} B^{t_{i, \alpha}}$.
- Put $T_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$. Then $T_{\alpha}=T_{-\alpha}$.
- The element $H_{\alpha}=\left[E_{\alpha}, E_{-\alpha}\right] \in \mathfrak{h}$ belongs to $\operatorname{ker}\left(W-t_{1, \alpha} I\right)\left(W-t_{2, \alpha} I\right)$.

"Times selection rules" and times diagrams

Theorem

Let $\alpha, \beta, \gamma \in R$ be such that $\alpha+\beta+\gamma=0$. Then only the following possibilities can occur:
(1) either there exist $t_{1}, t_{2}, t_{3} \in \mathbb{C}$ such that

$$
T_{\alpha}=\left\{t_{1}, t_{2}\right\}, T_{\beta}=\left\{t_{2}, t_{3}\right\}, T_{\gamma}=\left\{t_{3}, t_{1}\right\} ;
$$

(2) or there exist $t_{1}, t_{2} \in \mathbb{C}, t_{1} \neq t_{2}$, such that

$$
T_{\alpha}=T_{\beta}=T_{\gamma}=\left\{t_{1}, t_{2}\right\}
$$

A collection $\left\{T_{\alpha}\right\}_{\alpha \in R}$ of unordered pairs $T_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$ of complex numbers with $T_{\alpha}=T_{-\alpha}$ and the properties mentioned is called a times diagram.

Times diagrams

Examples:	$t_{1} t^{t_{1} t_{3}}$		$t_{1}\left(t_{4}\right)$					
					$t_{1} t_{3}$		$t_{2}\left(t_{4}\right)$	
	$t_{1} t_{2}$		$t_{2} t_{3}$	$t_{1} t_{2}$		$t_{2} t_{3}$		$t_{3}\left(t_{4}\right)$
	$t_{2} t_{3}$					$t_{1} t_{2}$		
$t_{1} t_{3}$		$t_{3} t_{1}$,		$t_{1} t_{2}$		$t_{1} t_{2}$	
$t_{1} t_{2}$	$t_{2} t_{3}$		$t_{2} t_{1}$	$t_{1} t_{1}$		$t_{1} t_{2}$		t_{2}

Theorem
If $(\mathfrak{g},[]$,$) is simple, the set times diagrams splits to two disjoint classes:$ class I and class II.

Definition
An operator $U: \mathfrak{h} \rightarrow \mathfrak{h}$ is subject to a times diagram
$\left\{T_{\alpha}\right\}_{\alpha \in R}, T_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, if
$H_{\alpha}=\left[E_{\alpha}, E_{-\alpha}\right] \in \operatorname{ker}\left(W-t_{1, \alpha} /\right)\left(W-t_{2, \alpha} /\right)$ for any $\alpha \in R$.

Times diagrams

Theorem
If $(\mathfrak{g},[]$,$) is simple, the set times diagrams splits to two disjoint classes:$ class I and class II.

Definition
An operator $U: \mathfrak{h} \rightarrow \mathfrak{h}$ is subject to a times diagram
$\left\{T_{\alpha}\right\}_{\alpha \in R}, T_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, if
$H_{\alpha}=\left[E_{\alpha}, E_{-\alpha}\right] \in \operatorname{ker}\left(W-t_{1, \alpha} /\right)\left(W-t_{2, \alpha} /\right)$ for any $\alpha \in R$.

Times diagrams

Examples:	$t_{1} t_{1} t_{3}$		$t_{1}\left(t_{4}\right)$					
					$t_{1} t_{3}$		$t_{2}\left(t_{4}\right.$	
	$t_{1} t_{2}$		$t_{2} t_{3}$	$t_{1} t_{2}$		$t_{2} t_{3}$		$t_{3}\left(t_{4}\right)$
	$t_{2} t_{3}$					$t_{1} t_{2}$		
$t_{1} t_{3}$		$t_{3} t_{1}$			$t_{1} t_{2}$		$t_{1} t_{2}$.
$t_{1} t_{2}$	$t_{2} t_{3}$		$t_{2} t_{1}$	$t_{1} t_{1}$		$t_{1} t_{2}$		

Theorem

If $(\mathfrak{g},[]$,$) is simple, the set times diagrams splits to two disjoint classes:$ class I and class II.

Definition

An operator $U: \mathfrak{h} \rightarrow \mathfrak{h}$ is subject to a times diagram
$\left\{T_{\alpha}\right\}_{\alpha \in R}, T_{\alpha}=\left\{t_{1, \alpha}, t_{2, \alpha}\right\}$, if
$H_{\alpha}=\left[E_{\alpha}, E_{-\alpha}\right] \in \operatorname{ker}\left(W-t_{1, \alpha} I\right)\left(W-t_{2, \alpha} I\right)$ for any $\alpha \in R$.

Bi-Lie structures of Class I

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T}:=\left\{T_{\alpha}\right\}_{\alpha \in R}$, where \mathcal{T} is of class I and U is subject to \mathcal{T},

- there exists a unique operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\left.W\right|_{\mathfrak{h}}=U$ and W is a principal leading operator for a bi-Lie structure.
- It is of the form $\left.W\right|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}=\left[\left(t_{1, \alpha}+t_{2, \alpha}\right) / 2\right] \operatorname{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ and is symmetric iff so is U.

Theorem
 Each times diagram of class I induces a specific type of $\mathbb{Z} / 2 \mathbb{Z} \times \cdots \times \mathbb{Z} / 2 \mathbb{Z}$-grading on the Lie algebra ($\mathfrak{g},[$,$]).$

Conjecture-hope

It is possible to classify all bi-Lie structures of class I (at least with symmetric U)

Bi-Lie structures of Class I

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T}:=\left\{T_{\alpha}\right\}_{\alpha \in R}$, where \mathcal{T} is of class I and U is subject to \mathcal{T},

- there exists a unique operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\left.W\right|_{\mathfrak{h}}=U$ and W is a principal leading operator for a bi-Lie structure.
- It is of the form $\left.W\right|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}=\left[\left(t_{1, \alpha}+t_{2, \alpha}\right) / 2\right] \operatorname{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ and is symmetric iff so is U.

Theorem

Each times diagram of class I induces a specific type of $\mathbb{Z} / 2 \mathbb{Z} \times \cdots \times \mathbb{Z} / 2 \mathbb{Z}$-grading on the Lie algebra $(\mathfrak{g},[]$,$) .$

Conjecture-hope

It is possible to classify all bi-Lie structures of class I (at least with symmetric U)

Bi-Lie structures of Class I

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T}:=\left\{T_{\alpha}\right\}_{\alpha \in R}$, where \mathcal{T} is of class I and U is subject to \mathcal{T},

- there exists a unique operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\left.W\right|_{\mathfrak{h}}=U$ and W is a principal leading operator for a bi-Lie structure.
- It is of the form $\left.W\right|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}=\left[\left(t_{1, \alpha}+t_{2, \alpha}\right) / 2\right] \operatorname{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ and is symmetric iff so is U.

Theorem

Each times diagram of class I induces a specific type of $\mathbb{Z} / 2 \mathbb{Z} \times \cdots \times \mathbb{Z} / 2 \mathbb{Z}$-grading on the Lie algebra $(\mathfrak{g},[]$,$) .$

Conjecture-hope

It is possible to classify all bi-Lie structures of class I (at least with symmetric U).

Bi-Lie structures of Class II

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T}:=\left\{T_{\alpha}\right\}_{\alpha \in R}$, where \mathcal{T} is of class II and U is subject to \mathcal{T}, and some extra data $D(\alpha, \beta, \gamma \in R, \alpha+\beta+\gamma=0 \rightsquigarrow 0,+1,-1)$,

- there exists a uniquely defined operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\left.W\right|_{\mathfrak{h}}=U$ and W is a principal leading operator for a bi-Lie structure.
- Its symmetric part is of the form

$$
\begin{aligned}
& \left.W\right|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}=\left[\left(t_{1, \alpha}+t_{2, \alpha}\right) / 2\right] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} \text { (here } \\
& \left.\left\{t_{1, \alpha}, t_{2, \alpha}\right\}=\left\{t_{1}, t_{2}\right\},\left\{t_{1}, t_{1}\right\} \text { or }\left\{t_{2}, t_{2}\right\}\right) .
\end{aligned}
$$

- Its antisymmetric part depends also on D.

Bi-Lie structures of Class II

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T}:=\left\{T_{\alpha}\right\}_{\alpha \in R}$, where \mathcal{T} is of class II and U is subject to \mathcal{T}, and some extra data $D(\alpha, \beta, \gamma \in R, \alpha+\beta+\gamma=0 \rightsquigarrow 0,+1,-1)$,

- there exists a uniquely defined operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\left.W\right|_{\mathfrak{h}}=U$ and W is a principal leading operator for a bi-Lie structure.
- Its symmetric part is of the form

$$
\begin{aligned}
& \left.W\right|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}=\left[\left(t_{1, \alpha}+t_{2, \alpha}\right) / 2\right] \operatorname{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} \text { (here } \\
& \left.\left\{t_{1, \alpha}, t_{2, \alpha}\right\}=\left\{t_{1}, t_{2}\right\},\left\{t_{1}, t_{1}\right\} \text { or }\left\{t_{2}, t_{2}\right\}\right) \text {. }
\end{aligned}
$$

- Its antisymmetric part depends also on D.

New examples

Related to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$-grading and other gradings on ($\mathfrak{g},[$,$])$

Conjecture

Any bi-Lie structure of Class II is isomorphic to one of the bi-Lie structures related to $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}$-grading with $n_{i}>2$.

Bi-Lie structures of Class II

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T}:=\left\{T_{\alpha}\right\}_{\alpha \in R}$, where \mathcal{T} is of class II and U is subject to \mathcal{T}, and some extra data $D(\alpha, \beta, \gamma \in R, \alpha+\beta+\gamma=0 \rightsquigarrow 0,+1,-1)$,

- there exists a uniquely defined operator $W: \mathfrak{g} \rightarrow \mathfrak{g}$ such that $\left.W\right|_{\mathfrak{h}}=U$ and W is a principal leading operator for a bi-Lie structure.
- Its symmetric part is of the form

$$
\begin{aligned}
& \left.W\right|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}=\left[\left(t_{1, \alpha}+t_{2, \alpha}\right) / 2\right] \operatorname{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} \text { (here } \\
& \left.\left\{t_{1, \alpha}, t_{2, \alpha}\right\}=\left\{t_{1}, t_{2}\right\},\left\{t_{1}, t_{1}\right\} \text { or }\left\{t_{2}, t_{2}\right\}\right) .
\end{aligned}
$$

- Its antisymmetric part depends also on D.

New examples

Related to $\mathbb{Z} / 3 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$-grading and other gradings on ($\mathfrak{g},[$,$])$

Conjecture

Any bi-Lie structure of Class II is isomorphic to one of the bi-Lie structures related to $\mathbb{Z} / n_{1} \mathbb{Z} \times \cdots \times \mathbb{Z} / n_{k} \mathbb{Z}$-grading with $n_{i}>2$.

Many thanks!

