Lie-Poisson pencils related to semisimple Lie agebras: towards classification INTEGRABLE SYSTEMS UWM, 21-22 June 2012

Andriy Panasyuk

Faculty of Mathematics and Computer Science University of Warmia and Mazury Poland and

Pidstryhach Institute for the Applied Problems of Mathematics and Mechanics, Lviv, Ukraine

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

Motivation: algebraic mechanisms for bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair $\eta_1, \eta_2 \in \Gamma(TM)$ such that $\eta_1, \eta_2, \eta_1 + \eta_2$ are Poisson.

Historically: Particular hamiltonian integrable system on a Poisson manifold $(M, \eta_1) \rightarrow$ second hamiltonian structure $\eta_2 \rightarrow$ general algebraic mechanism relating η_1, η_2

Example

KdV \rightarrow Magri's second hamiltonian structure \hookrightarrow "argument translation method": η_2 is canonical linear, $\eta_1 = \eta_2(a)$ ($M = \mathfrak{g}^*$, where \mathfrak{g}^* is the Virasoro Lie algebra, $a \in \mathfrak{g}^*$ a particular point)

Motivation: algebraic mechanisms for bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair $\eta_1, \eta_2 \in \Gamma(TM)$ such that $\eta_1, \eta_2, \eta_1 + \eta_2$ are Poisson.

Historically: Particular hamiltonian integrable system on a Poisson manifold $(M, \eta_1) \rightarrow$ second hamiltonian structure $\eta_2 \rightarrow$ general algebraic mechanism relating η_1, η_2

Example

KdV \rightarrow Magri's second hamiltonian structure \hookrightarrow "argument translation method": η_2 is canonical linear, $\eta_1 = \eta_2(a)$ ($M = \mathfrak{g}^*$, where \mathfrak{g}^* is the Virasoro Lie algebra, $a \in \mathfrak{g}^*$ a particular point)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

Motivation: algebraic mechanisms for bihamiltonian structures

Definition

A bihamiltonian structure on a manifold M is a pair $\eta_1, \eta_2 \in \Gamma(TM)$ such that $\eta_1, \eta_2, \eta_1 + \eta_2$ are Poisson.

Historically: Particular hamiltonian integrable system on a Poisson manifold $(M, \eta_1) \rightarrow$ second hamiltonian structure $\eta_2 \rightarrow$ general algebraic mechanism relating η_1, η_2

Example

KdV \rightarrow Magri's second hamiltonian structure \hookrightarrow "argument translation method": η_2 is canonical linear, $\eta_1 = \eta_2(a)$ ($M = \mathfrak{g}^*$, where \mathfrak{g}^* is the Virasoro Lie algebra, $a \in \mathfrak{g}^*$ a particular point)

Hierarchy of mechanisms (by complexity of structures):

- constant+constant (rather not interesting)
- constant+linear (proved to be powerful, eg. "argument translation")

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

- linear+linear (topic of present talk)
- linear+quadratic (eg. argument translation of quadratic bracket towards "vanishing direction")
- etc.

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{h} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{h} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x,_A y] = xAy - yAx.$$

Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure.

・ロット 本語 マネ 印マネ 日マ

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{h} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{h} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x,_{\mathcal{A}} y] = x \mathcal{A} y - y \mathcal{A} x.$$

Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [,A])$ is a bi-Lie structure.

・ロット 本語 マネ 単マネ 日マ

A bi-Lie structure is a triple $(\mathfrak{g}, [,], [,]')$, where \mathfrak{h} is a vector space and [,], [,]' are two Lie brackets on \mathfrak{h} which are *compatible*, i.e. so that [,] + [,]' is a Lie bracket.

Example

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{K}), A \in \mathfrak{g}$ be a fixed matrix. Put

$$[x,_{\mathcal{A}} y] = x \mathcal{A} y - y \mathcal{A} x.$$

Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure, ([,] the standard commutator).

Main motivating example

Let $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), A \in \text{Symm}(n, \mathbb{K})$, a fixed symmetric matrix. Then $(\mathfrak{g}, [,], [, A])$ is a bi-Lie structure.

Semisimple case

Applications of the $\mathfrak{so}(n,\mathbb{R})$ bi-Lie structure:

- Manakov top (*n*-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (due to Bolsinov 1992)
- Landau-Livshits PDE (n = 3) (due to Holod 1987)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov \sim 2004-2006

- Matrix integrable ODE's
- Classification of "bi-associative structures" (\cdot, \circ) on $\mathfrak{gl}(n, \mathbb{K}) \Longrightarrow$ Examples of bi-Lie structures on $\mathfrak{gl}(n, \mathbb{K})$ (which do not restrict to $\mathfrak{sl}(n, \mathbb{K})$)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

Semisimple case

Applications of the $\mathfrak{so}(n,\mathbb{R})$ bi-Lie structure:

- Manakov top (*n*-dimensional free rigid body), here A is diagonal, the "inertia tensor" of the body (due to Bolsinov 1992)
- Landau-Livshits PDE (n = 3) (due to Holod 1987)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov \sim 2004-2006

- Matrix integrable ODE's
- Classification of "bi-associative structures" (\cdot, \circ) on $\mathfrak{gl}(n, \mathbb{K}) \Longrightarrow$ Examples of bi-Lie structures on $\mathfrak{gl}(n, \mathbb{K})$ (which do not restrict to $\mathfrak{sl}(n, \mathbb{K})$)

Kantor-Persits 1988 (announced only)

The list of irreducible closed (*technical assumptions*) vector spaces of Lie structures:

- $\mathfrak{g} = \mathfrak{so}(n, \mathbb{K}), \{[,A]\}_{A \in \mathrm{Symm}(n, \mathbb{K})}$
- $\mathfrak{g} = \mathfrak{sp}(n, \mathbb{K}), \{[A,A]\}_{A \in \mathfrak{m}(n, \mathbb{K})}$
- several nonsemisimple cases

here

$$[X_{,A} Y] := XAY - YAX,$$

 $\mathfrak{sp}(n, \mathbb{K}) = \{X \in \mathfrak{gl}(2n, \mathbb{K}) \mid XJ + JX^T = 0\}$ the symplectic Lie algebra, $\mathfrak{m}(n, \mathbb{K}) := \{X \in \mathfrak{gl}(2n, \mathbb{K}) \mid XJ - JX^T = 0\}$ its orthogonal complement in $\mathfrak{gl}(2n, \mathbb{K})$ w.r.t. "trace form"

Useful notations

Let \mathfrak{g} be a Lie algebra and $N:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

$$[x, y]_N := [Nx, y] + [x, Ny] - N[x, y],$$

 $T_N(\cdot, \cdot) := [N \cdot, N \cdot] - N[\cdot, \cdot]_N.$

Obvious or Easy:

Let (g,[,]) be a semisimple Lie algebra, [,]' a bilinear skew-symmetric bracket. Then

 $(\mathfrak{g}, [,], [,]')$ is a bi-Lie str. $\iff [,]' = [,]_W$ for some $W \in \operatorname{End}(\mathfrak{g})$ and $T_W(\cdot, \cdot) = [\cdot, \cdot]_P$ for some $P \in \operatorname{End}(\mathfrak{g})$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Moreover, the operators W, P are defined up to adding of inner differentiations $\operatorname{ad} x$.

Useful notations

Let \mathfrak{g} be a Lie algebra and $N:\mathfrak{g}\to\mathfrak{g}$ a linear operator. Put

$$[x, y]_N := [Nx, y] + [x, Ny] - N[x, y],$$

 $T_N(\cdot,\cdot):=[N\cdot,N\cdot]-N[\cdot,\cdot]_N.$

Obvious or Easy:

Let $(\mathfrak{g},[,])$ be a semisimple Lie algebra, $[,]^\prime$ a bilinear skew-symmetric bracket. Then

 $(\mathfrak{g}, [,], [,]')$ is a bi-Lie str. $\iff [,]' = [,]_W$ for some $W \in \operatorname{End}(\mathfrak{g})$ and $T_W(\cdot, \cdot) = [\cdot, \cdot]_P$ for some $P \in \operatorname{End}(\mathfrak{g})$.

Moreover, the operators W, P are defined up to adding of inner differentiations $\operatorname{ad} x$.

Semisimple bi-Lie structures: two more examples

Definition

- A semisimple bi-Lie structure (g, [,], [,]');
- the leading operator W;
- the primitive operator P;
- the main identity $T_W(\cdot, \cdot) = [\cdot, \cdot]_P$.

Example

(Golubchik–Sokolov) Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a $\mathbb{Z}/n\mathbb{Z}$ -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i \mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks *MI* directly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \lambda_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\lambda_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Semisimple bi-Lie structures: two more examples

Definition

- A semisimple bi-Lie structure (g, [,], [,]');
- the leading operator W;
- the primitive operator P;
- the main identity $T_W(\cdot, \cdot) = [\cdot, \cdot]_P$.

Example

(Golubchik–Sokolov) Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a $\mathbb{Z}/n\mathbb{Z}$ -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i\mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks *MI* directly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \lambda_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\lambda_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Semisimple bi-Lie structures: two more examples

Definition

- A semisimple bi-Lie structure (g, [,], [,]');
- the leading operator W;
- the primitive operator P;
- the main identity $T_W(\cdot, \cdot) = [\cdot, \cdot]_P$.

Example

(Golubchik–Sokolov) Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \cdots \oplus \mathfrak{g}_{n-1}$ be a $\mathbb{Z}/n\mathbb{Z}$ -grading on \mathfrak{g} . Put $W|_{\mathfrak{g}_i} = i\mathrm{Id}_{\mathfrak{g}_i}, i = 0, \ldots, n-1$ and $P|_{\mathfrak{g}_i} = \frac{1}{2}i(n-i)\mathrm{Id}_{\mathfrak{g}_i}$. One checks *MI* directly.

Example

Let $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ (sum of subalgebras). Put $W|_{\mathfrak{g}_i} = \lambda_i \mathrm{Id}_{\mathfrak{g}_i}, i = 1, 2$, where $\lambda_{1,2}$ are any scalars. Then $T_W = 0$ (so put P = 0 in the MI). Important example: \mathfrak{g} simple, \mathfrak{g}_1 a parabolic subalgebra and \mathfrak{g}_2 its "complement".

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the Killing form B on g.

Example

For the $\mathfrak{so}(n, \mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property

 [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the Killing form B on g.

Example

For the $\mathfrak{so}(n,\mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

Principal leading operator

Definition

Let \mathfrak{g} be a semisimple Lie algebra. Then there exists a direct decomposition $\operatorname{End}(\mathfrak{g}) = \operatorname{ad} \mathfrak{g} \oplus C$, where $C = (\operatorname{ad} \mathfrak{g})^{\perp}$ is the direct complement to $\operatorname{ad} \mathfrak{g} \subset \operatorname{End}(\mathfrak{g})$ w.r.t. the trace form. An operator $W \in \operatorname{End}(\mathfrak{g})$ is called *principal* if $W \in C$.

Theorem

There exists a unique principal operator W with the property

 [,]' = [,]_W. Call it the principal (leading) operator of a bi-Lie structure (g, [,], [,]').

If W is the principal operator, there exists a unique operator P primitive for W which is symmetric w.r.t. the Killing form B on g.

Example

For the $\mathfrak{so}(n, \mathbb{K})$ bi-Lie structure we have $W = (1/2)(L_A + R_A)$ (operators of left and right multiplication by A).

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are *isomorphic* if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]''.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfyting MI up to action of automorphisms.

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are *isomorphic* if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]''.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfyting MI up to action of automorphisms.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへの

We say that bi-Lie structures $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ are *isomorphic* if there exists an automorphism of the Lie algebra $(\mathfrak{g}, [,])$ sending the bracket [,]' to [,]''.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ and $(\mathfrak{g}, [,], [,]'')$ be two semisimple bi-Lie structures and let W', W'' be the corresponding principal operators. Then the bi-Lie structures are strongly isomorphic if and only if there exists an automorphism ϕ of the Lie algebra $(\mathfrak{g}, [,])$ with the property $\phi \circ W' = W'' \circ \phi$.

In particular, classification of semisimple bi-Lie structures up to isomorphism \iff classification of principal operators satisfyting MI up to action of automorphisms.

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{h} \to \mathfrak{h}$ preserves the grading, so does its symmetric primitive P.

Main assumptions:

 $(\mathbb{K} = \mathbb{C})$

- The principal operator W ∈ End(g) preserves the root grading g = h + ∑_{α∈R} g_α.
- The operator $W|_{\mathfrak{h}}$ is diagonalizable.

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{h} \to \mathfrak{h}$ preserves the grading, so does its symmetric primitive P.

Main assumptions:

 $(\mathbb{K} = \mathbb{C})$

- The principal operator W ∈ End(g) preserves the root grading g = h + ∑_{α∈R} g_α.
- The operator $W|_{\mathfrak{h}}$ is diagonalizable.

Let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading of a Lie algebra $(\mathfrak{g}, [,])$, i.e. $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$ for any $i, j \in \Gamma$, Γ an abelian group. We say that a linear operator $W : \mathfrak{g} \to \mathfrak{g}$ preserves the grading if $W\mathfrak{g}_i \subset \mathfrak{g}_i$ for any $i \in \Gamma$.

Theorem

Let $(\mathfrak{g}, [,], [,]')$ be a semisimple bi-Lie structure and let $\mathfrak{g} = \bigoplus_{i \in \Gamma} \mathfrak{g}_i$ be a grading. Then, if the principal operator $W : \mathfrak{h} \to \mathfrak{h}$ preserves the grading, so does its symmetric primitive P.

Main assumptions:

 $(\mathbb{K} = \mathbb{C})$

- The principal operator W ∈ End(𝔅) preserves the root grading
 𝔅 = 𝔥 + ∑_{α∈R} 𝔅_α.
- The operator $W|_{\mathfrak{h}}$ is diagonalizable.

Consequences of the Main assumptions

Bi-Lie structure $(\mathfrak{g}, [,], [,]') \Longrightarrow$ Pencil of Lie brackets $(\mathfrak{g}, [,]^t), [,]^t := [,]' - t[,], t \in \mathbb{C}.$

Definition

The elements of the finite set $T := \{t \in \mathbb{C} \mid \ker B^t \neq \{0\}\}$ are called the *times* of the bi-Lie structure, here B^t is the Killing form of $(\mathfrak{g}, [,]^t)$.

Theorem

- Given an element E_α ∈ g_α, α ∈ R, such that B(E_α, E_{-α}) = 1, there exist exactly two (up to multiplicity) times t_{1,α}, t_{2,α} such that E_α ∈ ker B<sup>t_{i,α}.
 </sup>
- Put $T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}$. Then $T_{\alpha} = T_{-\alpha}$.
- The element $H_{\alpha} = [E_{\alpha}, E_{-\alpha}] \in \mathfrak{h}$ belongs to $\ker(W t_{1,\alpha}I)(W t_{2,\alpha}I).$

Theorem

Let $\alpha, \beta, \gamma \in R$ be such that $\alpha + \beta + \gamma = 0$. Then only the following possibilities can occur:

 ${\small \bullet}$ either there exist $t_1,t_2,t_3\in \mathbb{C}$ such that

$$T_{\alpha} = \{t_1, t_2\}, T_{\beta} = \{t_2, t_3\}, T_{\gamma} = \{t_3, t_1\};$$

(2) or there exist $t_1, t_2 \in \mathbb{C}, t_1 \neq t_2$, such that

$$T_{\alpha}=T_{\beta}=T_{\gamma}=\{t_1,t_2\}.$$

A collection $\{T_{\alpha}\}_{\alpha \in R}$ of unordered pairs $T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}$ of complex numbers with $T_{\alpha} = T_{-\alpha}$ and the properties mentioned is called a times diagram.

Times diagrams

	$t_1 t_3$		$t_1(t_4)$						
Examples:	$t_1 t_2$	1.0	$t_2 t_3$		$t_1 t_3$		$t_2(t_2)$	·	
	-1-2		-2-5	$t_1 t_2$		$t_2 t_3$		$t_3(t_4)$	
	$t_2 t_3$					$t_1 t_2$			
$t_1 t_3$		t_3t_1	,		$t_1 t_2$		$t_1 t_2$		
$t_1 t_2$	$t_2 t_3$		$t_2 t_1$	$t_1 t_1$		t_1t_2		$t_1 t_2$	

Theorem

If (g, [,]) is simple, the set times diagrams splits to two disjoint classes: class I and class II.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨー の々ぐ

Definition

An operator $U : \mathfrak{h} \to \mathfrak{h}$ is subject to a times diagram $\{T_{\alpha}\}_{\alpha \in R}, T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}, \text{ if }$ $H_{\alpha} = [E_{\alpha}, E_{-\alpha}] \in \ker(W - t_{1,\alpha}I)(W - t_{2,\alpha}I) \text{ for any } \alpha \in R.$

Times diagrams

	$t_1 t_3$		$t_1(t_4)$						
Examples:	$t_1 t_2$	c 1 c 5	$t_2 t_3$ '		$t_1 t_3$		$t_2(t_2)$	1) ,	
	<i>L</i> 1 <i>L</i> 2		1213	$t_1 t_2$		$t_{2}t_{3}$		$t_3(t_4)$	
	$t_2 t_3$					$t_1 t_2$			
$t_1 t_3$		t_3t_1	,		$t_1 t_2$		$t_1 t_2$		
$t_1 t_2$	$t_2 t_3$		$t_2 t_1$	$t_1 t_1$		$t_1 t_2$		$t_1 t_2$	

Theorem

If (g, [,]) is simple, the set times diagrams splits to two disjoint classes: class I and class II.

Definition

An operator $U : \mathfrak{h} \to \mathfrak{h}$ is subject to a times diagram $\{T_{\alpha}\}_{\alpha \in R}, T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}, \text{ if }$ $H_{\alpha} = [E_{\alpha}, E_{-\alpha}] \in \ker(W - t_{1,\alpha}I)(W - t_{2,\alpha}I) \text{ for any } \alpha \in R.$

Times diagrams

	$t_1 t_3$		$t_1(t_4)$						
Examples:	$t_1 t_2$	1.0	$t_2 t_3$		$t_1 t_3$		$t_2(t_2)$	·	
	-1-2		-2-5	$t_1 t_2$		$t_2 t_3$		$t_3(t_4)$	
	$t_2 t_3$					$t_1 t_2$			
$t_1 t_3$		t_3t_1	,		$t_1 t_2$		$t_1 t_2$		
$t_1 t_2$	$t_2 t_3$		$t_2 t_1$	$t_1 t_1$		t_1t_2		$t_1 t_2$	

Theorem

If (g, [,]) is simple, the set times diagrams splits to two disjoint classes: class I and class II.

Definition

An operator $U : \mathfrak{h} \to \mathfrak{h}$ is subject to a times diagram $\{T_{\alpha}\}_{\alpha \in R}, T_{\alpha} = \{t_{1,\alpha}, t_{2,\alpha}\}, \text{ if } H_{\alpha} = [E_{\alpha}, E_{-\alpha}] \in \ker(W - t_{1,\alpha}I)(W - t_{2,\alpha}I) \text{ for any } \alpha \in R.$

Bi-Lie structures of Class I

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of class I and U is subject to \mathcal{T} ,

- there exists a unique operator $W : \mathfrak{g} \to \mathfrak{g}$ such that $W|_{\mathfrak{h}} = U$ and W is a principal leading operator for a bi-Lie structure.
- It is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ and is symmetric iff so is U.

Theorem

Each times diagram of class I induces a specific type of $\mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$ -grading on the Lie algebra $(\mathfrak{g}, [,])$.

Conjecture-hope

It is possible to classify all bi-Lie structures of class I (at least with symmetric U).

ヘロア 人間ア 人間ア 人間アー

3

Bi-Lie structures of Class I

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of class I and U is subject to \mathcal{T} ,

- there exists a unique operator $W : \mathfrak{g} \to \mathfrak{g}$ such that $W|_{\mathfrak{h}} = U$ and W is a principal leading operator for a bi-Lie structure.
- It is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ and is symmetric iff so is U.

Theorem

Each times diagram of class I induces a specific type of $\mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$ -grading on the Lie algebra $(\mathfrak{g}, [,])$.

Conjecture-hope

It is possible to classify all bi-Lie structures of class I (at least with symmetric U).

ヘロア 人間ア 人間ア 人間アー

Bi-Lie structures of Class I

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of class I and U is subject to \mathcal{T} ,

- there exists a unique operator $W : \mathfrak{g} \to \mathfrak{g}$ such that $W|_{\mathfrak{h}} = U$ and W is a principal leading operator for a bi-Lie structure.
- It is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ and is symmetric iff so is U.

Theorem

Each times diagram of class I induces a specific type of $\mathbb{Z}/2\mathbb{Z} \times \cdots \times \mathbb{Z}/2\mathbb{Z}$ -grading on the Lie algebra $(\mathfrak{g}, [,])$.

Conjecture-hope

It is possible to classify all bi-Lie structures of class I (at least with symmetric U).

Bi-Lie structures of Class II

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of class II and U is subject to \mathcal{T} , and some extra data D $(\alpha, \beta, \gamma \in R, \alpha + \beta + \gamma = 0 \rightsquigarrow 0, +1, -1)$,

- there exists a uniquely defined operator $W : \mathfrak{g} \to \mathfrak{g}$ such that $W|_{\mathfrak{h}} = U$ and W is a principal leading operator for a bi-Lie structure.
- Its symmetric part is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ (here $\{t_{1,\alpha}, t_{2,\alpha}\} = \{t_1, t_2\}, \{t_1, t_1\} \text{ or } \{t_2, t_2\}).$
- Its antisymmetric part depends also on D.

New examples

Related to $\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}\text{-}\mathsf{grading}$ and other gradings on $(\mathfrak{g},[,])$

Conjecture

Any bi-Lie structure of Class II is isomorphic to one of the bi-Lie structures related to $\mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$ -grading with $n_i > 2$.

Bi-Lie structures of Class II

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of class II and U is subject to \mathcal{T} , and some extra data D $(\alpha, \beta, \gamma \in R, \alpha + \beta + \gamma = 0 \rightsquigarrow 0, +1, -1)$,

- there exists a uniquely defined operator $W : \mathfrak{g} \to \mathfrak{g}$ such that $W|_{\mathfrak{h}} = U$ and W is a principal leading operator for a bi-Lie structure.
- Its symmetric part is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ (here $\{t_{1,\alpha}, t_{2,\alpha}\} = \{t_1, t_2\}, \{t_1, t_1\} \text{ or } \{t_2, t_2\}).$
- Its antisymmetric part depends also on D.

New examples

Related to $\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}\text{-}\mathsf{grading}$ and other gradings on $(\mathfrak{g},[,])$

Conjecture

Any bi-Lie structure of Class II is isomorphic to one of the bi-Lie structures related to $\mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$ -grading with $n_i > 2$.

Bi-Lie structures of Class II

Theorem

Given a pair $(U, \mathcal{T}), \mathcal{T} := \{T_{\alpha}\}_{\alpha \in R}$, where \mathcal{T} is of class II and U is subject to \mathcal{T} , and some extra data D $(\alpha, \beta, \gamma \in R, \alpha + \beta + \gamma = 0 \rightsquigarrow 0, +1, -1)$,

- there exists a uniquely defined operator $W : \mathfrak{g} \to \mathfrak{g}$ such that $W|_{\mathfrak{h}} = U$ and W is a principal leading operator for a bi-Lie structure.
- Its symmetric part is of the form $W|_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}} = [(t_{1,\alpha}+t_{2,\alpha})/2] \mathrm{Id}_{\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}}$ (here $\{t_{1,\alpha}, t_{2,\alpha}\} = \{t_1, t_2\}, \{t_1, t_1\}$ or $\{t_2, t_2\}$).
- Its antisymmetric part depends also on D.

New examples

Related to $\mathbb{Z}/3\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}\text{-}grading$ and other gradings on $(\mathfrak{g},[,])$

Conjecture

Any bi-Lie structure of Class II is isomorphic to one of the bi-Lie structures related to $\mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z}$ -grading with $n_i > 2$.

Many thanks!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●