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Motivation: algebraic mechanisms for bihamiltonian
structures

Definition

A bihamiltonian structure on a manifold M is a pair η1, η2 ∈ Γ(TM)
such that η1, η2, η1 + η2 are Poisson.

Historically: Particular hamiltonian integrable system on a Poisson
manifold (M, η1) → second hamiltonian structure η2 ↪→ general algebraic
mechanism relating η1, η2

Example

KdV → Magri’s second hamiltonian structure ↪→ ”argument
translation method”: η2 is canonical linear, η1 = η2(a) (M = g∗, where
g∗ is the Virasoro Lie algebra, a ∈ g∗ a particular point)
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Motivation: algebraic mechanisms for bihamiltonian
structures

Hierarchy of mechanisms (by complexity of structures):

constant+constant (rather not interesting)

constant+linear (proved to be powerful, eg. ”argument translation”)

linear+linear (topic of present talk)

linear+quadratic (eg. argument translation of quadratic bracket
towards ”vanishing direction”)

etc.



Motivation: pairs of linear structures

Definition

A bi-Lie structure is a triple (g, [, ], [, ]′), where h is a vector space and
[, ], [, ]′ are two Lie brackets on h which are compatible, i.e. so that
[, ] + [, ]′ is a Lie bracket.

Example

Let g = gl(n,K), A ∈ g be a fixed matrix. Put

[x ,A y ] = xAy − yAx .

Then (g, [, ], [,A ]) is a bi-Lie structure, ([, ] the standard commutator).

Main motivating example

Let g = so(n,K), A ∈ Symm(n,K), a fixed symmetric matrix. Then
(g, [, ], [,A ]) is a bi-Lie structure.
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Motivation: pairs of linear structures

Semisimple case

Applications of the so(n,R) bi-Lie structure:

Manakov top (n-dimensional free rigid body), here A is diagonal, the
”inertia tensor” of the body (due to Bolsinov 1992)

Landau-Livshits PDE (n = 3) (due to Holod 1987)

Nonsemisimple case

Works of Golubchik, Odesskii, Sokolov ∼ 2004-2006

Matrix integrable ODE’s

Classification of ”bi-associative structures” (·, ◦) on gl(n,K) =⇒
Examples of bi-Lie structures on gl(n,K) (which do not restrict to
sl(n,K))
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Motivation: Kantor-Persits theorem

Kantor-Persits 1988 (announced only)

The list of irreducible closed (technical assumptions) vector spaces of Lie
structures:

g = so(n,K), {[,A ]}A∈Symm(n,K)

g = sp(n,K), {[,A ]}A∈m(n,K)

several nonsemisimple cases

here
[X ,A Y ] := XAY − YAX ,

sp(n,K) = {X ∈ gl(2n,K) | XJ + JXT = 0} the symplectic Lie algebra,
m(n,K) := {X ∈ gl(2n,K) | XJ − JXT = 0} its orthogonal complement in
gl(2n,K) w.r.t. ”trace form”



Semisimple bi-Lie structures and operators

Useful notations

Let g be a Lie algebra and N : g→ g a linear operator. Put

[x , y ]N := [Nx , y ] + [x ,Ny ]− N[x , y ],

TN(·, ·) := [N·,N·]− N[·, ·]N .

Obvious or Easy:

Let (g, [, ]) be a semisimple Lie algebra, [, ]′ a bilinear skew-symmetric
bracket. Then

(g, [, ], [, ]′) is a bi-Lie str. ⇐⇒ [, ]′ = [, ]W for some W ∈ End(g) and
TW (·, ·) = [·, ·]P for some P ∈ End(g).

Moreover, the operators W ,P are defined up to adding of inner
differentiations ad x.
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Semisimple bi-Lie structures: two more examples

Definition

A semisimple bi-Lie structure (g, [, ], [, ]′);

the leading operator W ;

the primitive operator P;

the main identity TW (·, ·) = [·, ·]P .

Example

(Golubchik–Sokolov) Let g = g0 ⊕ · · · ⊕ gn−1 be a Z/nZ-grading on g.
Put W |gi = iIdgi , i = 0, . . . , n − 1 and P|gi = 1

2 i(n − i)Idgi . One checks
MI directly.

Example

Let g = g1 ⊕ g2 (sum of subalgebras). Put W |gi = λi Idgi , i = 1, 2, where
λ1,2 are any scalars. Then TW = 0 (so put P = 0 in the MI). Important
example: g simple, g1 a parabolic subalgebra and g2 its ”complement”.
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Principal leading operator

Definition

Let g be a semisimple Lie algebra. Then there exists a direct
decomposition End(g) = ad g⊕ C , where C = (ad g)⊥ is the direct
complement to ad g ⊂ End(g) w.r.t. the trace form. An operator
W ∈ End(g) is called principal if W ∈ C .

Theorem
1 There exists a unique principal operator W with the property

[, ]′ = [, ]W . Call it the principal (leading) operator of a bi-Lie
structure (g, [, ], [, ]′).

2 If W is the principal operator, there exists a unique operator P
primitive for W which is symmetric w.r.t. the Killing form B on g.

Example

For the so(n,K) bi-Lie structure we have W = (1/2)(LA + RA)
(operators of left and right multiplication by A).
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Some properties of the principal operator

Definition

We say that bi-Lie structures (g, [, ], [, ]′) and (g, [, ], [, ]′′) are isomorphic
if there exists an automorphism of the Lie algebra (g, [, ]) sending the
bracket [, ]′ to [, ]′′.

Theorem

Let (g, [, ], [, ]′) and (g, [, ], [, ]′′) be two semisimple bi-Lie structures and let
W ′,W ′′ be the corresponding principal operators. Then the bi-Lie
structures are strongly isomorphic if and only if there exists an
automorphism φ of the Lie algebra (g, [, ]) with the property
φ ◦W ′ = W ′′ ◦ φ.

In particular, classification of semisimple bi-Lie structures up to
isomorphism ⇐⇒ classification of principal operators satisfyting MI up to
action of automorphisms.
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Gradings and Main assumptions

Definition

Let g =
⊕

i∈Γ gi be a grading of a Lie algebra (g, [, ]), i.e. [gi , gj ] ⊂ gi+j

for any i , j ∈ Γ, Γ an abelian group. We say that a linear operator
W : g→ g preserves the grading if W gi ⊂ gi for any i ∈ Γ.

Theorem

Let (g, [, ], [, ]′) be a semisimple bi-Lie structure and let g =
⊕

i∈Γ gi be a
grading. Then, if the principal operator W : h→ h preserves the grading,
so does its symmetric primitive P.

Main assumptions:

(K = C)

The principal operator W ∈ End(g) preserves the root grading
g = h +

∑
α∈R gα.

The operator W |h is diagonalizable.
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Consequences of the Main assumptions

Bi-Lie structure (g, [, ], [, ]′) =⇒ Pencil of Lie brackets
(g, [, ]t), [, ]t := [, ]′ − t[, ], t ∈ C.

Definition

The elements of the finite set T := {t ∈ C | ker Bt 6= {0}} are called the
times of the bi-Lie structure, here Bt is the Killing form of (g, [, ]t).

Theorem

Given an element Eα ∈ gα, α ∈ R, such that B(Eα,E−α) = 1, there
exist exactly two (up to multiplicity) times t1,α, t2,α such that
Eα ∈ ker Bti,α .

Put Tα = {t1,α, t2,α}. Then Tα = T−α.

The element Hα = [Eα,E−α] ∈ h belongs to
ker(W − t1,αI )(W − t2,αI ).



”Times selection rules” and times diagrams

Theorem

Let α, β, γ ∈ R be such that α + β + γ = 0. Then only the following
possibilities can occur:

1 either there exist t1, t2, t3 ∈ C such that

Tα = {t1, t2},Tβ = {t2, t3},Tγ = {t3, t1};

2 or there exist t1, t2 ∈ C, t1 6= t2, such that

Tα = Tβ = Tγ = {t1, t2}.

A collection {Tα}α∈R of unordered pairs Tα = {t1,α, t2,α} of complex
numbers with Tα = T−α and the properties mentioned is called a
times diagram.



Times diagrams

Examples:
t1t3

t1t2 t2t3
,

t1(t4)
t1t3 t2(t4)

t1t2 t2t3 t3(t4)
,

t2t3

t1t3 t3t1

t1t2 t2t3 t2t1

,
t1t2

t1t2 t1t2

t1t1 t1t2 t1t2

.

Theorem

If (g, [, ]) is simple, the set times diagrams splits to two disjoint classes:
class I and class II.

Definition

An operator U : h→ h is subject to a times diagram
{Tα}α∈R ,Tα = {t1,α, t2,α}, if
Hα = [Eα,E−α] ∈ ker(W − t1,αI )(W − t2,αI ) for any α ∈ R.
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Bi-Lie structures of Class I

Theorem

Given a pair (U, T ), T := {Tα}α∈R , where T is of class I and U is subject
to T ,

there exists a unique operator W : g→ g such that W |h = U and W
is a principal leading operator for a bi-Lie structure.

It is of the form W |gα+g−α = [(t1,α + t2,α)/2]Idgα+g−α and is
symmetric iff so is U.

Theorem

Each times diagram of class I induces a specific type of
Z/2Z× · · · × Z/2Z-grading on the Lie algebra (g, [, ]).

Conjecture-hope

It is possible to classify all bi-Lie structures of class I (at least with
symmetric U).
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Bi-Lie structures of Class II

Theorem

Given a pair (U, T ), T := {Tα}α∈R , where T is of class II and U is subject
to T , and some extra data D (α, β, γ ∈ R, α+ β + γ = 0  0,+1,−1),

there exists a uniquely defined operator W : g→ g such that
W |h = U and W is a principal leading operator for a bi-Lie structure.

Its symmetric part is of the form
W |gα+g−α = [(t1,α + t2,α)/2]Idgα+g−α (here
{t1,α, t2,α} = {t1, t2}, {t1, t1} or {t2, t2}).

Its antisymmetric part depends also on D.

New examples

Related to Z/3Z× Z/3Z-grading and other gradings on (g, [, ])

Conjecture

Any bi-Lie structure of Class II is isomorphic to one of the bi-Lie structures
related to Z/n1Z× · · · × Z/nkZ-grading with ni > 2.
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Many thanks!


