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Abstract.

The constant astigmatism equation is
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+ 2 = 0.

We provide:

– new interpretation of solutions as describing orthogonal equiareal
patterns on the unit sphere

– relevance to two-dimensional plasticity

– the classical Bianchi superposition principle for the sine-Gordon
equation extended to generate 1 of solutions of the constant
astigmatism equation

– slip line fields on the sphere described by sine-Gordon solutions

– equiareal patterns corresponding to classical Lipschitz surfaces of
constant astigmatism.
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Introduction.

The classical Bäcklund transformation for the sine-Gordon
equation u

⇠⌘

= sinu has been discovered in the context of
pseudospherical surfaces.

Historical roots lie in another class of surfaces, characterised by the
constancy of the di↵erence ⇢2 � ⇢1 between the principal radii of
curvature ⇢1, ⇢2.

The latter surfaces reemerged from the systematic search for
integrable classes of Weingarten surfaces conducted by Baran and
one of us (2009). We named them constant astigmatism surfaces.
Connotation with the astigmatic interval of geometric optics,
without suggesting any specific application.

The most important results about them are due to L. Bianchi.

L. Bianchi, Ricerche sulle superficie elicoidali e sulle superficie a curvatura

costante, Ann. Scuola Norm. Sup. Pisa, I 2 (1879) 285–341.
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Bianchi 1879.

Evolutes of constant astigmatism surfaces are pseudospherical.
Constant astigmatism surfaces correspond to parabolic geodesic
systems on pseudospherical surfaces.

Figure 1: Dini’s pseudospherical helicoid (left) and its constant astig-
matism involute (right)
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Lipschitz 1887

Obtained another class of surfaces of constant astigmatism. The
full class is given in terms of elliptic integrals; a subclass of surfaces
of revolution being further investigated by von Lilienthal.

Baran & Marvan, 2009

Surfaces of constant astigmatism referred to adapted
parameterisation by lines of curvature  ! solutions of the constant
astigmatism equation

z
yy

+
✓

1
z

◆

xx

+ 2 = 0.

Zero-curvature representation with values in sl(2).

Transformation to sine–Gordon equation = analytical
representation of Bianchi’s geometric picture.
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Preliminaries

Under parameterisation by the lines of curvature (curvature
coordinates), the fundamental forms can be written as

I = u2 dx2 + v2 dy2, II =
u2

⇢1
dx2 +

v2

⇢2
dy2, III =

u2

⇢2
1

dx2 +
v2

⇢2
2

dy2.

Here ⇢1, ⇢2 = principal radii of curvature.
Definition 1. A surface is said to be of constant astigmatism if the
di↵erence ⇢2 � ⇢1 is a nonzero constant.

We assume the ambient space to be scaled so that ⇢2 � ⇢1 = ±1.
Definition 2. Curvature coordinates are said to be adapted if

uv

✓
1
⇢1
� 1

⇢2

◆
= ±1. (1)

(1) ) x, y are natural in the sense of Ganchev and Mihova (2010).
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What is z?

Every constant astigmatism (more generally, Weingarten) surface
can be equipped with an adapted parameterisation by lines of
curvature.

Then the nonzero coe�cients of the three fundamental forms of a
surface of constant astigmatism can be expressed through a single
function z(x, y):

u =
z

1
2 (ln z � 2)

2
, v =

ln z

2z
1
2
, ⇢1 =

ln z � 2
2

, ⇢2 =
ln z

2
.

Obviously, ⇢2 � ⇢1 = 1.

Observation. The third fundamental form is

III = z dx2 +
1
z

dy2.

But, III = dn · dn coincides with the first fundamental form of the
Gaussian sphere n(x, y).

7



Orthogonal equiareal patterns
Definition 3. An orthogonal equiareal pattern = parameterization
x, y such that

I
S

= z dx2 +
1
z

dy2,

z being an arbitrary function of x, y (Sadowsky, 1941).

Implications:

1. Coordinate lines are orthogonal.

2. Local parameterisation R2 � U �! S is area preserving.

Consequently, evenly distributed coordinate lines cover the surface
with curvilinear rectangles of equal area.

M.A. Sadowsky, Equiareal pattern of stress trajectories in plane plastic strain,

J. Appl. Mech. 8 (1941) A-74–A-76.

M.A. Sadowsky, Equiareal patterns, Amer. Math. Monthly 50 (1943) 35–40.
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History of orthogonal equiareal patterns

Can be traced back to Boussinesq (1872).

Seventy years later rediscovered by Sadowsky as configurations of
the principal stress lines under the Tresca yield condition.

Hill 1966 gave a kinematic interpretation of these patterns.

Coburn 1950 established the same equiareal property for slip lines
under a di↵erent yield condition.

Ament 1943 discovered a relation to the class of Weingarten
surfaces, determined by the constancy of the di↵erence between the
principal curvatures (as opposed to the di↵erence between the
principal radii of curvature).

Fialkow 1945 observed relevance of orthogonal equiareal patterns to
conformal geometry.
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Example

The Archimedean projection = simplest example of an orthogonal
equiareal pattern on the sphere.

The well-known Archimedean projection of the cylinder
(cos y, sin y, x) onto an inscribed sphere is

(x, y) 7�! (
p

1� x2 cos y,
p

1� x2 sin y, x).

We have

IArch =
dx2

1� x2 + (1� x2) dy2,

i.e., z = 1/(1� x2).

This z corresponds to von Lilienthal surfaces of constant
astigmatism.
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Archimedean equiareal pattern

Figure 2: The Archimedean equiareal parameterisation of the sphere
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Converse statement

As we have seen, every constant astigmatism surface generates an
orthogonal equiareal parameterization of the unit sphere.
Conversely,

Proposition 1. Let z dx2 + (1/z) dy2 be an orthogonal equiareal
pattern on the unit sphere S. Then z is a solution of the constant
astigmatism equation.

Proof. Using the well-known Brioschi formula, we compute the
Gaussian curvature of the sphere, obtaining

1 = � 1
2

z
yy

� 1
2

✓
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xx

.

The constant astigmatism equation follows immediately.
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Relation to two-dimensional plasticity

Orthogonal equiareal patterns were introduced by Sadowski in the
case of S being a plane model of plasticity.

Choosing the vectors @
x

, @
y

along the principal stress directions
(i.e., eigenvectors of the stress tensor �i

j

), Sadowski derived the
equiareal property from the equilibrium condition div � = 0 and
the Tresca yield condition �1

1 � �2
2 = const.

We reverse the line of reasoning. Reconstruct a two-dimensional
stress tensor from a given orthogonal equiareal pattern g = I

S

.

In what follows, all components are taken with respect to the basis
@

x

, @
y

of the tangent space and indices are raised and lowered with
the metric.
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A two-dimensional plasticity model

Proposition 2. Consider an orthogonal equiareal pattern
g = g

ij

dxi dxj such that

g11 = z, g12 = g21 = 0, g22 = 1/z.

Then the tensor � given by the components

�1
1 = 1

2 ln z, �1
2 = �2

1 = 0, �2
2 = 1

2
(ln z � 2). (2)

satisfies �ij

;j = 0 (the equilibrium equation) and �1
1 � �2

2 = 1 (the
Tresca yield condition).

Proof. The yield condition �1
1 � �2

2 = 1 is obvious. Checking the
equilibrium equation �ij

;j = 0 is routine.
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Slip lines

Tresca yield condition: Yielding occurs when the maximal shear
stress magnitude achieves a threshold depending on the material.

The lines along the maximal shear stress directions are called
slip lines.

Slip lines have a constant deviation of 1
4⇡ from the principal stress

directions.

Definition 4. By a slip line field associated with the orthogonal
equiareal pattern on a surface S we shall mean a parameterization
⇠, ⌘ such that the angle between @

x

and @
⇠

as well as the angle
between @

y

and @
⌘

is equal to 1
4⇡.

It follows that slip lines form an orthogonal net.

Remark. Planar slip lines satisfy Hencky conditions. These fail on
surfaces of non-vanishing curvature.
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Example

The net of slip lines corresponding to the Archimedean equiareal
pattern is, by definition, formed by the ±45� loxodromes. Observed
by Zelin (1996, superplastic sheet stretched with a spherical punch).

Figure 3: Sphere’s slip line field composed of loxodromes
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Bäcklund transformation

A powerful way to generate pseudospherical surfaces and solutions
of the sine–Gordon equation.

Consider a pseudospherical surface r(⇠, ⌘) parameterised so that

I = d⇠2 + 2 cos(2!) d⇠ d⌘ + d⌘2, II = 2 sin(2!) d⇠ d⌘.

The Bäcklund transform of our surface is

r(�) = r +
2�

1 + �2

✓
sin(! � !(�))

sin(2!)
r

⇠

+
sin(! + !(�))

sin(2!)
r

⌘

◆
.

Here !(�) is another sine-Gordon solution, obtained from the pair
of compatible first-order equations

!
(�)
⇠

= !
⇠

+ � sin(!(�) + !), !(�)
⌘

= �!
⌘

+
1
�

sin(!(�) � !),

� being a constant called the Bäcklund parameter.
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Bianchi superposition principle

Write B
(�)
c

! to denote a solution !(�) for a specified value of the
integration constant c.

The Bianchi permutability theorem says that given a pair of
Bäcklund parameters �1 6= �2, then for every choice of integration
constants c1, c2 there is a unique choice of integration constants
c01, c

0
2 such that

B
(�2)
c

0
2

B(�1)
c1

! = B
(�1)
c

0
1

B(�2)
c2

!

Moreover, denoting by !(�1�2) the common value, then !(�1�2) can
be obtained from the superposition principle

tan
!(�1�2) � !

2
=

�1 + �2

�1 � �2
tan

!(�1) � !(�2)

2
. (3)

No further integration, just purely algebraic manipulations.
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Bianchi superposition principle continued

Assume now that for a fixed seed !, the BT !(�) is known for every
value of the Bäcklund parameter �.

Using the superposition principle, one can compute !(�1�2),
!(�1�2�3), etc., !(�1�2···�s) by purely algebraic manipulations.

Solutions depending on any finite number of Bäcklund parameters
and integration constants.

Complementarity. In the particular case of � = 1 the Bäcklund
transformation B(1) coincides with Bianchi’s complementarity
relation.

Consequently, the superposition formula yields a method to obtain
abundant pairs of complementary sine-Gordon solutions !(�1�2···�s)

and !(�1�2···�s1). Hence also abundant pairs of complementary
pseudospherical surfaces r(�1�2···�s) and r(�1�2···�s1).
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Generation of constant astigmatism surfaces

Surfaces of constant astigmatism are easier to obtain from a pair of
complementary pseudospherical surfaces r and r(1) rather than
from a single pseudospherical surface.

Denote

ñn = r(1) � r =
sin(! � !̃!)

sin(2!)
r

⇠

+
sin(! + !̃!)

sin(2!)
r

⌘

.

Then ñn is a unit vector tangent to both surfaces r and r(1) and
determines what is called a pseudospherical congruence.

Normal surfaces of this congruence are the constant astigmatism
surfaces sought.
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Two important observations due to Bianchi

Di↵erentiating with respect to the integration constant c, we
denote f = ln(d!(1)/dc). Then

f
⇠

= cos(!(1) + !), f
⌘

= cos(!(1) � !).

Similarly, taking one more derivative f 0 = df/dc, we get

f 0
⇠

= �ef sin(!(1) + !), f 0
⌘

= �ef sin(!(1) � !).

Proposition 3. Let !(1)(⇠, ⌘, c) be a general solution of the
Bäcklund system, c being the integration constant. Then
r̃r = r� f ñn, where f = ln(d!(1)/dc) is a surface of constant
astigmatism having complementary surfaces r and r(1) as evolutes.

Proposition 3 shows that the constant astigmatism surfaces
r̃r = r� f ñn can be found by purely algebraic manipulations and
di↵erentiation once a one-parameter family of pseudopotentials !(1)

is known.
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Another proposition and its corollary

Proposition 4. Let !(1)(⇠, ⌘, c) be a general solution of the
Bäcklund system, let f = ln(d!(1)/dc) and x = df/dc. Let y(⇠, ⌘)
be a solution of the system

y
⇠

= e�f sin(! + !(1)), y
⌘

= e�f sin(! � !(1)).

Then x, y are adapted curvature coordinates on the surface r̃r.

Moreover, if z = e�2f , then z(x, y) is a solution of the constant
astigmatism equation.

Finally, z dx2 + dy2/z is an orthogonal equiareal pattern on the
unit sphere ñn, while ⇠, ⌘ constitute an associated slip line field.

Corollary 1. If S is a constant astigmatism surface, then the
asymptotic coordinates on the focal surfaces of S correspond to slip
line fields on the Gaussian image of S.
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The superposition principle extended

One of the adapted curvature coordinates is obtained by purely
algebraic manipulations and di↵erentiation, while the other
curvature coordinate has to be obtained by integration.

It is therefore natural to ask whether one could obtain
superposition formulas for f, x, y.

The answer is positive, even for arbitrary �.
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Associated potentials

Definition 5. Given two sine-Gordon solutions ! and !(�) related
by the Bäcklund transformation B(�), let f (�), x(�), y(�) denote
functions satisfying the compatible equations

f
(�)
⇠

= � cos(!(�) + !), f (�)
⌘

=
1
�

cos(!(�) � !),

x
(�)
⇠

= �ef

(�)
sin(!(�) + !), x(�)

⌘

=
1
�

ef

(�)
sin(!(�) � !),

y
(�)
⇠

= �e�f

(�)
sin(!(�) + !), y(�)

⌘

= � 1
�

e�f

(�)
sin(!(�) � !).

The quantities f (�), x(�), y(�) will be called associated potentials
corresponding to the pair !,!(�).
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Superposition principle for the associated potentials
Proposition 5. Let !,!(�1), !(�2), !(�1�2) be four sine-Gordon
solutions related by the Bianchi superposition principle. Then the
associated potentials f (�1�2), x(�1�2), y(�1�2) corresponding to the
pair !(�1), !(�1�2) are related to the associated potentials f (�2),
x(�2), y(�2) corresponding to the pair !,!(�2) by

f (�1�2) = f (�2) � ln
✓

2 cos(!(�1) � !(�2))� �1

�2
� �2

�1

◆
,

x(�1�2) =
�1�2

�2
1 � �2

2

✓
x(�2)

� 2�1�2 sin(!(�1) � !(�2))
�2

1 � 2�1�2 cos(!(�1) � !(�2)) + �2
2

ef

(�2)
◆

,

y(�1�2) =
✓

�1

�2
� �2

�1

◆
y(�2) � 2e�f

(�2)
sin(!(�1) � !(�2)),

up to an additive constant.
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One soliton solutions

As is well known, the one-soliton solutions !(�) = B
(�)
0 (0) of the

sine-Gordon equation correspond to the Dini surfaces (helicoids of
the tractrix)

The complementary surfaces of the Dini surfaces correspond to the
nonlinear superposition of !(�) and !(1).

One obtains x = x(�1), y = y(�1), z = e�2f

�1
as

x =
�

�

2 � 1
⇥

(
� � 1)2(c2A

2
B

2 � c1)� (
� + 1)2(c1B

2 + c2A

2) + 4(c1 � c2)�AB

(
� � 1)2(A2

B

2 + 1) + (
� + 1)2(B2 + A

2)� 8�AB

,

y =
4 ln B

c1 + c2
� 2

(
�

2 + 1) ln A

(
c1 + c2)�

+
4�

(
AB + 1)(A � B

) + c3(c1 + c2)(�
2 � 1)A(1 + B

2)

(
c1 + c2)�es(1 + e2p� )

,

z =

„
(
� � 1)2(A2

B

2 + 1) + (
� + 1)2(B2 + A

2)� 8�AB

(
c1 + c2)�A

(1 + B

2)

«2

,

where A = e⇠+⌘ and B = e�⇠+⌘/�, while c1, c2, c3 are arbitrary
constants.
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An implicit formula for one soliton solution

Eliminating ⇠, ⌘, one obtains

y =

1

c1 + c2

„
4

(AB + 1

)(A�B)

(B2
+ 1

)A
� 2

�2
+ 1

�
ln A + 4 ln B

«
+

(�2 � 1

)c3

�
,

where

A =

�(�2
+ 1

)(c1 + c2)
p

z �
p

k

(�2 � 1

)

2
+

(�2x� �c2 � x)

2z
,

B =

2�2
(c1 + c2)

p
z +

p
k

(�2 � 1

)

2
+

(�2x� �c2 � x)(�2x + �c1 � x)z
,

k = �[

(�2 � 1

)

2
+ 2

(c1 + c2)�
2
p

z +

(�2x� �c2 � x)(�2x + �c1 � x)z]

⇥ [

(�2 � 1

)

2 � 2

(c1 + c2)�
2
p

z +

(�2x� �c2 � x)(�2x + �c1 � x)z].

Yields y(x, z).
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Slip line net on the Gaussian sphere

Figure 4: Sphere’s slip line field corresponding to one soliton solution
(a part; the sphere is multiply covered)
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Lipschitz surfaces in principal coordinates

Redoing the computation is easier than transforming the Lipschitz
1887 result.

Consider the unit sphere n = (cos � sin ✓, sin � sin ✓, cos ✓)
parameterised by the latitude ✓ and longitude �.

To specify an orthogonal equiareal pattern we let ✓,� denote yet
unknown functions of parameters x, y.

Lipschitz defines a Stellungswinkel to be the angle ! between n
✓

and n
x

= �
x

n
�

+ ✓
x

n
✓

.

The Lipschitz class is specified by allowing the Stellungswinkel to
depend solely on the latitude ✓.
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The general Lipschitz solution
Theorem 1. The general Lipschitz solution of the constant
astigmatism equation depends on four constants h11, h10, h01, h00

and consists of functions

z =
1� h2 +

p
(1� h2)2 � 4(H1h�H2)2

2(h11x + h01)2
,

where

h = h11xy + h10x + h01y + h00,

H1 = h11, H2 = h11h00 � h10h01.

Formula covers all Lipshitz solutions except a particular solution

z =
1

c1 � (x� c0)2
,

c1, c0 being arbitrary constants.
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The Lipschitz orthogonal equiareal pattern

Theorem 2. The orthogonal equiareal pattern corresponding to the
general Lipschitz solution is n = (cos � sin ✓, sin � sin ✓, cos ✓), where

✓ = arccos h,

� = � ln

(h11x + h01)

h11
+

Z
1� h2

+

p
(

1� h2
)

2 � 4

(H1h�H2)
2

2

(H1h�H2)(1� h2
)

dh,

where h = h11xy + h10x + h01y + h00 and H1 = h11,
H2 = h11h00 � h10h01.

The Stellungswinkel ! is a function of the lattitude ✓ as required:

cos2 ! =
1

⇥2 + 1
=

1� h2 +
p

(1� h2)2 � 4(H1h�H2)2

2(1� h2)

=
sin2 ✓ +

p
sin4 ✓ � 4(H1 cos ✓ �H2)2

2 sin2 ✓
.
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Invariance

It is easy to check that the general Lipschitz solution satisfies

h11s + h01t
x � h10t

y = 0,

where

tx = z
x

,

ty = z
y

,

s = xz
x

� yz
y

+ 2z

are generators of the Lie symmetries of the constant astigmatism
equation.

This means that the general Lipschitz solution is a
symmetry-invariant solution of the constant astigmatism equation.
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Longitude � in terms of elementary functions

The lattitude ✓ is arccos h, while the longitude � is given by an
elliptic integral.

Assuming that h11 is nonzero, h10 and h01 can be removed by
shifts, so we set h10 = h01 = 0.

Then the discriminant with respect to h is proportional to

(1 + H2
1 + 2H2)(1 + H2

1 � 2H2)(H1 �H2)2(H1 + H2)2

= h4
11(1 + h2

11 + 2h11h00)(1 + h2
11 � 2h11h00)(1� h00)2(1 + h00)2.

Is zero if and only if

h00 = ±1 or h00 = ±1 + h2
11

2h11
.

In these cases, � can be expressed in terms of elementary functions.
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Longitude � in terms of elementary functions continued

For h00 = ±1 we have

� = ⌥

p
1� C

2

2C

ln

„
4(1� 2C

2 ± h +
p

1� C

2
p

(
h⌥ 1)2 � 4(

C

2 ⌥ h

) )

h⌥ 1

«

�
ln(

Cx

)

C

+
ln[

h

2 � 1 + (
h⌥ 1)

p
(
h⌥ 1)2 � 4(

C

2 ⌥ h

) ]

2C

±
1

2
arctan

„ p
(
h± 1)2 � 4C

2

2C

«
,

where C = H1 = h11 is a constant and h = Cxy + 1. The
orthogonal equiareal pattern corresponding to h00 = 1 and
h11 = 1/4 can be seen below.

In the second case, when h00 = ±(1 + h2
11)/2h11, we obtain � and ✓

that cannot be simultaneously real.
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A picture

Figure 5: The orthogonal equiareal pattern on the sphere correspond-
ing to one of the Lipschitz solutions
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