Elimination of the node in the Kinoshita problem

Andrzej J. Maciejewski
University of Zielona Góra

Olsztyn, June 21, 2012

Kinoshita problem

[Kinoshita(1970)]

The problem of a point mass and the rigid body.

The configuration space:
-relative position of the mass centres of the bodies (ρ, z, v);
-orientation of the body frame by the Euler angles (φ, θ, ψ);

After reduction the system has four degrees of freedoms

Figure: The geometry of the problem

Kinoshita's results

[Kinoshita(1970)]

1. "Spoke" motion

The axis of symmetry lies along the relative position vector.
2. "Float" motion

The axis of symmetry is always perpendicular to the orbital plane.
3. "Arrow" motion

The axis of symmetry lies in the plane formed by the tangent and normal to the orbital plane vector.

Figure: Spoke motion

Kinoshita's results

[Kinoshita(1970)]

1. "Spoke" motion

The axis of symmetry lies along the relative position vector.
2. "Float" motion

The axis of symmetry is always perpendicular to the orbital plane.
3. "Arrow" motion

The axis of symmetry lies in the plane formed by the tangent and normal to the orbital plane vector.

Figure: Float motion

Kinoshita's results

[Kinoshita(1970)]

1. "Spoke" motion

The axis of symmetry lies along the relative position vector.
2. "Float" motion

The axis of symmetry is always perpendicular to the orbital plane.
3. "Arrow" motion

The axis of symmetry lies in the plane formed by the tangent and normal to the orbital plane vector.

Figure: Arrow motion

Missing points

1. where are the non great circle solutions? (Aboelnaga, Barkin, 1979, 1980)
2. ...

Equations of motion in rotating reference frame

[Wang et al.(1991)Wang, Krishnaprasad, and Maddocks]

- The orbital motion
\mathbf{R} is the relative position vector
\mathbf{P} is the linear momentum of the system G is angular momentum of the body

$$
\begin{align*}
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{R}=\mathbf{R} \times \boldsymbol{\Omega}+\mathbf{P} \\
& \frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{P}=\mathbf{P} \times \boldsymbol{\Omega}-\frac{\partial U}{\partial \mathbf{R}} \\
& \frac{\mathrm{~d}}{\mathrm{~d} t} \mathbf{G}=\mathbf{G} \times \boldsymbol{\Omega}+\mathbf{R} \times \frac{\partial U}{\partial \mathbf{R}}, \tag{1}
\end{align*}
$$

where $\boldsymbol{\Omega}=\mathbf{I}^{-1} \mathbf{G}$ is the angular velocity of the body
I is the tensor of inertia of the bedy

- The rotational motion

Figure: Geometry of the problem

$$
\begin{equation*}
\dot{\mathbf{A}}=\mathbf{A} \widehat{\mathbf{\Omega}} \tag{2}
\end{equation*}
$$

Hamiltonian form of the system

Proposition

For 2 arbitrary smooth functions f_{1} and f_{2} of dynamical variables $\mathbf{z}=\left[\mathbf{R}^{T}, \mathbf{P}^{T}, \mathbf{G}^{T}\right] \in \mathbb{R}^{9}$ we define

$$
\begin{equation*}
\left\{f_{1}, f_{2}\right\}=\left[\frac{\partial f_{1}}{\partial \mathbf{z}}\right]^{T} \boldsymbol{\Lambda}(\mathbf{z})\left[\frac{\partial f_{2}}{\partial \mathbf{z}}\right] \tag{3}
\end{equation*}
$$

where

$$
\boldsymbol{\Lambda}(\mathbf{z})=\left[\begin{array}{ccc}
0 & \mathbf{E} & \widehat{\mathbf{R}} \tag{4}\\
-\mathbf{E} & 0 & \widehat{\mathbf{P}} \\
-\widehat{\mathbf{R}} & \widehat{\mathbf{P}} & \widehat{\mathbf{G}}
\end{array}\right]
$$

and $\{\cdot, \cdot\}$ has properties of Poisson bracket (i.e., satisfies the Jacobi and Leibniz identities).

Hamiltonian form of the system

Proposition

Then the equations of motion can be written as Hamilton's equations of motion:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{z}=\{\mathbf{z}, H(\mathbf{z})\}, \tag{3}
\end{equation*}
$$

where $H(\mathbf{z})$ is equal to the total energy of the system and is given by:

$$
\begin{equation*}
H=\frac{1}{2}\langle\mathbf{P}, \mathbf{P}\rangle+\frac{1}{2}\left\langle\mathbf{G}, \mathbf{I}^{-1} \mathbf{G}\right\rangle+U(\mathbf{R}) \tag{4}
\end{equation*}
$$

Hamiltonian form of the system

Proposition

Then the equations of motion can be written as Hamilton's equations of motion:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{z}=\{\mathbf{z}, H(\mathbf{z})\}, \tag{3}
\end{equation*}
$$

where $H(\mathbf{z})$ is equal to the total energy of the system and is given by:

$$
\begin{equation*}
H=\frac{1}{2}\langle\mathbf{P}, \mathbf{P}\rangle+\frac{1}{2}\left\langle\mathbf{G}, \mathbf{I}^{-1} \mathbf{G}\right\rangle+U(\mathbf{R}) \tag{4}
\end{equation*}
$$

The introduced Poisson bracket is degenerated and the magnitude of the total angular momentum is a Casimir function, i.e., the first integral of motion.

$$
\begin{equation*}
\mathbf{L}=\mathbf{R} \times \mathbf{P}+\mathbf{G}, \quad L=\langle\mathbf{L}, \mathbf{L}\rangle=\text { const } \tag{5}
\end{equation*}
$$

Reduction for axially symmetric case

An additional first integral of motion:

$$
\begin{equation*}
\mathbf{G}_{3}=\mathbf{c o n s t} \quad\left(\Omega_{3}=\text { const }\right) \tag{6}
\end{equation*}
$$

The symmetry:

$$
U(\mathbf{R})=U\left(\mathbf{A}_{3}(\varphi) \mathbf{R}\right) \text { for all } \varphi \in[0,2 \pi]
$$

where

$$
\mathbf{A}_{3}(\varphi)=\left[\begin{array}{ccc}
\cos (\varphi) & \sin (\varphi) & 0 \\
-\sin (\varphi) & \cos (\varphi) & 0 \\
0 & 0 & 1
\end{array}\right] \in \operatorname{SO}(2, \mathbb{R})
$$

Diagonal group action

$$
\left[\begin{array}{l}
\mathbf{R} \\
\mathbf{P} \\
\mathbf{G}
\end{array}\right] \xrightarrow{\mathrm{SO}(2, \mathbf{R})}\left[\begin{array}{c}
\widetilde{\mathbf{R}} \\
\widetilde{\mathbf{P}} \\
\widetilde{\mathbf{G}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{A}_{3}(\varphi) \mathbf{R} \\
\mathbf{A}_{3}(\varphi) \mathbf{P} \\
\mathbf{A}_{3}(\varphi) \mathbf{G}
\end{array}\right]
$$

see Vereshchagin, Maciejewski, Goździewski, MNRAS, 2010.

Solution 1: Cylindrical precession

Figure: Cylindrical precession

Solution 2: Inclined planar precession

Figure: Inclined planar precession

Solution 3: Conic precession

Figure: Conic precession

Is there anything left to do?

- Kinoshita: four degrees of freedom;
- we: seven variable and one additional integral: the total angular momentum;
- Question: can we reduce to three degrees of freedom!

Standard and non-standard coordinates

Euler angles $\left(q_{1}, q_{2}, q_{3}\right)$ and conjugated momenta (p_{1}, p_{2}, p_{3})

$$
\mathcal{H}=\frac{1}{2}\left(A \Omega_{1}^{2}+B \Omega_{2}^{2}+C \Omega_{3}^{2}\right)
$$

where

$$
\begin{aligned}
& \Omega_{1}=\frac{1}{A}\left[p_{2} \cos q_{3}+\frac{\sin q_{3}}{\sin q_{2}}\left(p_{1}-p_{3} \cos q_{2}\right)\right], \\
& \Omega_{2}=\frac{1}{B}\left[p_{2} \sin q_{3}-\frac{\cos q_{3}}{\sin q_{2}}\left(p_{1}+p_{3} \cos q_{2}\right)\right], \\
& \Omega_{3}=\frac{1}{C} p_{3}
\end{aligned}
$$

The Androyer-Deprit variables (l, g, h) and conjugated momenta (L, G, H)

$$
\mathcal{H}=\frac{1}{2}\left(\frac{\sin ^{2} l}{A}+\frac{\cos ^{2} l}{B}\right)+\frac{1}{2} \frac{L^{2}}{C} .
$$

New variables

Figure: Reference frame
α, β, γ are Depri-Andoyer angles. p_{α}, p_{β} and p_{γ} are their generalized momentums correspondingly. \mathbf{R} is a relative position vector.

Attitude of the rigid body

$$
\begin{aligned}
p_{\alpha} & =\left\langle\frac{\partial \boldsymbol{\Omega}}{\partial \dot{\alpha}} \times \mathbf{R}, \mathbf{P}\right\rangle+\left\langle\frac{\partial \boldsymbol{\Omega}}{\partial \dot{\alpha}}, \mathbf{G}\right\rangle=\left\langle\frac{\partial \boldsymbol{\Omega}}{\partial \dot{\alpha}}, \mathbf{R} \times \mathbf{P}+\mathbf{G}\right\rangle=\left\langle\mathbf{E}_{3}, \mathbf{L}\right\rangle=l_{3}, \\
p_{\beta} & =\langle\mathbf{S}, \mathbf{L}\rangle=L=l, \quad p_{\gamma}=\left\langle\mathbf{B}_{3}, \mathbf{L}\right\rangle=L_{3},
\end{aligned}
$$

The total angular momentum vector:

$$
\begin{equation*}
\mathbf{L}=\left(\sqrt{p_{\beta}^{2}-p_{\gamma}^{2}} \sin \gamma, \sqrt{p_{\beta}^{2}-p_{\gamma}^{2}} \cos \gamma, p_{\gamma}\right)^{T} \tag{7}
\end{equation*}
$$

The angular momentum of the rigid body:

$$
\mathbf{G}=\mathbf{L}-\mathbf{R} \times \mathbf{P}=\left[\begin{array}{c}
\sqrt{p_{\beta}^{2}-p_{\gamma}^{2}} \sin \gamma+R_{3} P_{2}-R_{2} P_{3} \tag{8}\\
\sqrt{p_{\beta}^{2}-p_{\gamma}^{2}} \cos \gamma+R_{1} P_{3}-R_{3} P_{1} \\
p_{\gamma}+R_{2} P_{1}-R_{1} P_{2}
\end{array}\right]
$$

Reduced Hamiltonian for non-symmetric body

$$
\begin{aligned}
& H=\frac{P_{1}^{2}}{2}+\frac{P_{2}^{2}}{2}+\frac{P_{3}^{2}}{2}+\frac{\left(\sqrt{p_{\beta}^{2}-p_{\gamma}^{2}} \sin \gamma+R_{3} P_{2}-R_{2} P_{3}\right)^{2}}{2 A}+ \\
& \\
& \quad \frac{\left(\sqrt{p_{\beta}^{2}-p_{\gamma}^{2}} \cos \gamma+R_{1} P_{3}-R_{3} P_{1}\right)^{2}}{2 B}+\frac{\left(p_{\gamma}+R_{2} P_{1}-R_{1} P_{2}\right)^{2}}{2 C}+
\end{aligned}
$$

Properties of the Hamiltonian

1. Hamiltonian depends only on four non-cyclic variables R_{1}, R_{2}, R_{3} and γ, the others are cyclic. Thus, Hamiltonian has been reduced to a one of eight degrees of freedom.
2. The potential is independent on the attitude of the rigid body.
3. The following momentums of the cyclic variables correspond to the first integrals of motion:
3.1 p_{α} is the third component of total angular momentum vector in

Reduction

First canonical change of variables:

$$
\begin{array}{r}
\rho=\sqrt{R_{1}^{2}+R_{2}^{2}}, \quad v=\arctan \frac{R_{2}}{R_{1}}, \quad z=R_{3} \\
p_{\rho}=P_{1} \cos v+P_{2} \sin v, \quad p_{v}=-P_{1} \rho \sin v+P_{2} \rho \cos v, \quad p_{z}=P_{3}, \tag{10}
\end{array}
$$

Second canonical change of variables:

$$
\begin{array}{r}
\chi=\gamma+v, \quad f=\gamma, \\
p_{\chi}=p_{v}, \quad p_{f}=p_{\gamma}-p_{v}
\end{array}
$$

The reduced Hamiltonian:

$$
\begin{align*}
& H=\frac{p_{\rho}^{2}}{2}+\frac{p_{\chi}^{2}}{2 \rho^{2}}+\frac{p_{z}^{2}}{2}+\frac{p_{f}^{2}}{2 C}+\frac{\left(\sqrt{p_{\beta}^{2}-\left(p_{f}+p_{\chi}\right)^{2}} \cos \chi+\rho p_{z}-z p_{\rho}\right)^{2}}{2 A}+ \\
& \quad \frac{\left(\sqrt{p_{\beta}^{2}-\left(p_{f}+p_{\chi}\right)^{2}} \sin \chi+\frac{z}{\rho} p_{\chi}\right)^{2}}{2 A}+U(\rho, z) \tag{11}
\end{align*}
$$

Reduction

The reduced Hamiltonian:

$$
\begin{align*}
& H=\frac{p_{\rho}^{2}}{2}+\frac{p_{\chi}^{2}}{2 \rho^{2}}+\frac{p_{z}^{2}}{2}+\frac{p_{f}^{2}}{2 C}+\frac{\left(\sqrt{p_{\beta}^{2}-\left(p_{f}+p_{\chi}\right)^{2}} \cos \chi+\rho p_{z}-z p_{\rho}\right)^{2}}{2 A}+ \\
& \quad \frac{\left(\sqrt{p_{\beta}^{2}-\left(p_{f}+p_{\chi}\right)^{2}} \sin \chi+\frac{z}{\rho} p_{\chi}\right)^{2}}{2 A}+U(\rho, z) \tag{10}
\end{align*}
$$

Properties of Hamiltonian

1. Hamiltonian depends on three non-cyclic variables: ρ, z and χ.
2. The cyclic variables represent all first integrals of motion
$2.1 p_{\alpha}$ is the third component of the total angular momentum of the system.
$2.2 p_{\beta}$ is the magnitude of the total angular momentum of the system.
$2.3 p_{f}$ is the third component of the angular momentum of the rigid body.

Do it simpler!

New coordinates:

$$
\boldsymbol{Z}:=\left[R_{1}, R_{2}, R_{3}, P_{1}, P_{2}, P_{3}, L_{1}, L_{2}, L_{3}\right]^{T}=\left[\mathbf{R}^{T}, \mathbf{P}^{T}, \mathbf{L}^{T}\right]^{T} .
$$

where $\mathbf{L}=\mathbf{G}+\mathbf{R} \times \mathbf{P}$. Poisson matrix

$$
\boldsymbol{\Pi}(\mathbf{Z}):=\left[\begin{array}{rrr}
\mathbf{0} & \mathbf{E} & \mathbf{0} \\
-\mathbf{E} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \widehat{\mathbf{L}}
\end{array}\right],
$$

equations of motion

$$
\left.\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{R}=\mathbf{R} \times \boldsymbol{\Omega}+\mathbf{P}, \\
\frac{\mathrm{d}}{\mathrm{~d} t} \mathbf{P}=\mathbf{P} \times \boldsymbol{\Omega}-\frac{\partial U}{\partial \mathbf{R}}, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \mathbf{L}=\mathbf{L} \times \boldsymbol{\Omega},
\end{array}\right\}
$$

where now $\boldsymbol{\Omega}=\mathbf{I}^{-1}(\mathbf{L}-\mathbf{R} \times \mathbf{P})$. The Hamiltonian of the system is

Do it simpler!

Hamiltonian

$$
H:=\frac{1}{2}\langle\mathbf{P}, \mathbf{P}\rangle+\frac{1}{2}\langle\mathbf{L}-\mathbf{R} \times \mathbf{P}, \boldsymbol{\Omega}\rangle+U(\mathbf{R}), \quad \boldsymbol{\Omega}=\mathbf{I}^{-1}(\mathbf{L}-\mathbf{R} \times \mathbf{P}) .
$$

Levels of the Casimir are described simply as

$$
M_{L}:=\left\{(\mathbf{R}, \mathbf{P}, \mathbf{L}) \in \mathbb{R}^{9} \mid\|\mathbf{L}\|=L\right\} .
$$

Now, we can introduce new coordinates (φ, I, L) which are defined by the following equations

$$
\begin{gathered}
L_{1}=\sqrt{L-I} \sin \varphi, \quad L_{2}=\sqrt{L-I} \cos \varphi, \quad L_{3}=I \\
H=\frac{1}{2}\langle\mathbf{P}, \mathbf{P}\rangle+\frac{1}{2 A}\left(\sqrt{L-I} \sin \varphi-R_{2} P_{3}+R_{3} P_{2}\right)^{2}+ \\
\frac{1}{2 B}\left(\sqrt{L-I} \cos \varphi-R_{3} P_{1}+R_{1} P_{3}\right)^{2}+\frac{1}{2 C}\left(I-R_{1} P_{2}+R_{2} P_{1}\right)^{2}+U(\mathbf{R}),
\end{gathered}
$$

H. Kinoshita.

Stationary Motions of an Axisymmetric Body around a Spherical Body and Their Stabilities.
PASJ, 22:383-+, 1970.
Li Sheng Wang, P. S. Krishnaprasad, and J. H. Maddocks. Hamiltonian dynamics of a rigid body in a central gravitational field. Celestial Mech. Dynam. Astronom., 50(4):349-386, 1991. ISSN 0923-2958.

