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Laplace transformations. The general Laplace equation

(LE)

φxy + α(x, y)φx + β(x, y)φy + γ(x, y)φ = 0

goes to

ψxy + aψy + bψ = 0 (1)

after gauge transformation φ = gψ. Laplace transforma-

tions (LT)

a→ a−1 = a− ∂x ln(b− ay) , b→ b−1 = b− ay ,

ψ → ψ−1 = ψx + aψ ,

a→ a1 = a+∂x ln b, b→ b1 = b+∂y (a+ ∂x ln b) ,

ψ → ψ1 =
ψy

b

can be taken as a starting point in the theory of soliton equa-

tions in 2+1 dimensions. The LT is a kind of ”dressing”, it

leads to a ”partial” factorization of the operator of (2) and

in the case of zero Laplace invariants at some step of LT

iterations allows us to build explicit solutions.
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Moutard and Goursat equations

A constraint for the coefficients a and b of LE

ψxy + aψy + bψ = 0 (2)

fixes a particular class of equations which we are interesting

in. Namely, the condition

a = 0 , b = u , (3)

yields the Moutard equation (ME)

ψxy + u(x, y)ψ = 0 , (4)

while

a = −
1

2
∂x lnλ , b = −λ (5)

leads to the equation

ψxy =
1

2
(lnλ)xψy + λψ (6)

Which, by the substitution ψ =
√
ζx, χ =

√
ζy and

ψy =
√
λχ, χx =

√
λψ
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relates to the Goursat equation (GE)

ζxy = 2
√
λ ζxζy . (7)

In a context of the DT theory, more exact,

combined Darboux–Laplace (CDL) transformations

a→ a1 = a−∂x ln(a+σ) , b→ b1 = b+σy , (8)

ψ → ψ1 = ψx − σψ , (9)

a→ 1a = −(σ+ bρ) , b→ 1b = b− (bρ)y ,

(10)

ψ → 1ψ = ρψy − ψ ., (11)

where σ = σ(x, y) = φx/φ, ρ = φ/φy, and ψ and φ

are particular solutions of (2) with predetermined a and b.

We refer to φ as the support function of the DT.



The functions u and λ may be considered as solutions of

the special equations which we call the reduction equations.

E.g., the family of systems (C1,2 ∈ C -parametres):

φxy = φy[Fx + 2C1φ expF ] , Fyφy = C2φ .

Its integrability with respect to the combined transformations

(CDL) is established, see:

E.Doktorov S. Leble, Dressing method in mathematical physics,

Springer 2007.
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Moutard transformation

The Moutard transformation (Moutard, Th.F., C.R. Acad.

Sci 1875) is a map that connects solutions and the coefficient

u(x, y) of the equation (4), then the solution of the twin

equation with ψ → ψ[1] and u(x, y) → u[1](x, y) can

be constructed by the solution of the system

(ψ[1]ϕ)x = −ϕ2(ψϕ−1)x,

(ψ[1]ϕ)y = ϕ2(ψϕ−1)y.

In other terms,

ψ[1] = ψ − ϕΩ(ϕ,ψ)/Ω(ϕ,ϕ) , (12)

where Ω is the integral of the exact differential form

dΩ = ϕψxdx+ ψϕydy . (13)

and if ϕ and ψ are different solutions of (4). The transformed

coefficient (potential in mathematical physics) is given by

u[1] = u− 2(logϕ)xy = −u+ ϕxϕy/ϕ
2 .
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Darboux transformation as reduction: ignore y-dependence.

From old

Euler, L. (1780) Metodus Nova Investigandi omnes casus

cuibus hans aaequationem diferentio-differentialen, M.S. Academiae

exibit aie Ianuarii 1780 Institutiones calculi integralis 4, 533-

543.

to recent

De Rahm complex point of view: (A Prykarpatskij, CEJM

2005), with beautiful title:

”The generalized de Rham-Hodge theory aspects of Delsarte-

Darboux type transformations in multidimension”.

5



The important feature of the MT is genera/basicl for DT:

the transform is parameterized by a pair of solutions of the

equation and the transform vanishes if the solutions coin-

cide. The Moutard equation is transformed to 2-dimensional

Schrödinger equation and studied in connection with the cen-

tral problems of the classical differential geometry (e.g. re-

cent book Gu et al).

In the soliton theory the ME enters the Lax pairs for nonlinear

equations such as the KP, 2+1 KdV equations.
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In the case of GE:

We refer to λ as the potential function. The reduction (5)

is valid only for special types of potentials if the form of

the Laplace equation is supported while transformations are

performed. Our interest to the GE is caused by applications

of this equation in geometry and in the soliton theory.

An interesting application of the GE is a link to the. two-

dimensional Dirac equation (Leble, S.B. and Yurov, A.V.

JMP 2002
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Classical geometry

As regards geometry , let x be the complex coordinate, y =

−x,
√
λ is the real-valued function and ψ or χ as solutions

of (6) are complex-valued functions. An original Weierstrass

formulae starts with two arbitrary holomorphic functions of

the complex variables z = x′ + iy′, z̄ ∈ C and leads

to minimal surfaces. Its generalization use three real-valued

functions Xi, i = 1,2,3 which are the coordinates of a

surface in R3 ( Konopelchenko 1993, equivalent to Kenmotsu

1979, but linear in ψ, χ ):
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X1 + ıX2 = 2ı
∫

Γ

(
ψ2dy′ − χ2dx′

)
,

X1 − ıX2 = −2ı
∫

Γ

(
ψ2dy′ − χ2dx′

)
,

X3 = −2
∫

Γ

(
ψχdy′+ χψdx′

)
,

(14)

where Γ is an arbitrary path of integration in the complex

plane. The corresponding first fundamental form, the Gaus-

sian curvature K and the mean curvature H yield:

ds2 = 4U2dxdy , K =
1

U2
∂x∂y lnU , H =

√
λ

U
.

Here U =| ψ |2 + | χ |2 and any analytic surface in R3

can be globally represented by (14). (Leble, S.B. and Yurov,

A.V. JMP 2002)
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Soliton 2D-MKdV equation

As an example of soliton equations, consider the system of

the 2D-MKdV equations introduced by Boiti, Leon, Martina,

and Pempinelli:

4λ2(λt −Aλx +Bλy − λxxx − λyyy)+
4λ3 [(2λ+B)y + (2λ−A)x]
+6λ(λyλyy + λxλxx)− 3(λ3

x + λ3
y) = 0 ,

Bx = 3λy − λx , Ay = λy − 3λx .

(15)

Here λ = λ(x, y, t), A = A(x, y, t) andB = B(x, y, t).
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If we introduce the function u =
√
λ then we can rewrite

(15) in the more customary form:

ut + 2u2(ux + uy)+
1
2 (By −Ax)u+Buy −Aux − u3y − u3x = 0

Bx = (3∂y − ∂x)u2 , Ay = (∂y − 3∂x)u2 .
(16)

The reduction conditions A = −B = −2u2 and uy =

ux lead to the MKdV equation,

ut + 12u2ux − 2u3x = 0,

so one calls (16) either BLMP, or the 2D-MKdV equations.
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The 2D-MKdV (BLMP) equations (16) are the compatibility

condition of the linear system comprising (6) and

ψt = ψ3x+ψ3y−
3

2

λy

λ
ψyy+

[
3

4

(
λy

λ

)2
− λ−B

]
ψy

+(A− λ)ψx +
1

2
(Ax − λx)ψ .

Resembles Niznik-Veselov-Novikov eq. We will study (16) in

next Section.
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Moutard- Goursat transformations We employ the MGT

and binary MGT for a construction of explicit solutions of the

GE. These transformations allow us to obtain new solutions

of the GE without solving reduction equation. We also dis-

cuss the transformation for Laplace invariants.

Theorem (Leble, S.B. and Yurov, A.V. JMP 2002) Let the

transform ψ[1] is introduced by the relations

(z1ψ[1]/ψ1)x = z1(ψ2/ψ1)x ,
(z1ψ[1]/ψ1)y = [z1z1xy − 2z1xz1y/z1xy](ψ2/ψ1)y ,

(17)

where z1,2 are solutions of (7), ψ1,2 = √z1,2x solve (6),

then ψ[1] is a solution of the (transformed) (6) with the

potential

λ[1] = λ− (ln z1)xy

and the transform z[1] is found by a quadrature from

z[1]x = ψ[1]2,
z[1]y = (ψ[1]y)2/λ[1] .

(18)

�
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Remark

The transformed function ψ[1] and potential λ[1] are ex-

tracted by quadratures.

This transformation preserves the form of the Laplace–Goursat

equation (6), e.g., the Eq. possesses the covariance prop-

erty.
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Binary Moutard-Goursat transformation

Next we introduce a binary DT for the GE with the same

property.

We introduce new variables ξ = x+ y and η = x− y and

rewrite (6) in the matrix form,

Ψη = σ3Ψξ + UΨ , (19)

where

Ψ =

(
ψ1 ψ2
χ1 χ2

)
, U =

√
λσ1 , (20)

ψk = ψk(ξ, η), χk = χk(ξ, η), k = 1,2 are particu-

lar solutions of (6) with some λ(ξ, η), σ1,3 are the Pauli

matrices.
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Let Ψ1 is some solution of (19) and Ψ 6= Ψ1. We define a

matrix function σ ≡ Ψ1,ξΨ
−1
1 . Equation (19) is covariant

with respect to the classical DT:

Φ[1] = Φξ − σΦ , U [1] = U + [σ3, σ] . (21)

It is a particular case of the general classical Matveev (non-

Abelian) formula.

Remark It is not difficult to check that the DT (21) is

the superposition formula for two simpler Darboux transfor-

mations.

Equation (20) is the spectral problem for the Davey–Stewartson

(DS) equation. LT produces an explicitly invertible Bäcklund

autotransformations for the DS equation. It is shown that

these transformations permit to construct solutions to the

DS equation that fall off in all directions in the plane accord-

ing to exponential and algebraic laws.
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Let us next consider a closed 1-form

dΩ = dξΦΨ + dηΦσ3Ψ , Ω =
∫
dΩ ,

where a 2× 2 matrix function Φ solves the equation

Φη = Φξσ3 −ΦU . (22)

We apply the DT for (20). It can be verified by immedi-

ate substitution that (22) is covariant with respect to the

transformation

Φ[+1] = Ω(Φ,Ψ1)Ψ−1
1 .
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We can alternatively affect U by the following transforma-

tion:

U [+1,−1] = U + [σ3,Ψ1Ω−1Φ] .

The particular solution of (22) has the form

Φ1 =

(
s1ψ1 + s2ψ2 −s1χ1 − s2χ2
s3ψ1 + s4ψ2 −s3χ1 − s4χ2

)
, (23)

where sk = const (k = 1, . . . ,4). It is convenient to

choose Φ1 in the form

Φ1 = Ψt
1σ3 , (24)

where the superscript ”t” stands for the transpose.

Equation (24) is the particular case of (23).
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In this case

U [+1,−1] = U − 2AF , (25)

whereAF is the off-diagonal part of the matrixA = Ψ1Ω−1Ψt
1,

Ω = Ω(Φ1,Ψ1) and

AtF = AF = fσ1 , (26)

where f = f(ξ, η) is some function.
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Using (21), (25) and (26), we arrive at important

Observation

U [+1,−1] has the same form that the initial matrix U :

U [+1,−1] ≡

 0
√
λ[+1,−1]√

λ[+1,−1] 0

 =

(
0

√
λ− 2f√

λ− 2f 0

)
,

thus the reduction restriction is valid without the reduction

equations.

The new function Φ[+1,−1] has the form

Φ[+1,−1] = Φ−Ω(Φ,Ψ1) (Ω(Φ1,Ψ1))−1 Φ1,

(27)

where Φ is an arbitrary solution of the spectral problem (22).
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Using binary DT (25) and (27), we can construct new so-
lution of the GE by means of dressing a particular solution.
As a result we get the following theorem (returning to the
former variables x and y):

Theorem

Let

ψk,y =
√
λχk , χk,x =

√
λψk ,

αk,y = −
√
λβk , βk,x = −

√
λαk ,

where k = 1,2. Then new functions

α′1 = α1−
A1ψ1 +A2ψ2

D
, β′1 = β1+

A1χ1 +A2χ2

D
are solutions of the equations

α′1,y =
√
λ′ β′1 , β′1,x =

√
λ′α′1 ,

where √
λ′ =

−
√
λ+

ψ1χ1Ω22 + ψ2χ2Ω11 − (ψ1χ2 + ψ2χ1)Ω12

D

21



and

Ω11 =
∫
dxψ2

1 + dyχ2
1 ,

Ω12 = Ω21 =
∫
dxψ1ψ2 + dyχ1χ2 ,

Ω22 =
∫
dxψ2

2 + dyχ2
2 , D = Ω11Ω22 −Ω2

12 ,

Λ11 =
∫
dxα1ψ1 + dyβ1χ1 ,

Λ12 =
∫
dxα1ψ2 + dyβ1χ2 ,

Λ21 =
∫
dxα2ψ1 + dyβ2χ1 ,

Λ22 =
∫
dxα2ψ2 + dyβ2χ2 ,

A1 = Λ11Ω22 − Λ12Ω12 , A2 = Λ12Ω11 − Λ11Ω12 .
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Here
∫

=
∫
Γ, where Γ is an arbitrary path of integration

in the plane. The explicit expressions for the functions α′2
and β′2 are obtained by the direct picking up of the indicated

relations. �

Thus the binary DT allows us to construct explicit solutions

of the GE without solving reduction equation.

Geometry
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Zero range potentials and dressing

History starts from Fermi δ potential (1936)

Yu. Demkov V. Ostrovski book ”ZRP method...”

mathematical aspect: from F. Berezin, L. Faddeev observa-

tion DAN 1961, A note on Schrodinger equation with singular

potential

⇔

Extension theory: Neumann, Krein (widen space), ...

B. Pavlov, M. Faddeev: - go to Infinite-dim space
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Our first observation shows that generalized ZRPs (see

Huang,Yang 1957, corrected: Derevianko 2005) appear as a

result of ZRP Darboux transformations (Leble,Yalunin 2002).

In order to demonstrate it we consider a radial Schrödinger

equation for partial wave ψl with orbital momentum l. The

atomic units are used(
−

1

2

d2

dr2
−

1

r

d

dr
+
l(l + 1)

2r2
+ ul − E

)
ψl(r) = 0,

(28)

where ul are potentials for the partial waves with the follow-

ing asymptotics at infinity

ψl(r) ∼
sin(kr − lπ

2 + δl)

kr
. (29)

The equation (28) describes scattering of a particle with

energy E and momentum k =
√

2E.
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In the absence of the potential, partial shifts δl = 0 and

partial waves can be expressed via Bessel functions with half-

integer indices. Let us demonstrate that generalized ZRP

can be introduced by DT. For our purpose it is convenient to

use a chain of DTs (Crum formulas with the wave and prop

functions multiplied by r), which for our equation look like

ψ
(1)
l = const ·

W (rψl, rφ1, . . . , rφ2l+1)

rW (rφ1, . . . , rφ2l+1)
, (30)

u
(1)
l = ul − (lnW (rφ1, . . . , rφ2l+1))′′, (31)

where W is Wronskian, and

φm =

√
π

2κmr
H

(1)
l+1/2(κmr), m = 1,2l+1 (32)

and κm satisfy algebraical equation κ2l+1
m = iαl with real

αl. Here we assume ul = 0. The transformation (30)

combines the solution ψl and functions φm. The Crum for-

mulas result from the replacement of a chain of 2l+ 1 first

order transformations by a single (2l+ 1)th order transfor-

mation, which happens to be more efficient in practical cal-

culations. Direct substitution of (32) to Wronskian shows
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that

W (rφ1, . . . , rφ2l+1) = const. (33)



Second important observation.

It means that dressed potential u
(1)
l (r > 0) = 0. The

transformation (31) allows to calculate potential in range

r > 0. We state that DTs also yield a generalized ZRP at

r = 0. In order to prove this we perform transformation

(30) and show that ψ
(1)
l is a solution for a generalized

ZRP. Since potential is equal zero in the region r > 0,

it is enough to determine asymptotic behavior of the wave

function. Substituting ψl =
√

π

2kr
Jl+1/2(kr) to the

Crum formulas, and using well-known properties of Bessel

functions, we obtain

ψ
(1)
l ∼

const · [(−i)l
eikr

kr

∆(ik, κ1, . . . , κ2l+1)

∆(κ1, . . . , κ2l+1)
−

il
e−ikr

kr

∆(−ik, κ1, . . . , κ2l+1)

∆(κ1, . . . , κ2l+1)
],

where ∆ is Wandermond determinant.
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Considering one as the product

∆(ik, κ1, . . . , κ2l+1) = const ·
2l+1∏
m=1

(κm− ik) (34)

we obtain an asymptotics, which coincides with the asymp-

totics of the solution:

ψ
(1)
l = const · (H(1)

l+1/2(kr)e2iδl −H(2)
l+1/2(kr)),

(35)

where

exp(2iδl) =
∏2l+1
m=1

κm−ik
κm+ik .
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Theorem The wave function (35) describes a scattering

by generalized ZRP with orbital momentum l. One is con-

ventionally represented as the boundary condition at r = 0

on the wavefunction.

( ddr)
2l+1 rl+1ψ

(1)
l

rl+1ψ
(1)
l

∣∣∣∣∣∣
r=0

= −
2ll!αl

(2l − 1)!!
, (36)

where αl – inverse scattering length for the partial wave with

orbital momentum l. �

It can be verified by direct substitution to the boundary con-

dition for generalized ZRP:

29



Recall that at low-energies tan(δl) ∼ −alk2l+1 for a

short-range potential, where al is the scattering length. In

the special case of l = 0 we obtain (ln rψ)′ = −α.

This generalized boundary condition can be extracted from

asymptotics of the wave function at the vicinity of zero, which

was used by some authors . Let us consider the scattering

matrix on the complex k-plane. Each element exp(2iδl)

has 2l+1 poles at the points k = iκm, which lie on a circle

of the complex plane. Since the bound states correspond to

the poles on the imaginary positive semi-axis on complex k-

plane, a bound state exists only if either αl > 0 and l is

odd number or αl < 0 and l is even. Otherwise ZRP has

an antibound state.
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Dressing in a multi-center problem

The second observation is principal, it allows to built a zero-

range potential eigenfunction in the multi-center problem. In

a more general situation one can consider a system with a

smooth potential plus a number of ZRP. If one knows the

Green function for the smooth potential, then one can pro-

vide a solution for the problem with the ZRPs added. Gen-

eralization to the case with an arbitrary number of ZRP is

straightforward. On the contrary, our general idea is to ”dress”

a multicenter system without Green function consideration.

This procedure gives simple formulas for partial phases and

their corrections at low energies.
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Let us consider scattering problem for a non-spherical poten-

tial U :(
−

1

2

∂2

∂r2
−

1

r

∂

∂r
+

L̂2

2r2
+ Û − E

)
ψ(~r) = 0, (37)

where L̂2 is square of angular momentum operator, E de-

scribes the energy of particle. The asymptotic of wave func-

tion ψ(~r) looks like

ψ(~r)
r→∞∼ exp(i~k · ~r) + f(θ)

eikr

r
, (38)

where f(θ) is scattering amplitude, which depends on scat-

tering angle θ.
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The operator L̂2 commutes with all radial derivatives, in par-

ticular with ∂ = ∂/∂r. The first order DT for Schrödinger

equation (37) is

ψ(1) = (∂ − ŝ)ψ,

Û(1) = Û + 1/r2 − ŝ′,
(39)

and ŝ must be assumed as function of the operator variable

L̂2. The formula (39) gives non-local (over angles) poten-

tial which depends on L̂2. In order to find operator ŝ we can

use covariance principle for the equation (37). The covari-

ance principle formally yields explicit constraint for ŝ, which

gives

ŝ′+
2

r
ŝ+ ŝ2 =

L̂2

r2
+ 2Û +K2, (40)

It is supposed that the constant of integration (by r) K =∑∞
n=0KnL̂

2n is the analytical function of L̂2. The op-

erator ŝ can be found as series
∑∞
n=0 snL̂

2n where the

coefficients sn depend only on r. It is easy to show that the

equation leads to recursion relations for the coefficients sn.
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Thus, we have the algorithm that determine the operator

ŝ and a dressed potential via the operator K. The choice

ŝ′ = 0 at the infinity that corresponds the desirable case
ˆU(1)→ 0 (39) yields ŝ(∞) = K . For our purpose (cross

section evaluation) we need only partial phases or scattering

amplitude related to operator K. In order to find the partial

phases for a dressed potential we need to apply the DT to

wave function. However, we have one trouble: in general DT

modifies the plane wave exp(i~k · ~r). Thus, DT applied to

wave function ψ(~r) with asymptotic (38) gives an another

asymptotic. In some particular cases, special choice of the

operator K allows to avoid this problem. Indeed, consider

the partial wave asymptotics for a non-spherical potential.

ψJ(~r) ∼
1

2ikr
(eikr+iδJΛJ(~n)− e−ikr−iδJΛJ(−~n)),

(41)

where ~n is unit vector directed as ~r, δJ denote partial shifts,

and ΛJ(~n) are normalized eigenvectors of S-matrix operator

(partial harmonics). The most simple formulas for the shifts

δ
(1)
J for the potential Û(1) result when partial harmonic ΛJ

are also eigenvectors of operator K.
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For example, suppose all partial harmonic ΛJ are eigen-
vector of K but only Λ0 has nonzero eigenvalue κ

KΛ0(~n) = κΛ0(~n). (42)

The asymptotic dressing is reduced to the action of the op-
erator ∂ − K on asymptotic (41). It is easy to show by
using expression

ln
(
κ− ik

κ+ ik

)
= −2i arctan(k/κ), (43)

for real-valued variables k, κ, that DT changes only the par-
tial shift δ0 as

δ
(1)
0 = δ0 − arctan(k/κ). (44)

In this special case we add only one additional parameter. In
the region k � |κ| the second term of the equation (44)
practically does not contribute to the partial cross section

σJ =
4π

k2
sin2 δJ . (45)

One observes an important contribution to the cross section
when k ≈ |κ| and hence it can be considered as a correction
at low energies. One of most important problems of solv-
able models is the problem fitting them to some physically
meaning parameters.
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Plane Pseudopotentials via Moutard transformations

Consider again the Moutard equation

ψστ + u(σ, τ)ψ = 0 . (46)

The Moutard transformation connects solutions and the

coefficient

u(σ, τ) of the equation (46) so that if ϕ and ψ are different

solutions of it (46), then the solution of the twin equation

with ψ → ψ[1] and u(σ, τ) → u[1] can be constructed

by the system

(ψ[1]ϕ)σ = −ϕ2(ψϕ−1)σ,

(ψ[1]ϕ)τ = ϕ2(ψϕ−1)τ .
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In other words,

ψ[1] = ψ − ϕΩ(ϕ,ψ)/Ω(ϕ,ϕ) , (47)

where Ω is the integral of the exact differential form

dΩ = ϕψσdσ + ψϕτdτ . (48)

The transformed coefficient (potential in mathematical physics)

is given by

u[1] = u− 2(logϕ)στ (49)

Changing variables by the complex substitution σ = x +

iy, τ = x−iy transforms (46) to a 2-dimensional Schrödinger

equation for x,y for potentials linked byU(x, y) = −u(σ, τ)+

E

−
1

4
[ψxx + ψyy] + U(x, y)ψ = Eψ . (50)
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The explicit form of the ZRP depends on a choice of sym-

metry. For a cylindric symmetry [?], passing to polar coor-

dinates x = ρ cosφ, y = ρ sinφ and separating vari-

ables exp[iνφ]R yields either R as the modified Bessel

equation for E = k2 > 0, or the Bessel equation for

E = −κ2 < 0. The case may be treated almost iden-

tically as in Sec. 2 by means of an iterated (multi-kink) MT,

see the Wronskian formulas in [?] .

We, however, develop the theory by the MT, extending it to

more general symmetry, rewriting the (??) in polar coordi-

nates

U [1] = U+
1

2
∆(logϕ) = U+

1

2
[
d2

dρ2
+

1

ρ

d

dρ
+

1

ρ2

d2

dφ2
](logϕ),

(51)

while ψ[1] is the ψ transform by (47) with

∫
dΩ =

1

2

∫ ρ,φ
0,0

(ψϕ)ρ − i
ϕ2

ρ

(
ψ

ϕ

)
φ

 dρ+

(ψϕ)φ + iρϕ2
(
ψ

ϕ

)
ρ

 dφ.
(52)
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For E = 0, the Euler equation case in the ρ variable is

obtained, and

a general solution is

ψ =
∑+∞
ν=−∞ cn exp[iνφ]ρν .

To demonstrate it by an example, let us substitute the

particular solutions ϕ = exp[iνφ]ρν into the MT

formulas. Direct differentiation prove a potential

invariance U [1] = U . The same result gives the special

case of

ν = 0, ϕ = C ln ρ+A.
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Consider the Hilbert space H = L2 and a manifold of con-

tinuous functions ψ ∈ M ⊂ H. Applying Gauss theorem

yields for a disk S inside a circumference L of small radius

ε,

limL→0
∫
S ∆ψdS + 2

∫
S αδ2(ρ, φ)ψρdρdφ =

limL→0
∫
L(~n · ∇ψ)dL+ 2α

∫ 2π
0 ψ(0, φ)dφ,

(53)

by definition of δ2(ρ, φ).

Generalizing to functions with possible singularity in ρ = 0,

we arrive at a boundary condition for the solution (46) with

zero potential of the form

lim
L→0

∫
L(~n · gradψ)ρdφ∫ 2π

0 ψ(ε, φ))dφ
= 2α. (54)
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Now we can formulate the approach to ZRP in two dimen-

sions by the following algorithm. It is known that the set of

iterated MT has an explicit link to Ribokur transformations.

This defines solutions of the Lame equations for coordinate

systems

Generalizing (54), let us build a closed curve L as a coordi-

nate line ∃ε > 0, a = a0 ∈ [0, ε], b ∈ [0,1] by means of

such a construction and define the action of δ2(a, b) by

Lemma. 1 The relation
∫
S δ2(a, b)ψ(a, b)dS =

∫ 1
0 ψ(0, b)db

determines a distribution δ2(a, b) ∈ D, if L bounds a do-

main S (interior of L).

For the proof it is enough to recall the isoperimetric inequality

and the Jordan theorem; the functional linearity and continu-

ity is obvious. Going to the set of coordinate systems an, bn,

numbered by the MT iteration number yields the
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Theorem. 2 (Main) The set of distributions defined by

lim
ε→0

∫ 1
0 (~n · gradψ)dbn∫ 1
0 ψ(an, bn)dbn

= 2α (55)

is dense in a vicinity of 0.

The proof is based on the lemma and the theorem of Ganzha

on local completeness of iterated Moutard transformations

[E. Ganzha On the approximation of solutions of some 2+1-

dimensional integrable systems. Sibirsk. Mat. Zh. 41:3

(2000), 541-553.]
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Goursat equation, matrix ZRP and geometry of surfaces

Let us consider the Laplace equation

ψστ + a (σ, τ)ψσ + b (σ, τ)ψ = 0. (56)

The system

ψσ = pχ, χτ = pψ, (57)

is related directly to the Goursat equation

ψστ =
pτ

p
ψσ + p2ψ, (58)

with the obvious constraint between a, b in (56); , where a

covariance with respect to a generalized MT was established.

In [Leble,Yurov], the matrix form of the problem for Ψ =(
ψ1 ψ2
χ1 χ2

)
was introduced in the variables ξ and η as:

∂σ = ∂η − ∂ξ, ∂τ = ∂η + ∂ξ,
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and rewritten (57) in the form of 2x2 Dirac system:

Ψη = σ3Ψξ + UΨ, (59)

where U = p(ξ, η)σ1. The functions ψk = ψk(ξ, η),

χk = χk(ξ, η) with k=1,2 are particular solutions of (59)

with some p(ξ, η), and σ1,3 are the Pauli matrices. Let

Ψ1 6= Ψ be a solution of the equation (59). We define

a matrix function Ξ ≡ Ψ1,ξΨ
−1
1
. The equation (59) is

covariant with respect to DT:

Φ[1] = Φξ −ΞΦ, U [1] = U + [σ3,Ξ]. (60)
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Let us consider a closed 1-form

dΩ = ΦΨdξ + Φσ3Ψdη.

Lemma. 3 The form is exact if Ψ satisfies (59) and a

2× 2 matrix function Φ solves the conjugate equation:

Φη = Φξσ3 −ΦU. (61)

The proof is by direct cross differentiation.

Theorem. 4 (Leble.Yurov) One can verify by a substitu-

tion that (61) is covariant with respect to the transform if

Φ[+1] = Ω(Φ,Ψ1)Ψ−1
1 . (62)
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Now we can alternatively affect U , by the following transfor-

mation:

U [+1,−1] = U + [σ3,Ψ1Ω−1Φ]. (63)

The relations (62,63) we call a binary generalized Moutard

transformation (BGMT).

Such a formalism gives a new possibility to define ZRP for

Dirac equation via Darboux (60) or BGMT (62) transfor-

mation. The construction starts from a solution with a ma-

trix potential U which directly relates to the equation (58)

with constant p. Therefore we can use the solutions ψk of

the Schrödinger equation (50) with E = p2, constructed

in the previous section. The matrices Ψ,Φ, are built from

solutions ψk and χk = p−1ψk
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Back to differential geometry

As geometry is concerned, the original Weierstrass formu-
las start with two arbitrary holomorphic functions of complex
variables z, z̄ ∈ C . They yield an approach for construct-
ing minimal surfaces. Generalization to the arbitrary mean
curvature case was given by Kenmotsu and Konopelchenko
in complex coordinates as in (46), τ , σ = −τ . Here p is
a real-valued function and ψ or χ as solutions of (57) are
complex-valued functions. We define three real-valued func-
tions Xi, i = 1,2,3 which are the coordinates of a surface
in

R3 : X1 + ıX2 = 2ı
∫
Γ

(
ψ2dσ′ − χ2dτ ′

)
, X3 = −2

∫
Γ

(
ψχdσ′+ χψdτ ′

)
,

where Γ is an arbitrary path of integration in the complex
plane. The corresponding first fundamental form, the Gaus-
sian curvature K and the mean curvature H yield:

ds2 = 4N2dτdσ , K =
1

N2
∂τ∂σ lnN , H =

√
p

N
.

(64)
Here N =| ψ |2 + | χ |2. Any analytic surface in R3

can be globally represented by Xi. As it is seen from the
solutions nonzero N may yields zero p and hence zero mean
curvature on a punctured surface [ P. Exner, K. Yoshitomi].
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Eq. (59) is a spectral problem for the Davey-Stewartson (DS)

and Boiti-Martina-Leon-Pempinelli (BMLP) equations and

produce explicitly invertible Bäcklund auto-transformations.

It also induces deformations of the correspondent surfaces.
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Discussion and Conclusion

The importance in applications of the pseudopotentials, in-

troduced as distributions, lies in the possibility to solve mul-

ticenter scattering or eigenvalue problems in low energies.

The dressing procedure also may be applied to such multi-

center pseudopotential.

This gives additionally ability to approximate real interaction.

Technically it is applied to a combination of Green functions

of the Schrödinger equation, i.e. ψ =
∑
CiG(|~r−~ri|) and,

next, substituting the result, to boundary conditions in each

center (~r = ~ri). The result is a set of algebraic equations.
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One of the interesting problems is related to quantum dots,

randomly distributed by place and size to be modeled by a

generalized ZRPs. The theorem about a dense cover of the

distribution space in a vicinity of a given point opens a way to

develop new representations in potential theory. The problem

of the matrix ZRP introduction is solved in an example of

a two-dimensional Dirac equation. The idea of a dressing

scheme is naturally generalized to other matrix problems as

multi-channel scattering [Leble,Yalunin] or 4x4 matrix Dirac

eigenvalue problem [Szmytkowski].
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Concluson The transformations of DT type give a good pos-

sibility to construct potentials together with linear problems

solutions, explicit solutions of nonlinear problems being the

compatibility conditions of jointly covariant linear problems,

each corresponds to some geometric objects.

Problems:

1. Three-dimensional case. Tsarev S - via Laplace=like

chains 2. Random Schrodinger operator models (Anderson).

3. Further development allows to include GZRP.

.
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Further development allows to include the addition evolution

variable ’y’ As it was shown, the value of the parameter α

depends on interpretation of σ. The case α = 0 corresponds

to σ = φxφ−1, φ is the eigenfunction of the operator with

eigenvalue µ; it differs from that for α 6= 0. For general

statements and some applications see .
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