Canonical Coordinate Transformations in Quantum Mechanics

Part 2

Maciej Błaszak and Ziemowit Domański

Adam Mickiewicz University, Faculty of Physics
Division of Mathematical Physics

$$
\text { June 21-22, } 2012
$$

Canonical transformations in ordinary quantum mechanics

 Passage to ordinary quantum mechanics
Twisted tensor product

The space of states $\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$ can be written as an appropriate tensor product of $\left(L^{2}(\mathbb{R})\right)^{*}$ and $L^{2}(\mathbb{R})$:

$$
\begin{aligned}
\mathcal{H} & =\left(L^{2}(\mathbb{R})\right)^{*} \otimes_{M} L^{2}(\mathbb{R}), \\
\left(\varphi^{*} \otimes_{M} \psi\right)(x, p) & =\frac{1}{\sqrt{2 \pi \hbar}} \int \mathrm{~d} y \varphi^{*}\left(x-\frac{1}{2} y\right) \psi\left(x+\frac{1}{2} y\right) e^{-\frac{i}{\hbar} p y},
\end{aligned}
$$

where $\varphi, \psi \in L^{2}(\mathbb{R})$.

Note, that functions $\varphi^{*} \otimes_{M} \varphi$ are the well known Wigner functions, being quasi-probabilistic distribution functions describing pure states of the quantum system in the phase space representation.

Canonical transformations in ordinary quantum mechanics

Passage to ordinary quantum mechanics

States

For every $\Psi \in L^{2}\left(\mathbb{R}^{2}\right)$ there holds

$$
\hat{\Psi}:=\sqrt{2 \pi \hbar} \Psi \star=\hat{1} \otimes_{M} \hat{\rho}
$$

where $\hat{\rho}$ is some Hilbert-Schmidt operator.

In particular, for $\Psi=\varphi^{*} \otimes_{M} \psi$ the corresponding Hilbert-Schmidt operator $\hat{\rho}$ takes the form

$$
\hat{\rho}=\langle\varphi \mid \cdot\rangle_{L^{2}} \psi
$$

Canonical transformations in ordinary quantum mechanics

 Passage to ordinary quantum mechanics
Observables

For every $A \in \mathcal{A}_{Q}$ there holds

$$
\hat{A}=A \star=\hat{1} \otimes_{M} A_{M}(\hat{q}, \hat{p}),
$$

where $\hat{q}=x$ and $\hat{p}=-i \hbar \partial_{x}$ are canonical operators of position and momentum, and $A_{M}(\hat{q}, \hat{p})$ denotes a symmetrically-ordered function of operators \hat{q}, \hat{p}.

Canonical transformations in ordinary quantum mechanics

Canonical transformations of coordinates

Using the fact that S_{T} is an isomorphism of the algebra of observables \mathcal{A}_{Q} onto the transformed algebra of observables \mathcal{A}_{Q}^{\prime}, and the space of states $\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$ onto the transformed space of states $\mathcal{H}^{\prime}=L^{2}\left(\mathbb{R}^{2}, \mu_{T}\right)$ we can write \mathcal{H}^{\prime} as the following twisted tensor product

$$
\mathcal{H}^{\prime}=\left(L^{2}(\mathbb{R})\right)^{*} \otimes_{M, S_{T}} L^{2}(\mathbb{R}):=S_{T}\left(\left(L^{2}(\mathbb{R})\right)^{*} \otimes_{M} L^{2}(\mathbb{R})\right)
$$

Also states $\psi \in \mathcal{H}^{\prime}$ and observables $A \in \mathcal{A}_{Q}^{\prime}$ take the form

$$
\begin{aligned}
& \hat{\Psi}:=\sqrt{2 \pi \hbar} \Psi \star_{T}^{\prime}=\hat{1} \otimes_{M, S_{T}} \hat{\rho}, \\
& \hat{A}=A \star_{T}^{\prime}=\hat{1} \otimes_{M, S_{T}} A_{M, S_{T}}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right),
\end{aligned}
$$

where

$$
A_{M, s_{T}}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right):=\left(S_{T}^{-1} A\right)_{M}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right) .
$$

Canonical transformations in ordinary quantum mechanics

Canonical transformations of coordinates

The transformation T of coordinates induces a unitary operator $\hat{U}_{T}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ defined on the Hilbert space of states of the ordinary quantum mechanics:

$$
\left(\varphi^{*} \otimes_{M} \psi\right) \circ T=:\left(\hat{U}_{T} \varphi\right)^{*} \otimes_{M, S_{T}} \hat{U}_{T} \psi, \quad \varphi, \psi \in L^{2}(\mathbb{R}) .
$$

The operator \hat{U}_{T} transforms wave functions to a new coordinate system.

Canonical transformations in ordinary quantum mechanics

Canonical transformations of coordinates

For $A \in \mathcal{A}_{Q}$ there holds

$$
A_{M, S_{T}}^{\prime}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right) \equiv\left(S_{T}^{-1} A^{\prime}\right)_{M}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right)=\hat{U}_{T} A_{M}(\hat{q}, \hat{p}) \hat{U}_{T}^{-1}
$$

where $A^{\prime}=A \circ T$ and

$$
\begin{aligned}
(\hat{q} \psi)(x) & =x \psi(x), & (\hat{p} \psi)(x) & =-i \hbar \frac{\mathrm{~d} \psi}{\mathrm{~d} x}(x), \\
\left(\hat{q}^{\prime} \psi^{\prime}\right)\left(x^{\prime}\right) & =x^{\prime} \psi^{\prime}\left(x^{\prime}\right), & \left(\hat{p}^{\prime} \psi^{\prime}\right)\left(x^{\prime}\right) & =-i \hbar \frac{\mathrm{~d} \psi^{\prime}}{\mathrm{d} x^{\prime}}\left(x^{\prime}\right),
\end{aligned}
$$

for $\psi, \psi^{\prime} \in L^{2}(\mathbb{R})$.

This result shows that applying the Born's quantization rule to a transformed classical observable gives an operator unitarily equivalent with an operator corresponding to an untransformed classical observable, provided that the ordering of $\hat{q}^{\prime}, \hat{p}^{\prime}$ will be appropriately changed.

From previous result follows that

$$
\begin{aligned}
& \hat{q}^{\prime}=\hat{U}_{T} Q_{M}(\hat{q}, \hat{p}) \hat{U}_{T}^{-1}, \\
& \hat{p}^{\prime}=\hat{U}_{T} P_{M}(\hat{q}, \hat{p}) \hat{U}_{T}^{-1},
\end{aligned}
$$

or from the other side

$$
\begin{aligned}
& \hat{q}=\hat{U}_{T}^{-1} q_{M, S_{T}}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right) \hat{U}_{T}, \\
& \hat{p}=\hat{U}_{T}^{-1} p_{M, S_{T}}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right) \hat{U}_{T},
\end{aligned}
$$

where $T^{-1}(x, p)=(Q(x, p), P(x, p))$ and $T\left(x^{\prime}, p^{\prime}\right)=\left(q\left(x^{\prime}, p^{\prime}\right), p\left(x^{\prime}, p^{\prime}\right)\right)$.

The above result can be understand as follows. An operator of position corresponding to a new coordinate system can be simply defined as $Q_{M}(\hat{q}, \hat{p})$.
This operator can be written in a position representation, i.e. as an operator of multiplication by coordinate variable. More precisely, there exist a unitary operator \hat{U} such that

$$
\hat{U} Q_{M}(\hat{q}, \hat{p}) \hat{U}^{-1}=x^{\prime}
$$

From previous result $\hat{U}=\hat{U}_{T}$.

Canonical transformations in ordinary quantum mechanics

 Canonical transformations of coordinates
Example

For a transformation of coordinates

$$
T\left(x^{\prime}, p^{\prime}\right)=\left(-\left(f^{\prime}\left(x^{\prime}\right)\right)^{-1} p^{\prime}-\left(f^{\prime}\left(x^{\prime}\right)\right)^{-1} g^{\prime}\left(x^{\prime}\right), f\left(x^{\prime}\right)\right)
$$

generated by a function $F\left(x, x^{\prime}\right)=x f\left(x^{\prime}\right)+g\left(x^{\prime}\right)$, and for a linear transformation the operator \hat{U}_{T} takes the form

$$
\begin{aligned}
\left(\hat{U}_{T} \varphi\right)\left(x^{\prime}\right) & =\frac{1}{\sqrt{2 \pi \hbar}} \int \varphi(x) \sqrt{\left|\frac{\partial^{2} F}{\partial x \partial x^{\prime}}\left(x, x^{\prime}\right)\right|} e^{-\frac{i}{\hbar} F\left(x, x^{\prime}\right)} \mathrm{d} x \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int \varphi(x) \sqrt{\left|f^{\prime}\left(x^{\prime}\right)\right|} e^{-\frac{i}{\hbar}\left(x f\left(x^{\prime}\right)+g\left(x^{\prime}\right)\right)} \mathrm{d} x .
\end{aligned}
$$

Canonical transformations in ordinary quantum mechanics

 Canonical transformations of coordinates
Example

For a point transformation

$$
T\left(x^{\prime}, p^{\prime}\right)=\left(f\left(x^{\prime}\right),\left(f^{\prime}\left(x^{\prime}\right)\right)^{-1} p^{\prime}-\left(f^{\prime}\left(x^{\prime}\right)\right)^{-1} g^{\prime}\left(x^{\prime}\right)\right)
$$

generated by a function $F\left(x^{\prime}, p\right)=-p f\left(x^{\prime}\right)-g\left(x^{\prime}\right)$ the operator \hat{U}_{T} takes the form

$$
\begin{aligned}
\left(\hat{U}_{T} \varphi\right)\left(x^{\prime}\right) & =\frac{1}{\sqrt{2 \pi \hbar}} \int \tilde{\varphi}(p) \sqrt{\left|\frac{\partial^{2} F}{\partial x^{\prime} \partial p}\left(x^{\prime}, p\right)\right|} e^{\frac{i}{\hbar} F\left(x^{\prime}, p\right)} \mathrm{d} p \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int \tilde{\varphi}(p) \sqrt{\left|f^{\prime}\left(x^{\prime}\right)\right|} e^{-\frac{i}{\hbar}\left(p f\left(x^{\prime}\right)+g\left(x^{\prime}\right)\right)} \mathrm{d} p \\
& =\sqrt{\left|f^{\prime}\left(x^{\prime}\right)\right|} e^{-\frac{i}{\hbar} g\left(x^{\prime}\right)} \varphi\left(f\left(x^{\prime}\right)\right) .
\end{aligned}
$$

Example

Let us again consider a harmonic oscillator after a canonical transformation of coordinates

$$
T\left(x^{\prime}, p^{\prime}\right)=\left\{\begin{array}{ll}
\left(\sqrt{\left|2 x^{\prime}\right|}, p^{\prime} \sqrt{\left|2 x^{\prime}\right|}\right), & x^{\prime}>0 \\
\left(-\sqrt{\left|2 x^{\prime}\right|}, p^{\prime} \sqrt{\left|2 x^{\prime}\right|}\right), & x^{\prime}<0
\end{array} .\right.
$$

The Hamiltonian of the oscillator in this new coordinates takes the form

$$
H^{\prime}\left(x^{\prime}, p^{\prime}\right)=\left|x^{\prime}\right| p^{\prime 2}+\omega^{2}\left|x^{\prime}\right| .
$$

Let us associate to H^{\prime} an operator in accordance with the Born's quantization rule, remembering to use an appropriate ordering. First, we need to calculate $S_{T}^{-1} H^{\prime}$, which gives

$$
\left(S_{T}^{-1} H^{\prime}\right)\left(x^{\prime}, p^{\prime}\right)=\left|x^{\prime}\right| p^{\prime 2}+\omega^{2}\left|x^{\prime}\right|+\frac{1}{16} \hbar^{2}\left|x^{\prime}\right|^{-1}
$$

Then $H_{M, S_{T}}^{\prime}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right)$ being a symmetrically-ordered operator of the function $S_{T}^{-1} H^{\prime}$ is equal

$$
H_{M, S_{T}}^{\prime}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right)=\left(S_{T}^{-1} H^{\prime}\right)_{M}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right)=\frac{1}{2}\left|\hat{q}^{\prime}\right| \hat{p}^{\prime 2}+\frac{1}{2} \hat{p}^{\prime 2}\left|\hat{q}^{\prime}\right|+\omega^{2}\left|\hat{q}^{\prime}\right|+\frac{1}{16} \hbar^{2}\left|\hat{q}^{\prime}\right|^{-1} .
$$

The operators $H_{M}(\hat{q}, \hat{p})$ and $H_{M, S_{T}}^{\prime}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right)$ are indeed unitarily equivalent. To check this let us calculate the action of $H_{M, S_{T}}^{\prime}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right)$ on $\hat{U}_{T} \varphi_{0}$, where $\varphi_{0}(x)=\left(\frac{\omega}{\pi \hbar}\right)^{1 / 4} \exp \left(-\frac{\omega x^{2}}{2 \hbar}\right)$ is a ground state of the harmonic oscillator. One finds that

$$
H_{M, S_{T}}^{\prime}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right) \hat{U}_{T} \varphi_{0}=\frac{1}{2} \hbar \omega \hat{U}_{T \varphi_{0}}
$$

which shows that $\hat{U}_{T} \varphi_{0}$ is an eigen-state of the transformed Hamiltonian of the oscillator, corresponding to an energy $\frac{1}{2} \hbar \omega$.

The End of

Part 2

