Canonical Coordinate Transformations in Quantum Mechanics

Part 2

Maciej Błaszak and Ziemowit Domański

Adam Mickiewicz University, Faculty of Physics Division of Mathematical Physics

June 21-22, 2012

Image: A math a math

Passage to ordinary quantum mechanics

Twisted tensor product

The space of states $\mathcal{H} = L^2(\mathbb{R}^2)$ can be written as an appropriate tensor product of $(L^2(\mathbb{R}))^*$ and $L^2(\mathbb{R})$:

$$\mathcal{H} = \left(L^2(\mathbb{R})\right)^* \otimes_M L^2(\mathbb{R}),$$
$$(\varphi^* \otimes_M \psi)(x, p) = \frac{1}{\sqrt{2\pi\hbar}} \int \mathrm{d}y \, \varphi^* \left(x - \frac{1}{2}y\right) \psi\left(x + \frac{1}{2}y\right) e^{-\frac{i}{\hbar}py},$$

where $\varphi, \psi \in L^2(\mathbb{R})$.

Note, that functions $\varphi^* \otimes_M \varphi$ are the well known Wigner functions, being quasi-probabilistic distribution functions describing pure states of the quantum system in the phase space representation.

<ロト <回ト < 回ト < 回ト

Passage to ordinary quantum mechanics

States

For every $\Psi \in L^2(\mathbb{R}^2)$ there holds

$$\hat{\Psi} := \sqrt{2\pi\hbar} \Psi \star = \hat{1} \otimes_M \hat{\rho},$$

where $\hat{\rho}$ is some Hilbert-Schmidt operator.

In particular, for $\Psi=\varphi^*\otimes_M\psi$ the corresponding Hilbert-Schmidt operator $\hat\rho$ takes the form

$$\hat{\rho} = \langle \varphi | \cdot \rangle_{L^2} \psi.$$

Passage to ordinary quantum mechanics

Observables

For every $A \in \mathcal{A}_Q$ there holds

$$\hat{A} = A \star = \hat{1} \otimes_M A_M(\hat{q}, \hat{p}),$$

where $\hat{q} = x$ and $\hat{p} = -i\hbar\partial_x$ are canonical operators of position and momentum, and $A_M(\hat{q}, \hat{p})$ denotes a symmetrically-ordered function of operators \hat{q} , \hat{p} .

• • • • • • • • • • • • •

Canonical transformations of coordinates

Using the fact that S_T is an isomorphism of the algebra of observables \mathcal{A}_Q onto the transformed algebra of observables \mathcal{A}'_Q , and the space of states $\mathcal{H} = L^2(\mathbb{R}^2)$ onto the transformed space of states $\mathcal{H}' = L^2(\mathbb{R}^2, \mu_T)$ we can write \mathcal{H}' as the following twisted tensor product

$$\mathcal{H}' = \left(L^2(\mathbb{R})
ight)^* \otimes_{\mathcal{M}, \mathcal{S}_T} L^2(\mathbb{R}) := \mathcal{S}_T\left(\left(L^2(\mathbb{R})
ight)^* \otimes_{\mathcal{M}} L^2(\mathbb{R})
ight).$$

Also states $\Psi \in \mathcal{H}'$ and observables $A \in \mathcal{A}'_{O}$ take the form

$$\begin{split} \hat{\Psi} &:= \sqrt{2\pi\hbar} \Psi \star_{\mathcal{T}}' = \hat{1} \otimes_{\mathcal{M}, \mathcal{S}_{\mathcal{T}}} \hat{\rho}, \\ \hat{\mathcal{A}} &= \mathcal{A} \star_{\mathcal{T}}' = \hat{1} \otimes_{\mathcal{M}, \mathcal{S}_{\mathcal{T}}} \mathcal{A}_{\mathcal{M}, \mathcal{S}_{\mathcal{T}}}(\hat{q}', \hat{\rho}'), \end{split}$$

where

$$A_{M,S_{\mathcal{T}}}(\hat{q}',\hat{p}') := (S_{\mathcal{T}}^{-1}A)_{M}(\hat{q}',\hat{p}').$$

A D > A P > A B > A

Canonical transformations of coordinates

The transformation T of coordinates induces a unitary operator $\hat{U}_T : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined on the Hilbert space of states of the ordinary quantum mechanics:

$$(\varphi^* \otimes_M \psi) \circ T =: (\hat{U}_T \varphi)^* \otimes_{M, S_T} \hat{U}_T \psi, \quad \varphi, \psi \in L^2(\mathbb{R}).$$

The operator $\hat{U}_{\mathcal{T}}$ transforms wave functions to a new coordinate system.

Canonical transformations of coordinates

For $A \in \mathcal{A}_Q$ there holds

$${\cal A}'_{{\cal M},{\cal S}_{T}}(\hat{q}',\hat{p}')\equiv ({\cal S}_{T}^{-1}{\cal A}')_{{\cal M}}(\hat{q}',\hat{p}')=\hat{U}_{T}{\cal A}_{{\cal M}}(\hat{q},\hat{p})\hat{U}_{T}^{-1},$$

where $A' = A \circ T$ and

for ψ ,

$$\begin{aligned} (\hat{q}\psi)(x) &= x\psi(x), \\ (\hat{q}'\psi')(x') &= x'\psi'(x'), \end{aligned} \qquad (\hat{p}'\psi')(x') &= -i\hbar\frac{\mathrm{d}\psi}{\mathrm{d}x}(x), \\ (\hat{q}'\psi')(x') &= x'\psi'(x'), \end{aligned} \qquad (\hat{p}'\psi')(x') &= -i\hbar\frac{\mathrm{d}\psi'}{\mathrm{d}x'}(x'), \\ \psi' &\in L^2(\mathbb{R}). \end{aligned}$$

This result shows that applying the Born's quantization rule to a transformed classical observable gives an operator unitarily equivalent with an operator corresponding to an untransformed classical observable, provided that the ordering of \hat{q}' , \hat{p}' will be appropriately changed.

From previous result follows that

$$\hat{q}' = \hat{U}_T Q_M(\hat{q}, \hat{p}) \hat{U}_T^{-1},$$

 $\hat{p}' = \hat{U}_T P_M(\hat{q}, \hat{p}) \hat{U}_T^{-1},$

or from the other side

$$\begin{split} \hat{q} &= \hat{U}_T^{-1} q_{M,S_T}(\hat{q}',\hat{p}') \hat{U}_T, \\ \hat{p} &= \hat{U}_T^{-1} p_{M,S_T}(\hat{q}',\hat{p}') \hat{U}_T, \end{split}$$

where $T^{-1}(x,p) = (Q(x,p), P(x,p))$ and T(x',p') = (q(x',p'), p(x',p')).

The above result can be understand as follows. An operator of position corresponding to a new coordinate system can be simply defined as $Q_M(\hat{q}, \hat{p})$. This operator can be written in a position representation, i.e. as an operator of multiplication by coordinate variable. More precisely, there exist a unitary operator \hat{U} such that

$$\hat{U}Q_M(\hat{q},\hat{p})\hat{U}^{-1}=x'.$$

From previous result $\hat{U} = \hat{U}_T$.

Canonical transformations of coordinates

Example

For a transformation of coordinates

$$T(x',p') = \left(-\left(f'(x')\right)^{-1}p' - \left(f'(x')\right)^{-1}g'(x'), f(x')\right)$$

generated by a function F(x, x') = xf(x') + g(x'), and for a linear transformation the operator \hat{U}_T takes the form

$$\begin{split} (\hat{U}_{T}\varphi)(x') &= \frac{1}{\sqrt{2\pi\hbar}} \int \varphi(x) \sqrt{\left| \frac{\partial^{2}F}{\partial x \partial x'}(x,x') \right|} e^{-\frac{i}{\hbar}F(x,x')} \, \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi\hbar}} \int \varphi(x) \sqrt{|f'(x')|} e^{-\frac{i}{\hbar}(xf(x')+g(x'))} \, \mathrm{d}x. \end{split}$$

< ロ > < 同 > < 三 > < 三

Canonical transformations of coordinates

Example

For a point transformation

$$T(x',p') = \left(f(x'), \left(f'(x')\right)^{-1}p' - \left(f'(x')\right)^{-1}g'(x')\right)$$

generated by a function F(x', p) = -pf(x') - g(x') the operator \hat{U}_T takes the form

$$\begin{split} (\hat{U}_{T}\varphi)(\mathbf{x}') &= \frac{1}{\sqrt{2\pi\hbar}} \int \tilde{\varphi}(p) \sqrt{\left| \frac{\partial^{2}F}{\partial \mathbf{x}'\partial p}(\mathbf{x}',p) \right|} e^{\frac{i}{\hbar}F(\mathbf{x}',p)} \, \mathrm{d}p \\ &= \frac{1}{\sqrt{2\pi\hbar}} \int \tilde{\varphi}(p) \sqrt{|f'(\mathbf{x}')|} e^{-\frac{i}{\hbar}(pf(\mathbf{x}')+g(\mathbf{x}'))} \, \mathrm{d}p \\ &= \sqrt{|f'(\mathbf{x}')|} e^{-\frac{i}{\hbar}g(\mathbf{x}')} \varphi(f(\mathbf{x}')). \end{split}$$

Image: A math a math

Example

Let us again consider a harmonic oscillator after a canonical transformation of coordinates

$${\mathcal T}(x',p') = egin{cases} (\sqrt{|2x'|},p'\sqrt{|2x'|}), & x'>0\ (-\sqrt{|2x'|},p'\sqrt{|2x'|}), & x'<0 \end{cases}.$$

The Hamiltonian of the oscillator in this new coordinates takes the form

$$H'(x',p') = |x'|p'^2 + \omega^2 |x'|.$$

Let us associate to H' an operator in accordance with the Born's quantization rule, remembering to use an appropriate ordering. First, we need to calculate $S_T^{-1}H'$, which gives

$$(S_T^{-1}H')(x',p') = |x'|p'^2 + \omega^2 |x'| + \frac{1}{16}\hbar^2 |x'|^{-1}.$$

Then $H'_{M,S_T}(\hat{q}',\hat{p}')$ being a symmetrically-ordered operator of the function $S_T^{-1}H'$ is equal

$$H'_{M,S_{T}}(\hat{q}',\hat{p}') = (S_{T}^{-1}H')_{M}(\hat{q}',\hat{p}') = \frac{1}{2}|\hat{q}'|\hat{p}'^{2} + \frac{1}{2}\hat{p}'^{2}|\hat{q}'| + \omega^{2}|\hat{q}'| + \frac{1}{16}\hbar^{2}|\hat{q}'|^{-1}.$$

The operators $H_M(\hat{q}, \hat{p})$ and $H'_{M,S_T}(\hat{q}', \hat{p}')$ are indeed unitarily equivalent. To check this let us calculate the action of $H'_{M,S_T}(\hat{q}', \hat{p}')$ on $\hat{U}_T \varphi_0$, where $\varphi_0(x) = \left(\frac{\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{\omega x^2}{2\hbar}\right)$ is a ground state of the harmonic oscillator. One finds that

$$H'_{M,S_{T}}(\hat{q}',\hat{p}')\hat{U}_{T}\varphi_{0}=rac{1}{2}\hbar\omega\hat{U}_{T}\varphi_{0},$$

which shows that $\hat{U}_T \varphi_0$ is an eigen-state of the transformed Hamiltonian of the oscillator, corresponding to an energy $\frac{1}{2}\hbar\omega$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The End of Part 2

・ロト ・回ト ・ヨト ・