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Minimal surfaces and their Weierstrass representation

Variation of the area functional
AF + ev) — A(F) = —26/ Hy NdA+...,
F

F - surface in E3; v - deformation field, vioF =0
N - the unit normal field to the surface, H - the mean curvature

H = 0 — minimal surface; locally

4 1 H
F=Re/z (2(1 —4?), 501 +w2),w> 0 dz

0

1, n - holomorphic functions
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The Liouville equation

U7zz - Ze_u

Given a holomorphic function v

(1 + [[?)?
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Conformal immersions of surfaces in H3(\)

H3(\) ¢ R®! hyperboloid (X|X) = —\~2 (the induced metric is positive
definite and has constant sectional curvature)

F : R — H3()\) — a conformal immersion of the Riemann surface R

Z = x + iy —local complex coordinate

(Fz|Fz) = (Fz|Fz) =0
the vectors F, F,, F 3, and the unit normal N
(FIN) = (F2IN) = (Fz[N) =0, (NIN) =1,

form a (Gauss—Weingarten) basis in the (complexified) R31.
Define functions u, H and Q by

1 1
(EZ|EZ) = éeua (F,zZ|N) = éHeua (F,ZZ|N) =Q
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Conformal immersions of surfaces in H3(\) — cont.

Gauss-Weingarten equations of the moving frame

Fz; =uzF;+ QN,

F——)‘—2 “F+1H “N
,22—2e > €N,

N7z - — HF,Z - ZQG_UEZ

The Gauss—Mainardi—-Codazzi equations

Uzz + % (H2 - /\2> e’ —2|QPPe Y =0, Qz = sH e

Remark
When H = X and Q = 1 we have the Liouville equation J
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Spinors and 2 x 2 representation of GW equations

Identify the Lorentz space with 2 x 2 hermitean matrices

3
X = (Xo, X1, X2, X3) > X7 = Xolo+ > _ Xeoy =
k=1

10 0 1 0 —i 10
(o f) n(To) (T 0) (o %)

We use the homomorphism p : SL(2,C) — SO(3, 1) given by

Xo+ X5 Xi—1iXo
Xi+iXo Xg— Xz

(p(a)X)? = a" X’ a.

We will be looking for ¢ € SL(2, C) which transforms the orthonormal
basis (12,01, 02, 03) into the orthonormal basis

()\FU,G_U/ZFS( 7e_U/2F,(;/ 7 NG) — ¢+(12,01 , 09, 0'3)(D.
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2 x 2 linear problem

Define the s((2, C) valued functions U, V by
o,=Ud, oL=0"V, (1)
then we also have
d;=VTo, oL =0TUT.

and the matrices U and V have the following form

U: ( %u’z 7Qe_U/2 > V = < *%Uyz Qe_U/2 )
%e“/z()\ + H) —%U,z ’ %e”/z()\ — H) %u’z
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The formula for immersion

Proposition

Given solution (u, Q, H) of the GMC equations, and given SL(2, C)
valued solution of the above linear system, then

]
Fo= —0%0
)\ Y

represents a conformal immersion in H3(\)

Problem: In the limit A — 0 we have H3()\) — [E2, but because of X in
the denominator F? blows up.
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The formula for immersion

Proposition

Given solution (u, Q, H) of the GMC equations, and given SL(2, C)
valued solution of the above linear system, then
1

Fo= —0%0
)\ Y

represents a conformal immersion in H3(\)

Problem: In the limit A — 0 we have H3()\) — [E2, but because of X in
the denominator F? blows up.

Solution: Before taking the limit we shift the origin from the center of
the hyperboloid to one of its points

 — Jim L (ot —
= dm g (070 1o
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H = )\ surfaces

Reduced GMC equations
Uz —2|QPe=0, Qz=0,

Reduced linear problem

1 —QeU/2 _1.

u Qe u 0
o,=( 2.2 o, o;=( 47 ®
2 < Ael/2 —%u,z > ’ Z < Qe—u/2 %u,z )

The same GMC equations as for minimal of surfaces in E3

Given two arbitrary holomorphic functions 7, ¢ we obtain general
solution of the reduced GMC system

eP=ni(1+yd), Q=-n?Y,.
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Soliton surfaces approach

Start from a Lax pair
V= UMV, v, =V,
U(x,y; ), V(x,y; \) take values in a semisimple Lie algebra g
The corresponding nonlinear system (Zakharov—Shabat equations):

Uy(A) = Vix(A) + [U(N), V(N)] = 0

For W()\) taking values in the Lie group G of g, the Sym formula
F(x,y; \) =V (x,y; \V(x, y; A)xs

for fixed A € R, gives a surface in g, provided the tangent vectors
Fx=v"'U,¥, F,=vV,v

are linearly independent
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Solution of the linear problem
After the gauge transform ¥ = M®, where
n n
- . 1/2 <ﬁ> 1/2 (ﬁ>/
1+ I}
I @7
the function V¥ satisfies the following linear system
—1
v, =2 Y )w, Vs =0.
Z n < ¢2 _¢ Z

whose fundamental solution is
W(z) =12+ ) / ZdZW(Z”Q( ¢(Z1))2 —J(1z1) ) t
—1
+)\“/dzk d21 Hn Zj 2]_[ (2it1) Zi )( w(z()f/j()zk) —(2) ) -
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Recovering the Weierstrass representation

We need only first two terms W =1, + AWy + ...

= 1
F7 = lim - (¢T® —1,5) = ¥y + VI =
)\LO A ( 2) ! 1

_ ( JZPedC + [FnPgdC — [7iPdC + [7 PyRdC )
JZrPRd¢ — [FPd¢ — [FnPydC — [*nPpdC
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