Minimal surfaces in the soliton surfaces approach

Adam Doliwa

doliwa@matman.uwm.edu.pl

University of Warmia and Mazury (Olsztyn, Poland)

Integrable Systems 2012

21-22 June, 2012, Olsztyn

joint work with Michael Grundland

 $lue{1}$ Minimal surfaces in \mathbb{E}^3

- 2 Lax pair for the Liouville equation
- The Weierstrass representation

- $lue{1}$ Minimal surfaces in \mathbb{E}^3
- 2 Lax pair for the Liouville equation
- The Weierstrass representation

Minimal surfaces and their Weierstrass representation

Variation of the area functional

$$A(F + \epsilon \nu) - A(F) = -2\epsilon \int_F H \nu \cdot N \, dA + \dots,$$

F - surface in \mathbb{E}^3 ; ν - deformation field, $u_{|\partial F} = 0$

 ${\it N}$ - the unit normal field to the surface, ${\it H}$ - the mean curvature

 $H \equiv 0$ – minimal surface; locally

$$F = {
m Re} \int_{z_0}^z \left(rac{1}{2} (1 - \psi^2), rac{i}{2} (1 + \psi^2), \psi
ight) \eta^2 \, dz$$

 ψ , η - holomorphic functions

The Liouville equation

$$u_{,z\bar{z}}=2e^{-u}$$

Given a holomorphic function ψ

$$e^{-u} = \frac{|\psi_{,z}|^2}{(1+|\psi|^2)^2}$$

Minimal surfaces in E³

- 2 Lax pair for the Liouville equation
- The Weierstrass representation

Conformal immersions of surfaces in $\mathbb{H}^3(\lambda)$

 $\mathbb{H}^3(\lambda) \subset \mathbb{R}^{3,1}$ hyperboloid $(X|X) = -\lambda^{-2}$ (the induced metric is positive definite and has constant sectional curvature)

 $F: \mathcal{R} \to \mathbb{H}^3(\lambda)$ – a conformal immersion of the Riemann surface \mathcal{R} z = x + iy – local complex coordinate

$$(F_{,z}|F_{,z})=(F_{,\bar{z}}|F_{,\bar{z}})=0$$

the vectors F, F,Z, F, \overline{Z} , and the unit normal N

$$(F|N) = (F_{,z}|N) = (F_{,\bar{z}}|N) = 0, \qquad (N|N) = 1,$$

form a (Gauss–Weingarten) basis in the (complexified) $\mathbb{R}^{3,1}$. Define functions u, H and Q by

$$(F_{,z}|F_{,\bar{z}}) = \frac{1}{2}e^{u}, \qquad (F_{,z\bar{z}}|N) = \frac{1}{2}He^{u}, \qquad (F_{,zz}|N) = Q$$

Conformal immersions of surfaces in $\mathbb{H}^3(\lambda)$ – cont.

Gauss-Weingarten equations of the moving frame

$$F_{,zz} = u_{,z}F_{,z} + QN,$$

$$F_{,z\bar{z}} = \frac{\lambda^2}{2}e^uF + \frac{1}{2}He^uN,$$

$$N_{,z} = -HF_{,z} - 2Qe^{-u}F_{,\bar{z}}$$

The Gauss-Mainardi-Codazzi equations

$$u_{,z\bar{z}} + \frac{1}{2} (H^2 - \lambda^2) e^u - 2|Q|^2 e^{-u} = 0, \qquad Q_{,\bar{z}} = \frac{1}{2} H_{,z} e^u$$

Remark

When $H \equiv \lambda$ and $Q \equiv 1$ we have the Liouville equation

Spinors and 2 × 2 representation of GW equations

Identify the Lorentz space with 2×2 hermitean matrices

$$X = (X_0, X_1, X_2, X_3) \leftrightarrow X^{\sigma} = X_0 \mathbf{1}_2 + \sum_{k=1}^3 X_k \sigma_k = \begin{pmatrix} X_0 + X_3 & X_1 - iX_2 \\ X_1 + iX_2 & X_0 - X_3 \end{pmatrix}$$

$$\mathbf{1}_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \quad \sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \sigma_2 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \quad \sigma_1 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

We use the homomorphism $\rho : SL(2, \mathbb{C}) \to SO(3, 1)$ given by

$$(\rho(a)X)^{\sigma}=a^{+}X^{\sigma}a.$$

We will be looking for $\Phi \in SL(2,\mathbb{C})$ which transforms the orthonormal basis $(\mathbf{1}_2, \sigma_1, \sigma_2, \sigma_3)$ into the orthonormal basis

$$\left(\lambda F^{\sigma}, \mathrm{e}^{-u/2} F^{\sigma}_{,x}, \mathrm{e}^{-u/2} F^{\sigma}_{,y}, N^{\sigma}\right) = \Phi^{+}(\mathbf{1}_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3})\Phi.$$

2 × 2 linear problem

Define the $\mathfrak{sl}(2,\mathbb{C})$ valued functions U, V by

$$\Phi_{,z} = U\Phi, \qquad \Phi_{,z}^+ = \Phi^+ V, \tag{1}$$

then we also have

$$\Phi_{,\bar{z}} = V^+ \Phi, \qquad \Phi_{,z}^+ = \Phi^+ U^+.$$

and the matrices U and V have the following form

$$U = \left(\begin{array}{cc} \frac{1}{4}u_{,z} & -Q\mathrm{e}^{-u/2} \\ \frac{1}{2}\mathrm{e}^{u/2}(\lambda + H) & -\frac{1}{4}u_{,z} \end{array} \right), \qquad V = \left(\begin{array}{cc} -\frac{1}{4}u_{,z} & Q\mathrm{e}^{-u/2} \\ \frac{1}{2}\mathrm{e}^{u/2}(\lambda - H) & \frac{1}{4}u_{,z} \end{array} \right)$$

The formula for immersion

Proposition

Given solution (u, Q, H) of the GMC equations, and given $SL(2, \mathbb{C})$ valued solution of the above linear system, then

$$F^{\sigma} = \frac{1}{\lambda} \Phi^{+} \Phi,$$

represents a conformal immersion in $\mathbb{H}^3(\lambda)$

Problem: In the limit $\lambda \to 0$ we have $\mathbb{H}^3(\lambda) \to \mathbb{E}^3$, but because of λ in the denominator F^{σ} blows up.

Solution: Before taking the limit we shift the origin from the center of the hyperboloid to one of its points

$$\tilde{F}^{\sigma} = \lim_{\lambda \to 0} \frac{1}{\lambda} \left(\Phi^{+} \Phi - \mathbf{1}_{2} \right)$$

The formula for immersion

Proposition

Given solution (u, Q, H) of the GMC equations, and given $SL(2, \mathbb{C})$ valued solution of the above linear system, then

$$F^{\sigma} = \frac{1}{\lambda} \Phi^{+} \Phi,$$

represents a conformal immersion in $\mathbb{H}^3(\lambda)$

Problem: In the limit $\lambda \to 0$ we have $\mathbb{H}^3(\lambda) \to \mathbb{E}^3$, but because of λ in the denominator F^{σ} blows up.

Solution: Before taking the limit we shift the origin from the center of the hyperboloid to one of its points

$$ilde{\mathcal{F}}^{\sigma} = \lim_{\lambda
ightarrow 0} rac{1}{\lambda} \left(\Phi^+ \Phi - \mathbf{1}_2
ight)$$

$H \equiv \lambda$ surfaces

Reduced GMC equations

$$u_{,z\bar{z}} - 2|Q|^2 e^{-u} = 0, \qquad Q_{,\bar{z}} = 0,$$

Reduced linear problem

$$\Phi_{,z} = \left(\begin{array}{cc} \frac{1}{4}u_{,z} & -Q\mathrm{e}^{-u/2} \\ \lambda\mathrm{e}^{u/2} & -\frac{1}{4}u_{,z} \end{array} \right) \Phi, \qquad \Phi_{,\bar{z}} = \left(\begin{array}{cc} -\frac{1}{4}u_{,\bar{z}} & 0 \\ \bar{Q}\mathrm{e}^{-u/2} & \frac{1}{4}u_{,\bar{z}} \end{array} \right) \Phi$$

The same GMC equations as for minimal of surfaces in \mathbb{E}^3

Given two arbitrary holomorphic functions $\eta,\,\psi$ we obtain general solution of the reduced GMC system

$$e^{u/2} = \eta \bar{\eta} \left(1 + \psi \bar{\psi} \right), \qquad Q = -\eta^2 \psi_{,z}.$$

Soliton surfaces approach

Start from a Lax pair

$$\Psi_{,x} = U(\lambda)\Psi, \qquad \Psi_{,y} = V(\lambda)\Psi,$$

 $U(x,y;\lambda),\ V(x,y;\lambda)$ take values in a semisimple Lie algebra $\mathfrak g$

The corresponding nonlinear system (Zakharov–Shabat equations):

$$U_{,y}(\lambda) - V_{,x}(\lambda) + [U(\lambda), V(\lambda)] = 0$$

For $\Psi(\lambda)$ taking values in the Lie group G of \mathfrak{g} , the Sym formula

$$F(x, y; \lambda) = \Psi^{-1}(x, y; \lambda)\Psi(x, y; \lambda)_{,\lambda},$$

for fixed $\lambda \in \mathbb{R}$, gives a surface in \mathfrak{g} , provided the tangent vectors

$$F_{,x} = \Psi^{-1} U_{,\lambda} \Psi, \qquad F_{,y} = \Psi^{-1} V_{,\lambda} \Psi$$

are linearly independent

 \bigcirc Minimal surfaces in \mathbb{E}^3

- 2 Lax pair for the Liouville equation
- The Weierstrass representation

Solution of the linear problem

After the gauge transform $\Psi = M\Phi$, where

$$M = \frac{1}{(1+\psi\bar{\psi})^{1/2}} \begin{pmatrix} \left(\frac{\eta}{\bar{\eta}}\right)^{1/2}\psi & -\left(\frac{\eta}{\bar{\eta}}\right)^{1/2} \\ \left(\frac{\bar{\eta}}{\eta}\right)^{1/2} & \left(\frac{\bar{\eta}}{\eta}\right)^{1/2}\bar{\psi} \end{pmatrix} \in SU(2).$$

the function Ψ satisfies the following linear system

$$\Psi_{,z} = \lambda \eta^2 \left(egin{array}{cc} \psi & -1 \\ \psi^2 & -\psi \end{array}
ight) \Psi, \qquad \Psi_{,\bar{z}} = 0.$$

whose fundamental solution is

$$\Psi(z) = \mathbf{1}_{2} + \lambda \int_{z_{0}}^{z} dz_{1} \eta(z_{1})^{2} \begin{pmatrix} \psi(z_{1}) & -1 \\ \psi(z_{1})^{2} & -\psi(z_{1}) \end{pmatrix} + \dots$$

$$+ \lambda^{k} \int_{z_{0}}^{z} dz_{k} \dots \int_{z_{0}}^{z_{2}} dz_{1} \prod_{i=1}^{k} \eta(z_{i})^{2} \prod_{i=1}^{k-1} (\psi(z_{i+1}) - \psi(z_{i})) \begin{pmatrix} \psi(z_{1}) & -1 \\ \psi(z_{1})\psi(z_{k}) & -\psi(z_{k}) \end{pmatrix} + \dots$$

Recovering the Weierstrass representation

We need only first two terms $\Psi = \mathbf{1}_2 + \lambda \Psi_1 + \dots$

$$\tilde{\textit{F}}^{\sigma} = \lim_{\lambda \rightarrow 0} \frac{1}{\lambda} \left(\Phi^{+} \Phi - \textbf{1}_{2} \right) = \Psi_{1} + \Psi_{1}^{+} =$$

$$= \left(\begin{array}{cc} \int^{\mathbf{z}} \eta^2 \psi \, \mathrm{d}\zeta + \overline{\int^{\mathbf{z}} \eta^2 \psi \, \mathrm{d}\zeta} & -\int^{\mathbf{z}} \eta^2 \, \mathrm{d}\zeta + \overline{\int^{\mathbf{z}} \eta^2 \psi^2 \, \mathrm{d}\zeta} \\ \int^{\mathbf{z}} \eta^2 \psi^2 \, \mathrm{d}\zeta - \overline{\int^{\mathbf{z}} \eta^2 \, \mathrm{d}\zeta} & -\int^{\mathbf{z}} \eta^2 \psi \, \mathrm{d}\zeta - \overline{\int^{\mathbf{z}} \eta^2 \psi \, \mathrm{d}\zeta} \end{array} \right)$$