Minimal surfaces in the soliton surfaces approach

Adam Doliwa

doliwa@matman.uwm.edu.pl

University of Warmia and Mazury (Olsztyn, Poland)
Integrable Systems 2012
21-22 June, 2012, Olsztyn
joint work with Michael Grundland

Outline

(1) Minimal surfaces in \mathbb{E}^{3}
(2) Lax pair for the Liouville equation

(3) The Weierstrass representation

Outline

(1) Minimal surfaces in \mathbb{E}^{3}

2 Lax pair for the Liouville equation

(3) The Weierstrass representation

Minimal surfaces and their Weierstrass representation

Variation of the area functional

$$
A(F+\epsilon \nu)-A(F)=-2 \epsilon \int_{F} H \nu \cdot N d A+\ldots,
$$

F - surface in $\mathbb{E}^{3} ; \nu$ - deformation field, $\nu_{\mid \partial F}=0$
N - the unit normal field to the surface, H - the mean curvature
$H \equiv 0$ - minimal surface; locally

$$
F=\operatorname{Re} \int_{z_{0}}^{z}\left(\frac{1}{2}\left(1-\psi^{2}\right), \frac{i}{2}\left(1+\psi^{2}\right), \psi\right) \eta^{2} d z
$$

ψ, η - holomorphic functions

The Liouville equation

$$
u_{, z \bar{z}}=2 \mathrm{e}^{-u}
$$

Given a holomorphic function ψ

$$
\mathrm{e}^{-u}=\frac{\left|\psi_{, z}\right|^{2}}{\left(1+|\psi|^{2}\right)^{2}}
$$

Outline

(1) Minimal surfaces in \mathbb{E}^{3}

(2) Lax pair for the Liouville equation

(3) The Weierstrass representation

Conformal immersions of surfaces in $\mathbb{H}^{3}(\lambda)$

$\mathbb{H}^{3}(\lambda) \subset \mathbb{R}^{3,1}$ hyperboloid $(X \mid X)=-\lambda^{-2}$ (the induced metric is positive definite and has constant sectional curvature) $F: \mathcal{R} \rightarrow \mathbb{H}^{3}(\lambda)$ - a conformal immersion of the Riemann surface \mathcal{R} $z=x+i y$ - local complex coordinate

$$
\left(F_{, z} \mid F_{, z}\right)=\left(F_{, \bar{z}} \mid F_{, \bar{z}}\right)=0
$$

the vectors $F, F_{, z}, F_{, \bar{z}}$, and the unit normal N

$$
(F \mid N)=\left(F_{, z} \mid N\right)=\left(F_{, \bar{z}} \mid N\right)=0, \quad(N \mid N)=1
$$

form a (Gauss-Weingarten) basis in the (complexified) $\mathbb{R}^{3,1}$.
Define functions u, H and Q by

$$
\left(F_{, z} \mid F_{, \bar{z}}\right)=\frac{1}{2} \mathrm{e}^{u}, \quad\left(F_{, z \bar{z}} \mid N\right)=\frac{1}{2} H \mathrm{e}^{u}, \quad\left(F_{, z z} \mid N\right)=Q
$$

Conformal immersions of surfaces in $\mathbb{H}^{3}(\lambda)$ - cont.

Gauss-Weingarten equations of the moving frame

$$
\begin{aligned}
F_{, z z} & =u_{, z} F_{, z}+Q N, \\
F_{, z \bar{z}} & =\frac{\lambda^{2}}{2} \mathrm{e}^{u} F+\frac{1}{2} H \mathrm{e}^{u} N, \\
N_{, z} & =-H F_{, z}-2 Q \mathrm{e}^{-u} F_{, \bar{z}}
\end{aligned}
$$

The Gauss-Mainardi-Codazzi equations

$$
u_{, z \bar{z}}+\frac{1}{2}\left(H^{2}-\lambda^{2}\right) \mathrm{e}^{u}-2|Q|^{2} \mathrm{e}^{-u}=0, \quad Q_{, \bar{z}}=\frac{1}{2} H_{, z} \mathrm{e}^{u}
$$

Remark

When $H \equiv \lambda$ and $Q \equiv 1$ we have the Liouville equation

Spinors and 2×2 representation of GW equations

Identify the Lorentz space with 2×2 hermitean matrices
$X=\left(X_{0}, X_{1}, X_{2}, X_{3}\right) \leftrightarrow X^{\sigma}=X_{0} \mathbf{1}_{2}+\sum_{k=1}^{3} X_{k} \sigma_{k}=\left(\begin{array}{cc}X_{0}+X_{3} & X_{1}-i X_{2} \\ X_{1}+i X_{2} & X_{0}-X_{3}\end{array}\right)$
$\mathbf{1}_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
We use the homomorphism $\rho: \operatorname{SL}(2, \mathbb{C}) \rightarrow \mathrm{SO}(3,1)$ given by

$$
(\rho(a) X)^{\sigma}=a^{+} X^{\sigma} a
$$

We will be looking for $\Phi \in \mathrm{SL}(2, \mathbb{C})$ which transforms the orthonormal basis $\left(\mathbf{1}_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ into the orthonormal basis

$$
\left(\lambda F^{\sigma}, \mathrm{e}^{-u / 2} F_{, x}^{\sigma}, \mathrm{e}^{-u / 2} F_{, y}^{\sigma}, N^{\sigma}\right)=\Phi^{+}\left(\mathbf{1}_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right) \Phi
$$

2×2 linear problem

Define the $\mathfrak{s l l}(2, \mathbb{C})$ valued functions U, V by

$$
\begin{equation*}
\Phi_{, z}=U \Phi, \quad \Phi_{, z}^{+}=\Phi^{+} V \tag{1}
\end{equation*}
$$

then we also have

$$
\Phi_{, \bar{z}}=V^{+} \Phi, \quad \Phi_{, z}^{+}=\Phi^{+} U^{+}
$$

and the matrices U and V have the following form

$$
U=\left(\begin{array}{cc}
\frac{1}{4} u_{, z} & -Q \mathrm{e}^{-u / 2} \\
\frac{1}{2} \mathrm{e}^{u / 2}(\lambda+H) & -\frac{1}{4} u_{, z}
\end{array}\right), \quad V=\left(\begin{array}{cc}
-\frac{1}{4} u_{, z} & Q \mathrm{e}^{-u / 2} \\
\frac{1}{2} \mathrm{e}^{u / 2}(\lambda-H) & \frac{1}{4} u_{, z}
\end{array}\right)
$$

The formula for immersion

Proposition

Given solution (u, Q, H) of the GMC equations, and given $\operatorname{SL}(2, \mathbb{C})$ valued solution of the above linear system, then

$$
F^{\sigma}=\frac{1}{\lambda} \Phi^{+} \Phi
$$

represents a conformal immersion in $\mathbb{H}^{3}(\lambda)$
Problem: In the limit $\lambda \rightarrow 0$ we have $\mathbb{H}^{3}(\lambda) \rightarrow \mathbb{E}^{3}$, but because of λ in the denominator F^{σ} blows up.

Solution: Before taking the limit we shift the origin from the center of the hyperboloid to one of its points

The formula for immersion

Proposition

Given solution (u, Q, H) of the GMC equations, and given $\operatorname{SL}(2, \mathbb{C})$ valued solution of the above linear system, then

$$
F^{\sigma}=\frac{1}{\lambda} \Phi^{+} \Phi
$$

represents a conformal immersion in $\mathbb{H}^{3}(\lambda)$
Problem: In the limit $\lambda \rightarrow 0$ we have $\mathbb{H}^{3}(\lambda) \rightarrow \mathbb{E}^{3}$, but because of λ in the denominator F^{σ} blows up.
Solution: Before taking the limit we shift the origin from the center of the hyperboloid to one of its points

$$
\tilde{F}^{\sigma}=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left(\Phi^{+} \Phi-\mathbf{1}_{2}\right)
$$

$H \equiv \lambda$ surfaces

Reduced GMC equations

$$
u_{, z \bar{z}}-2|Q|^{2} \mathrm{e}^{-u}=0, \quad Q_{, \bar{z}}=0
$$

Reduced linear problem

$$
\Phi_{, z}=\left(\begin{array}{cc}
\frac{1}{4} u_{, z} & -Q \mathrm{e}^{-u / 2} \\
\lambda \mathrm{e}^{u / 2} & -\frac{1}{4} u_{, z}
\end{array}\right) \Phi, \quad \Phi_{, \bar{z}}=\left(\begin{array}{cc}
-\frac{1}{4} u_{, \bar{z}} & 0 \\
\bar{Q} \mathrm{e}^{-u / 2} & \frac{1}{4} u_{, \bar{z}}
\end{array}\right) \Phi
$$

The same GMC equations as for minimal of surfaces in \mathbb{E}^{3}
Given two arbitrary holomorphic functions η, ψ we obtain general solution of the reduced GMC system

$$
\mathrm{e}^{u / 2}=\eta \bar{\eta}(1+\psi \bar{\psi}), \quad Q=-\eta^{2} \psi_{, z}
$$

Soliton surfaces approach

Start from a Lax pair

$$
\Psi_{, x}=U(\lambda) \Psi, \quad \Psi_{, y}=V(\lambda) \Psi
$$

$U(x, y ; \lambda), V(x, y ; \lambda)$ take values in a semisimple Lie algebra \mathfrak{g}
The corresponding nonlinear system (Zakharov-Shabat equations):

$$
U_{, y}(\lambda)-V_{, x}(\lambda)+[U(\lambda), V(\lambda)]=0
$$

For $\Psi(\lambda)$ taking values in the Lie group G of \mathfrak{g}, the Sym formula

$$
F(x, y ; \lambda)=\Psi^{-1}(x, y ; \lambda) \Psi(x, y ; \lambda)_{, \lambda}
$$

for fixed $\lambda \in \mathbb{R}$, gives a surface in \mathfrak{g}, provided the tangent vectors

$$
F_{, x}=\Psi^{-1} U_{, \lambda} \Psi, \quad F_{, y}=\Psi^{-1} V_{, \lambda} \Psi
$$

are linearly independent

Outline

(1) Minimal surfaces in \mathbb{E}^{3}

2 Lax pair for the Liouville equation

(3) The Weierstrass representation

Solution of the linear problem

After the gauge transform $\Psi=M \Phi$, where

$$
M=\frac{1}{(1+\psi \bar{\psi})^{1 / 2}}\left(\begin{array}{cc}
\left(\frac{\eta}{\bar{\eta}}\right)^{1 / 2} \psi & -\left(\frac{\eta}{\bar{\eta}}\right)^{1 / 2} \\
\left(\frac{\bar{\eta}}{\eta}\right)^{1 / 2} & \left(\frac{\bar{\eta}}{\eta}\right)^{1 / 2} \bar{\psi}
\end{array}\right) \in \mathrm{SU}(2) .
$$

the function Ψ satisfies the following linear system

$$
\Psi_{, z}=\lambda \eta^{2}\left(\begin{array}{cc}
\psi & -1 \\
\psi^{2} & -\psi
\end{array}\right) \Psi, \quad \Psi_{, \bar{z}}=0
$$

whose fundamental solution is

$$
\begin{gathered}
\Psi(z)=\mathbf{1}_{2}+\lambda \int_{z_{0}}^{z} d z_{1} \eta\left(z_{1}\right)^{2}\left(\begin{array}{cc}
\psi\left(z_{1}\right) & -1 \\
\psi\left(z_{1}\right)^{2} & -\psi\left(z_{1}\right)
\end{array}\right)+\ldots \\
+\lambda^{k} \int_{z_{0}}^{z} d z_{k} \ldots \int_{z_{0}}^{z_{2}} d z_{1} \prod_{i=1}^{k} \eta\left(z_{i}\right)^{2} \prod_{i=1}^{k-1}\left(\psi\left(z_{i+1}\right)-\psi\left(z_{i}\right)\right)\left(\begin{array}{cc}
\psi\left(z_{1}\right) & -1 \\
\psi\left(z_{1}\right) \psi\left(z_{k}\right) & -\psi\left(z_{k}\right)
\end{array}\right)+\ldots
\end{gathered}
$$

Recovering the Weierstrass representation

We need only first two terms $\Psi=\mathbf{1}_{2}+\lambda \Psi_{1}+\ldots$

$$
\left.\begin{array}{rl}
& \tilde{\boldsymbol{F}}^{\sigma}=\lim _{\lambda \rightarrow 0} \frac{1}{\lambda}\left(\Phi^{+} \Phi-\mathbf{1}_{2}\right)=\Psi_{1}+\Psi_{1}^{+}= \\
= & \left(\begin{array}{l}
\int^{z} \eta^{2} \psi \boldsymbol{d} \zeta+\overline{\int^{z} \eta^{2} \psi \boldsymbol{d} \zeta} \\
\int^{z} \eta^{2} \psi^{2} \boldsymbol{d} \zeta-\int^{z} \eta^{2} \boldsymbol{d} \zeta+\overline{\int^{z} \eta^{2} \boldsymbol{d} \zeta}
\end{array}-\int^{z} \eta^{2} \psi \boldsymbol{\psi ^ { 2 } d \zeta}\right. \\
\hline \int^{z} \eta^{2} \psi \boldsymbol{d} \zeta
\end{array}\right) .
$$

