The cross ratio and its applications

Jan L. Cieślíński

Uniwersytet w Białymstoku, Wydział Fizyki
Mini-symposium Integrable systems, Olsztyn, June 21-22, 2012

Plan

(1) Cross ratio

- Cross ratio in projective geometry
- Cross ratio in Möbius geometry
- Clifford cross ratio
(2) Van der Pauw method
- Resistivity measurements by the van der Pauw method
- Derivation of the van der Pauw formula
(3) Conformal mappings
- Complex potential
- Riemann mapping theorem
- Modification of the van der Pauw method

4 Discrete integrable submanifolds

- The Sym-Tafel formula
- Special classes of discrete immersions

Cross ratio in projective geometry Cross ratio in Möbius geometry Clifford cross ratio

Cross ratio in projective geometry

known also as anharmonic ratio.
s - natural parameter along a line. Cross ratio:

$$
\left(s_{1}, s_{2} ; s_{3}, s_{4}\right):=\frac{\left(s_{3}-s_{1}\right)\left(s_{4}-s_{2}\right)}{\left(s_{3}-s_{2}\right)\left(s_{4}-s_{1}\right)} \equiv \frac{\frac{s_{3}-s_{1}}{s_{3}-s_{2}}}{\frac{s_{4}-s_{1}}{s_{4}-s_{2}}}
$$

α - angle for lines in the corresponding pencil

Theorem: $\left(s_{1}, s_{2} ; s_{3}, s_{4}\right)=\left(\alpha_{1}, \alpha_{2} ; \alpha_{3}, \alpha_{4}\right)$

Cross ratio in projective geometry

known also as anharmonic ratio.
s - natural parameter along a line. Cross ratio:

$$
\left(s_{1}, s_{2} ; s_{3}, s_{4}\right):=\frac{\left(s_{3}-s_{1}\right)\left(s_{4}-s_{2}\right)}{\left(s_{3}-s_{2}\right)\left(s_{4}-s_{1}\right)} \equiv \frac{\frac{s_{3}-s_{1}}{s_{3}-s_{2}}}{\frac{s_{4}-s_{1}}{s_{4}-s_{2}}}
$$

α - angle for lines in the corresponding pencil

$$
\left(\alpha_{1}, \alpha_{2} ; \alpha_{3}, \alpha_{4}\right):=\frac{\sin \left(\alpha_{3}-\alpha_{1}\right) \sin \left(\alpha_{4}-\alpha_{2}\right)}{\sin \left(\alpha_{3}-\alpha_{2}\right) \sin \left(\alpha_{4}-\alpha_{1}\right)}
$$

Theorem:
$\left(s_{1}, s_{2} ; s_{3}, s_{4}\right)=\left(\alpha_{1}, \alpha_{2} ; \alpha_{3}, \alpha_{4}\right)$

Cross ratio in projective geometry

known also as anharmonic ratio.
s - natural parameter along a line. Cross ratio:

$$
\left(s_{1}, s_{2} ; s_{3}, s_{4}\right):=\frac{\left(s_{3}-s_{1}\right)\left(s_{4}-s_{2}\right)}{\left(s_{3}-s_{2}\right)\left(s_{4}-s_{1}\right)} \equiv \frac{\frac{s_{3}-s_{1}}{s_{3}-s_{2}}}{\frac{s_{4}-s_{1}}{s_{4}-s_{2}}}
$$

α - angle for lines in the corresponding pencil

$$
\left(\alpha_{1}, \alpha_{2} ; \alpha_{3}, \alpha_{4}\right):=\frac{\sin \left(\alpha_{3}-\alpha_{1}\right) \sin \left(\alpha_{4}-\alpha_{2}\right)}{\sin \left(\alpha_{3}-\alpha_{2}\right) \sin \left(\alpha_{4}-\alpha_{1}\right)}
$$

Theorem: $\left(s_{1}, s_{2} ; s_{3}, s_{4}\right)=\left(\alpha_{1}, \alpha_{2} ; \alpha_{3}, \alpha_{4}\right)$

Projective invariance of the cross ratio

The idea of the proof is simple. Areas of triangles are computed in two ways:

$$
P_{j k}=\frac{1}{2}\left(s_{k}-s_{j}\right) h=\frac{1}{2} r_{j} r_{k} \sin \left(\alpha_{k}-\alpha_{j}\right)
$$

Corollary: Cross ratio - invariant of projective transformations.

Cross ratio in Möbius geometry.

Möbius transformations: fractional linear transformations in \mathbb{C}.

$$
\left(z_{1}, z_{2} ; z_{3}, z_{4}\right):=\frac{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}
$$

Cross ratio is invariant with respect to Möbius transformations:

- translations:
- rotations:
- dilations:
- reflection:
- inversion:

[Reflection and inversion change sign of the cross ratio.].]

Cross ratio in Möbius geometry.

Möbius transformations: fractional linear transformations in \mathbb{C}.

$$
\left(z_{1}, z_{2} ; z_{3}, z_{4}\right):=\frac{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}
$$

Cross ratio is invariant with respect to Möbius transformations:

$$
w(z)=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0
$$

- translations:
- rotations:
- dilations:
- reflection:
- inversion:

Cross ratio in Möbius geometry.

Möbius transformations: fractional linear transformations in \mathbb{C}.

$$
\left(z_{1}, z_{2} ; z_{3}, z_{4}\right):=\frac{\left(z_{3}-z_{1}\right)\left(z_{4}-z_{2}\right)}{\left(z_{3}-z_{2}\right)\left(z_{4}-z_{1}\right)}
$$

Cross ratio is invariant with respect to Möbius transformations:

$$
w(z)=\frac{a z+b}{c z+d}, \quad a d-b c \neq 0
$$

- translations:

$$
w=z+a
$$

- rotations:

$$
w=e^{i \alpha} z, \quad \alpha \in \mathbb{R}
$$

- dilations: $\quad w=\lambda z, \quad \lambda \in \mathbb{R}$,
- reflection: $w=\bar{z}$,
- inversion: $w=\bar{z}^{-1}$
[Reflection and inversion change sign of the cross ratio.]

Cross ratio in Möbius geometry

Automorphisms of the upper half-plane

Möbius transformations transform circles into circles (a straight line is considered as a degenerated circle, a circle containing $z=\infty$).

For $a, b, c, d \in \mathbb{R}$ Möbius transformation is an automorphism of the upper half-plane (preserving also geodesic lines). Indeed:

$$
\operatorname{Im}\left(\frac{a z+b}{c z+d}\right) \equiv \frac{a d-b c}{|c z+d|} \operatorname{Im} z
$$

Cross ratio identities

There are $4!=24$ possible cross ratios of 4 points. Following identities can be directly verified:

$$
\begin{aligned}
& \left(x_{j}, x_{k} ; x_{m}, x_{n}\right)=\left(x_{m}, x_{n} ; x_{j}, x_{k}\right)=\left(x_{j}, x_{k} ; x_{n}, x_{m}\right)^{-1} \\
& \left(x_{j}, x_{k} ; x_{m}, x_{n}\right)+\left(x_{j}, x_{m} ; x_{k}, x_{n}\right)=1
\end{aligned}
$$

There are at most 6 different values:

$$
\begin{aligned}
& \left(z_{1}, z_{2} ; z_{3}, z_{4}\right) \equiv \lambda \\
& \left(z_{1}, z_{2} ; z_{4}, z_{3}\right)=\lambda^{-1} \\
& \left(z_{1}, z_{3} ; z_{4}, z_{2}\right)=(1-\lambda)^{-1} \\
& \left(z_{1}, z_{3} ; z_{2}, z_{4}\right)=1-\lambda, \\
& \left(z_{1}, z_{4} ; z_{2}, z_{3}\right)=1-\lambda^{-1} \\
& \left(z_{1}, z_{4} ; z_{3}, z_{2}\right)=\left(1-\lambda^{-1}\right)^{-1}
\end{aligned}
$$

Clifford algebra $\mathcal{C}(V)$

generated by a vector space V equipped with a quadratic form $\langle\cdot \mid \cdot\rangle$

Clifford product satisfies: $\quad \boldsymbol{v} \boldsymbol{w}+\boldsymbol{w} \boldsymbol{v}=2\langle\boldsymbol{v} \mid \boldsymbol{w}\rangle \mathbf{1}, \quad(\boldsymbol{v}, \boldsymbol{w} \in V)$.

$$
\boldsymbol{v} \boldsymbol{w}=\langle\boldsymbol{v} \mid \boldsymbol{w}\rangle+\boldsymbol{v} \wedge \boldsymbol{w}
$$

The algebra $\mathcal{C}(V)$ ("Clifford numbers") is spanned by:
1 scalars
$\mathbf{e}_{k} \quad$ vectors $\quad \mathbf{e}_{k}^{2}= \pm 1, \quad \mathbf{e}_{j} \mathbf{e}_{k}=-\mathbf{e}_{k} \mathbf{e}_{j} \quad(k \neq j)$
$\mathbf{e}_{j} \mathbf{e}_{k}(\mathrm{j}<\mathrm{k}) \quad$ bi-vectors
$\mathbf{e}_{k_{1}} \ldots \mathbf{e}_{k_{r}}\left(k_{1}<k_{2}<\ldots<k_{r}\right)$ multi-vectors
$\mathbf{e}_{1} \mathbf{e}_{2} \ldots \mathbf{e}_{n} \quad$ volume element $n=p+q$
$\operatorname{dim} C I_{p, q}=2^{p+q}, \quad \mathcal{C}_{p, q} \equiv \mathcal{C}\left(\mathbb{R}^{p, q}\right)$.

Cross ratio

Cross ratio in projective geometry Cross ratio in Möbius geometry Clifford cross ratio

Conformal transformations in \mathbb{R}^{n} in terms of Clifford numbers

For $N \geqslant 3$ all conformal transformations are generated by

- Euclidean motions (translations, reflections, rotations)
- Dilations, inversions:

Translation
Reflection $\quad \boldsymbol{x}^{\prime}=-\boldsymbol{n x} \boldsymbol{n}^{-1} \quad$ [boldface: Clifford vectors]
Dilation

Inversion
Rotation (by Cartan's theorem) is a composition of reflections:
$x^{\prime}=n_{k} \ldots n_{\uparrow} \times n_{1}^{-1} \ldots n_{k}^{-1}$
The case $N=2$: any holomorphic bijective function ispronformal.

Conformal transformations in \mathbb{R}^{n} in terms of Clifford numbers

For $N \geqslant 3$ all conformal transformations are generated by

- Euclidean motions (translations, reflections, rotations)
- Dilations, inversions:

Translation
Reflection

Dilation
[boldface: Clifford vectors]

Inversion
Rotation (by Cartan's theorem) is a composition of reflections:
$x^{\prime}=n_{k} \ldots n_{1} x n_{1}^{-1} \ldots n_{k}^{-1}$
The case $N=2$: any holomorphic biective function isponfermal.

Conformal transformations in \mathbb{R}^{n} in terms of Clifford numbers

For $N \geqslant 3$ all conformal transformations are generated by

- Euclidean motions (translations, reflections, rotations)
- Dilations, inversions: $\quad \vec{x}^{\prime}=\lambda \vec{x}, \quad \vec{x}^{\prime}=\frac{\vec{x}}{|\vec{x}|^{2}}$

Translation Reflection
Dilation
Inversion
Rotation (by Cartan's theorem) is a composition of reflections:
$x^{\prime}=n_{k} \ldots n_{1} x n_{1}^{-1} \ldots n_{k}^{-1}$
The case $N=2$: any holomorphic bijective function isponformal.,
[boldface: Clifford vectors]

Conformal transformations in \mathbb{R}^{n} in terms of Clifford numbers

For $N \geqslant 3$ all conformal transformations are generated by

- Euclidean motions (translations, reflections, rotations)
- Dilations, inversions: $\quad \vec{x}^{\prime}=\lambda \vec{x}, \quad \vec{x}^{\prime}=\frac{\vec{x}}{|\vec{x}|^{2}}$

Translation $\quad \boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{c}$
Reflection $\quad \boldsymbol{x}^{\prime}=-\boldsymbol{n} \boldsymbol{x} \boldsymbol{n}^{-1} \quad$ [boldface: Clifford vectors]
Dilation $\quad \boldsymbol{x}^{\prime}=\lambda \boldsymbol{x}$
Inversion $\quad \boldsymbol{x}^{\prime}=\boldsymbol{x}^{-1}$
Rotation (by Cartan's theorem) is a composition of reflections:
$x^{\prime}=n_{k} \ldots n_{1} x n_{1}^{-1} \ldots n_{k}^{-1}$
The case $N=2$: any holomorphic biective function isponfermad.

Conformal transformations in \mathbb{R}^{n} in terms of Clifford numbers

For $N \geqslant 3$ all conformal transformations are generated by

- Euclidean motions (translations, reflections, rotations)
- Dilations, inversions: $\quad \vec{x}^{\prime}=\lambda \vec{x}, \quad \vec{x}^{\prime}=\frac{\vec{x}}{|\vec{x}|^{2}}$

Translation $\quad \boldsymbol{x}^{\prime}=\boldsymbol{x}+\boldsymbol{c}$
Reflection $\quad \boldsymbol{x}^{\prime}=-\boldsymbol{n} \boldsymbol{x} \boldsymbol{n}^{-1} \quad$ [boldface: Clifford vectors]
Dilation $\quad \boldsymbol{x}^{\prime}=\lambda \boldsymbol{x}$
Inversion $\quad \boldsymbol{x}^{\prime}=\boldsymbol{x}^{-1}$
Rotation (by Cartan's theorem) is a composition of reflections:

$$
x^{\prime}=n_{k} \ldots n_{1} x n_{1}^{-1} \ldots n_{k}^{-1}
$$

The case $N=2$: any holomorphic bijective function is conformal.

Lipschitz group and Spin group

Lipschitz group (Clifford group) $\Gamma(V)$ is the multiplicative group (with respect to the Clifford product) generated by vectors:
$\boldsymbol{v}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{2}} \ldots \boldsymbol{v}_{\boldsymbol{M}} \in \Gamma(V)$.
$\Gamma_{0}(V)$ is generated by even number of vectors.
$\operatorname{Pin}(V)$ subgroup generated by unit vectors
$\operatorname{Spin}(V)$ subgroup generated by even number of unit vectors.

$$
\begin{aligned}
& \operatorname{Spin}(V) \subset \operatorname{Pin}(V) \subset \Gamma(V) \subset \mathcal{C}(V) \\
& V \subset \operatorname{Pin}(V), \quad \Gamma_{0}(V) \subset \Gamma(V)
\end{aligned}
$$

$\operatorname{Pin}(V)$ and $\operatorname{Spin}(V)$ are double covering of $\mathrm{O}(V)$ and $\mathrm{SO}(V)$, respectively.

The Clifford cross ratio

J. Cieśliński, The cross ratio and Clifford algebras, Adv. Appl. Clifford Alg. 7 (1997) 133.

For $X_{k} \in \mathbb{R}^{n} \subset \mathcal{C}\left(\mathbb{R}^{n}\right)$ we define:
$Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right):=\left(X_{1}-X_{2}\right)\left(X_{2}-X_{3}\right)^{-1}\left(X_{3}-X_{4}\right)\left(X_{4}-X_{1}\right)^{-1}$.
In general, $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \in \Gamma_{0}\left(\mathbb{R}^{n}\right)$.
For $X_{k} \in \mathbb{R}^{p, q}$ the definition is not well defined if $X_{2}-X_{3}$ or $X_{4}-X_{1}$ are isotropic (null, non-invertible).

Droposition. $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is real (i.e., proportional to 1) if and only if $X_{1}, X_{2}, X_{3}, X_{4}$ lie on a circle or are co-linear.

Therefore the Clifford cross-ratio can be used to characterize discrete analogues of curvature nets, isothermic surfaces etc.

The Clifford cross ratio

J. Cieśliński, The cross ratio and Clifford algebras, Adv. Appl. Clifford Alg. 7 (1997) 133.

For $X_{k} \in \mathbb{R}^{n} \subset \mathcal{C}\left(\mathbb{R}^{n}\right)$ we define:
$Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right):=\left(X_{1}-X_{2}\right)\left(X_{2}-X_{3}\right)^{-1}\left(X_{3}-X_{4}\right)\left(X_{4}-X_{1}\right)^{-1}$.
In general, $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \in \Gamma_{0}\left(\mathbb{R}^{n}\right)$.
For $X_{k} \in \mathbb{R}^{p, q}$ the definition is not well defined if $X_{2}-X_{3}$ or $X_{4}-X_{1}$ are isotropic (null, non-invertible).

Proposition. $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is real (i.e., proportional to 1)
if and only if $X_{1}, X_{2}, X_{3}, X_{4}$ lie on a circle or are co-linear.
Therefore the Clifford cross-ratio can be used to characterize discrete analogues of curvature nets, isothermic surfaces etc.

The Clifford cross ratio

J. Cieśliński, The cross ratio and Clifford algebras, Adv. Appl. Clifford Alg. 7 (1997) 133.

For $X_{k} \in \mathbb{R}^{n} \subset \mathcal{C}\left(\mathbb{R}^{n}\right)$ we define:
$Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right):=\left(X_{1}-X_{2}\right)\left(X_{2}-X_{3}\right)^{-1}\left(X_{3}-X_{4}\right)\left(X_{4}-X_{1}\right)^{-1}$.
In general, $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right) \in \Gamma_{0}\left(\mathbb{R}^{n}\right)$.
For $X_{k} \in \mathbb{R}^{p, q}$ the definition is not well defined if $X_{2}-X_{3}$ or $X_{4}-X_{1}$ are isotropic (null, non-invertible).

Proposition. $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ is real (i.e., proportional to 1) if and only if $X_{1}, X_{2}, X_{3}, X_{4}$ lie on a circle or are co-linear.

Therefore the Clifford cross-ratio can be used to characterize discrete analogues of curvature nets, isothermic surfaces etc.

Conformal covariance of the Clifford cross ratio

$$
\begin{array}{ll}
\boldsymbol{x} \rightarrow \boldsymbol{x}+\boldsymbol{c} & Q \rightarrow Q \\
\boldsymbol{x} \rightarrow \lambda \boldsymbol{x} & Q \rightarrow Q \\
\boldsymbol{x} \rightarrow-\boldsymbol{n} \boldsymbol{x} \boldsymbol{n}^{-1} & Q \rightarrow \boldsymbol{n} Q \boldsymbol{n}^{-1} \\
\boldsymbol{x} \rightarrow \boldsymbol{x}^{-1} & Q \rightarrow X_{1} Q X_{1}^{-1} \\
\boldsymbol{x} \rightarrow \boldsymbol{A} A^{-1} & Q \rightarrow A Q A^{-1}
\end{array}
$$

Corollary: Eigenvalues of the Clifford cross ratio are invariant under all conformal transformations.

Cross ratio. Ordering conventions.

$$
\begin{gathered}
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right) \equiv\left(x_{1}-x_{3}\right)\left(x_{3}-x_{2}\right)^{-1}\left(x_{2}-x_{4}\right)\left(x_{4}-x_{1}\right)^{-1} \\
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{2}-x_{3}\right)^{-1}\left(x_{3}-x_{4}\right)\left(x_{4}-x_{1}\right)^{-1} \\
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{3} ; x_{2}, x_{4}\right)
\end{gathered}
$$

We proceed to presenting two different applications of the cross ratio: in electrostatics (van der Pauw method) and, then, in difference geometry (circular nets, isothermic nets).

Assumptions of the van der Pauw method

Van der Pauw method (1958) is a standard method to measure resistivity of flat thin conductors.

- Flat, very thin, conducting sample
- Homogeneous, isotropic
- Arbitraty shape without holes (i.e., simply connected)
- Four point contacts on the circumference: A, B, C, D.

Method easily accessible for undergraduate students (provided that the van der Pauw formula is taken for granted).

Assumptions of the van der Pauw method

Van der Pauw method (1958) is a standard method to measure resistivity of flat thin conductors.

- Flat, very thin, conducting sample
- Homogeneous, isotropic
- Arbitraty shape without holes (i.e., simply connected)
- Four point contacts on the circumference: A, B, C, D.

Method easily accessible for undergraduate students (provided that the van der Pauw formula is taken for granted).

Assumptions of the van der Pauw method

Van der Pauw method (1958) is a standard method to measure resistivity of flat thin conductors.

- Flat, very thin, conducting sample
- Homogeneous, isotropic
- Arbitraty shape without holes (i.e., simply connected)
- Four point contacts on the circumference: A, B, C, D.

Method easily accessible for undergraduate students (provided that the van der Pauw formula is taken for granted).

Assumptions of the van der Pauw method

Van der Pauw method (1958) is a standard method to measure resistivity of flat thin conductors.

- Flat, very thin, conducting sample
- Homogeneous, isotropic
- Arbitraty shape without holes (i.e., simply connected)
- Four point contacts on the circumference: A, B, C, D.

Method easily accessible for undergraduate students (provided
that the van der Pauw formula is taken for granted).

Assumptions of the van der Pauw method

Van der Pauw method (1958) is a standard method to measure resistivity of flat thin conductors.

- Flat, very thin, conducting sample
- Homogeneous, isotropic
- Arbitraty shape without holes (i.e., simply connected)
- Four point contacts on the circumference: A, B, C, D.

Method easily accessible for undergraduate students (provided that the van der Pauw formula is taken for granted)

Assumptions of the van der Pauw method

Van der Pauw method (1958) is a standard method to measure resistivity of flat thin conductors.

- Flat, very thin, conducting sample
- Homogeneous, isotropic
- Arbitraty shape without holes (i.e., simply connected)
- Four point contacts on the circumference: A, B, C, D.

Method easily accessible for undergraduate students (provided that the van der Pauw formula is taken for granted).

The van der Pauw method. Typical samples.

Measurements, notation, the van der Pauw formula

Two measurements:

- Current $J_{A B}$, voltage $U_{C D}=\Phi_{D}-\Phi_{C}$,
- Current $J_{B C}$, voltage $U_{D A}=\Phi_{A}-\Phi_{D}$,

Van der Pauw formula (σ is to be determined):

σ conductivity, p resistivity $\sigma=\frac{1}{\rho}$,
d thickness of the sample

Measurements, notation, the van der Pauw formula

Two measurements:

- Current $J_{A B}$, voltage $U_{C D}=\Phi_{D}-\Phi_{C}, \quad R_{A B, C D}=\frac{U_{C D}}{J_{A B}}$,
- Current $J_{B C}$, voltage $U_{D A}=\Phi_{A}-\Phi_{D}, \quad R_{B C, D A}$ $U_{D A}$

Van der Pauw formula (σ is to be determined):

σ conductivity, ρ resistivity,
d thickness of the sample

Measurements, notation, the van der Pauw formula

Two measurements:

- Current $J_{A B}$, voltage $U_{C D}=\Phi_{D}-\Phi_{C}, \quad R_{A B, C D}=\frac{U_{C D}}{J_{A B}}$,
- Current $J_{B C}$, voltage $U_{D A}=\Phi_{A}-\Phi_{D}, \quad R_{B C, D A}=\frac{U_{D A}}{J_{B C}}$,

Van der Pauw formula (σ is to be determined):

σ conductivity, ρ resistivity,
d thickness of the sample

Measurements, notation, the van der Pauw formula

Two measurements:

- Current $J_{A B}$, voltage $U_{C D}=\Phi_{D}-\Phi_{C}, \quad R_{A B, C D}=\frac{U_{C D}}{J_{A B}}$,
- Current $J_{B C}$, voltage $U_{D A}=\Phi_{A}-\Phi_{D}, \quad R_{B C, D A}=\frac{U_{D A}}{J_{B C}}$,

Van der Pauw formula (σ is to be determined):

$$
e^{-\pi d \sigma R_{A B, C D}}+e^{-\pi d \sigma R_{B C, D A}}=1
$$

σ conductivity, ρ resistivity, $\sigma=\frac{1}{\rho}$,
d thickness of the sample

Main idea of van der Pauw

- Computations are easy for (infinite) half-plane [intuitive physics].
- Exact positions of A, B, C, D are not needed, their order is sufficient.
- The result does not depend on the shape of the sample (if simply connected) [proof: advanced mathematics].

Main idea of van der Pauw

- Computations are easy for (infinite) half-plane [intuitive physics].
- Exact positions of A, B, C, D are not needed, their order is sufficient.
- The result does not depend on the shape of the sample (if simply connected) [proof: advanced mathematics].

Main idea of van der Pauw

- Computations are easy for (infinite) half-plane [intuitive physics].
- Exact positions of A, B, C, D are not needed, their order is sufficient.
- The result does not depend on the shape of the sample (if simply connected) [proof: advanced mathematics].

Main idea of van der Pauw

- Computations are easy for (infinite) half-plane [intuitive physics].
- Exact positions of A, B, C, D are not needed, their order is sufficient.
- The result does not depend on the shape of the sample (if simply connected) [proof: advanced mathematics].

Potential distribution on the conducting plane

(thin, homogeneous, isotropic: current enters at $z=A$ and flows out at $z=B$).

- Ohm's law: $\vec{j}=-\sigma \operatorname{grad} \Phi, \quad \Phi$ potential.
- Current J entering at $z=A$ flows symmetrically to ∞.
- Conservation of electric charge: $2 \pi r d j=J, r=|z-A|$.
- $\frac{\partial \Phi}{\partial r}=-\rho j \Rightarrow \Phi_{1}(z)=-\frac{J \rho}{2 \pi d} \ln |z-A|$.
- For J flowing out at $z=B, \quad \Phi_{2}(z)=\frac{J \rho}{2 \pi d} \ln |z-B|$.
- Finally, $\Phi(z)=\Phi_{1}(z)+\Phi_{2}(z)=\frac{J \rho}{2 \pi d} \ln \left|\frac{z-B}{z-A}\right|$

Van der Pauw method

Conformal mappings Discrete integrable submanifolds

Equipotential lines and current lines.

Conducting plane. Current flows in at $z=-1$ and flows out at $z=1$.

Conducting half-plane.

Current J flows in at $z=x_{1}$ and flows out at $z=x_{2}$, (where x_{1}, x_{2} are real).
Conducting plane: real axis is a symmetry axis (and a current line).
Potential for conducting half-plane is the same as for the plane with the current $2 J$ (dividing equally into two half-planes).

$$
\Phi(z)=\frac{2 J \rho}{2 \pi d} \ln \left|\frac{z-x_{2}}{z-x_{1}}\right| .
$$

where $a=x_{2}-x_{1}, \quad b=x_{3}-x_{2}, c=x_{4}-x_{3}$.

Conducting half-plane.

Current J flows in at $z=x_{1}$ and flows out at $z=x_{2}$, (where x_{1}, x_{2} are real).
Conducting plane: real axis is a symmetry axis (and a current line).
Potential for conducting half-plane is the same as for the plane with the current $2 J$ (dividing equally into two half-planes).

$$
\Phi(z)=\frac{2 J \rho}{2 \pi d} \ln \left|\frac{z-x_{2}}{z-x_{1}}\right|
$$

We compute: $R_{12,34}=\frac{\Phi\left(x_{4}\right)-\Phi\left(x_{3}\right)}{J_{12}}$. Hence (van der Pauw):

$$
R_{12,34}=\frac{\rho}{\pi d} \ln \left|\frac{x_{4}-x_{2}}{x_{4}-x_{1}} \cdot \frac{x_{3}-x_{1}}{x_{3}-x_{2}}\right| \equiv \frac{\rho}{\pi d} \ln \frac{(a+b)(b+c)}{b(a+b+c)}
$$

where $a=x_{2}-x_{1}, b=x_{3}-x_{2}, c=x_{4}-x_{3}$.

Equipotential lines and current lines.

Conducting half-plane. Current flows in at $z=-1$ and flows out at $z=1$.

Complex potential is holomorphic

Potencjał $\Phi(z)$ satisfies

$$
\Delta \Phi=\rho J \delta\left(z-x_{2}\right)-\rho J \delta\left(z-x_{1}\right),
$$

where δ is the Dirac delta. Therefore, we may define

$$
F(z)=\Phi(x, y)+i \Psi(x, y)
$$

where Ψ is determined (up to a constant) from Cauchy-Riemann conditions:

$$
\frac{\partial \Phi}{\partial x}=\frac{\partial \Psi}{\partial y}, \quad \frac{\partial \Phi}{\partial y}=-\frac{\partial \Psi}{\partial x}
$$

F is holomorphic outside sigular points x_{1}, x_{2}.

Explicit form of the complex potential

 for the upper half-plane.$$
\Phi(z) \equiv \operatorname{Re} F(z)=\frac{J \rho}{\pi d} \ln \left|\frac{z-x_{2}}{z-x_{1}}\right|
$$

$$
\Psi(z)=\operatorname{Im} F(z)=\frac{J \rho}{\pi d}\left(\operatorname{Arg}\left(z-x_{2}\right)-\operatorname{Arg}\left(z-x_{1}\right)\right)
$$

Boundary conditions:

Explicit form of the complex potential

for the upper half-plane.

$$
\Phi(z) \equiv \operatorname{Re} F(z)=\frac{J \rho}{\pi d} \ln \left|\frac{z-x_{2}}{z-x_{1}}\right|, \quad F(z)=\frac{J \rho}{\pi d} \ln \frac{z-x_{2}}{z-x_{1}}
$$

$$
\psi(z)=\operatorname{Im} F(z)=\frac{J \rho}{\pi d}\left(\operatorname{Arg}\left(z-x_{2}\right)-\operatorname{Arg}\left(z-x_{1}\right)\right)
$$

Boundary conditions:

Explicit form of the complex potential

for the upper half-plane.

$$
\begin{gathered}
\Phi(z) \equiv \operatorname{Re} F(z)=\frac{J \rho}{\pi d} \ln \left|\frac{z-x_{2}}{z-x_{1}}\right|, \quad F(z)=\frac{J \rho}{\pi d} \ln \frac{z-x_{2}}{z-x_{1}} \\
\Psi(z)=\operatorname{Im} F(z)=\frac{J \rho}{\pi d}\left(\operatorname{Arg}\left(z-x_{2}\right)-\operatorname{Arg}\left(z-x_{1}\right)\right)
\end{gathered}
$$

Boundary conditions:

Explicit form of the complex potential

for the upper half-plane.

$$
\begin{gathered}
\Phi(z) \equiv \operatorname{Re} F(z)=\frac{J \rho}{\pi d} \ln \left|\frac{z-x_{2}}{z-x_{1}}\right|, \quad F(z)=\frac{J \rho}{\pi d} \ln \frac{z-x_{2}}{z-x_{1}} \\
\Psi(z)=\operatorname{Im} F(z)=\frac{J \rho}{\pi d}\left(\operatorname{Arg}\left(z-x_{2}\right)-\operatorname{Arg}\left(z-x_{1}\right)\right)
\end{gathered}
$$

Boundary conditions:

$$
\begin{gathered}
z \in\left(-\infty, x_{1}\right) \cup\left(x_{2}, \infty\right) \quad \Longrightarrow \quad \Psi(z)=0 \\
z \in\left(x_{1}, x_{2}\right) \quad \Longrightarrow \quad \Psi(z)=\frac{J \rho}{d}=\mathrm{const}
\end{gathered}
$$

Riemann mapping theorem

Twierdzenie: Any simply connected region of the complex plane (except the whole complex plane) is conformally equivalent to the unit open disc.

Region: an open and connected subset of \mathbb{C}.
Conformal map: preserves angles.

Conformal mappings of the complex plane:

 biholomorphic functions (i.e., the inverse function is also holomorphic).Any holomorphic function $w=f(z)$ (i.e., $u+i v=f(x+i y)$) such that $f^{\prime}(z) \neq 0$ is a conformal map.
(Counter)example: $f(z)=z^{2}$ is not conformal at $z=0$, because the angle between lines through $z=0$ is doubled after this transformation.
$N=2$: conformal transformations are biholomorphic maps. Of special interest is a subgroup of Möbius transformations.

Conformal mappings of the complex plane:

 biholomorphic functions (i.e., the inverse function is also holomorphic).Any holomorphic function $w=f(z)$ (i.e., $u+i v=f(x+i y)$) such that $f^{\prime}(z) \neq 0$ is a conformal map.
(Counter)example: $f(z)=z^{2}$ is not conformal at $z=0$, because the angle between lines through $z=0$ is doubled after this transformation.
$N=2$: conformal transformations are biholomorphic maps.
Of special interest is a subgroup of Möbius transformations.

Conformal mappings of the complex plane:

 biholomorphic functions (i.e., the inverse function is also holomorphic).Any holomorphic function $w=f(z)$ (i.e., $u+i v=f(x+i y)$) such that $f^{\prime}(z) \neq 0$ is a conformal map.
(Counter)example: $f(z)=z^{2}$ is not conformal at $z=0$, because the angle between lines through $z=0$ is doubled after this transformation.
$N=2$: conformal transformations are biholomorphic maps. Of special interest is a subgroup of Möbius transformations.

Disc and half-plane are conformally equivalent.

Function $w \mapsto z=i \frac{w+i}{i-w}$ is a biholomorphic map of the unit disc $(|w| \leqslant 1)$ onto the upper half-plane $(\operatorname{Im} z \geqslant 0)$.

The inverse function $\quad z \mapsto w=i \frac{z-i}{z+i}$.

w	1	i	-1	$-i$
z	1	∞	-1	0

All conformal maps of the upper half plane onto the unit disc:

$$
w=e^{i \theta} \frac{z-a}{z-\bar{a}}, \quad \operatorname{Im} a>0, \quad \theta \in \mathbb{R}
$$

Christofell-Schwarz theorem:

Any polygon can be conformally mapped onto the upper half-plane.
Explicit formula for the map of the upper half-plane onto n-gon with angles: $k_{1} \pi, k_{2} \pi, \ldots, k_{n} \pi$ (where
$\left.k_{1}+k_{2}+\ldots+k_{n}=n-2\right)$:

$$
\begin{gathered}
w(z)=A \int_{z_{0}}^{z}\left(\zeta-x_{1}\right)^{k_{1}-1} \ldots\left(\zeta-x_{n}\right)^{k_{n}-1} d \zeta+B \\
\frac{d w}{d z}=A\left(z-x_{1}\right)^{k_{1}-1} \ldots\left(z-x_{n}\right)^{k_{n}-1}
\end{gathered}
$$

Note that for $z=x \in\left(x_{j}, x_{j+1}\right)$ the phase of $\frac{d w}{d z}$ is constant! Therefore, indeed, this segment is mapped into a line segment: $w(x)=e^{i \theta} \int^{x}\left|w^{\prime}(x)\right| d x$.

Conformal covariance of current lines and equipotential lines

A conformal (= biholomorphic) transformation: $\quad z \mapsto w=f(z)$.
$F(z)=\Phi+i \psi$ transforms as a scalar, i.e.,

$$
\tilde{F}(w)=F\left(f^{-1}(w)\right.
$$

thus \tilde{F} is holomorphic, and $\tilde{\Phi}, \tilde{\Psi}$ satisfy a Poisson equation (Laplace equation outside singular points $w_{1}=f\left(x_{1}\right), w_{2}=f\left(x_{2}\right)$).
The same boundary conditions: $\Psi(z)=0, \Psi(z)=J \rho / d$.
Corollary: $\tilde{\Phi}, \tilde{\Psi}$ yield potential and current lines in the transformed region.

The case non-simply connected is much more difficult.

 Typical counterexample: conformal mappings of an annulus.Annulus: $\quad\left\{z: r<\left|z-z_{0}\right|<R\right\} \quad$ has a single "hole".
Theorem: Two annuli, defined by r_{1}, R_{1} and r_{2}, R_{2},
respectively, are conformally equivalent iff

Corollary: Usually non-simply connected regions are not conformally equivalent.

The case non-simply connected is much more difficult.

Typical counterexample: conformal mappings of an annulus.

Annulus: $\quad\left\{z: r<\left|z-z_{0}\right|<R\right\}$ has a single "hole".
Theorem: Two annuli, defined by r_{1}, R_{1} and r_{2}, R_{2},
respectively, are conformally equivalent iff $\frac{R_{1}}{r_{1}}=\frac{R_{2}}{r_{2}}$.
Corollary: Usually non-simply connected regions are not
conformally equivalent.

The case non-simply connected is much more difficult.

 Typical counterexample: conformal mappings of an annulus.Annulus: $\quad\left\{z: r<\left|z-z_{0}\right|<R\right\}$ has a single "hole".
Theorem: Two annuli, defined by r_{1}, R_{1} and r_{2}, R_{2},
respectively, are conformally equivalent iff $\frac{R_{1}}{r_{1}}=\frac{R_{2}}{r_{2}}$.
Corollary: Usually non-simply connected regions are not conformally equivalent.

Van der Pauw's formula can be reformulated in terms of the cross ratio:

$$
R_{12,34}=\frac{\rho}{\pi d} \ln \left|\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)\right|
$$

> Van der Pauw does not mention at all the cross ratio. His motivation
> came from electrodynamics (reciprocity theorem of passive multipoles). The same concerns other authors who developed or worked with the van der Pauw method.

Van der Pauw's formula can be reformulated in terms of the cross ratio:

$$
R_{12,34}=\frac{\rho}{\pi d} \ln \left|\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)\right|
$$

Van der Pauw does not mention at all the cross ratio. His motivation came from electrodynamics (reciprocity theorem of passive multipoles). The same concerns other authors who developed or worked with the van der Pauw method.

Sign of the cross ratio

for points lying on the real axis, i.e., $z_{k} \equiv x_{k}$.
If segments $\left[x_{1}, x_{2}\right] i\left[x_{3}, x_{4}\right]$ partially overlap (have a common segment), then

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)<0 .
$$

If these segments are disjoint or one is contained inside the other one, then

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)>0 .
$$

If any of these segments degenerates to a point, then

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=1,
$$

which means that $\ln \left(x_{1}, x_{2} ; x_{3}, x_{4}\right)=0$.

A new formula for the van der Pauw method

Following van der Pauw, we assume (to fix an attention):
$x_{1}<x_{2}<x_{3}<x_{4}$. Then:

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)>0, \quad\left(x_{1}, x_{4} ; x_{3}, x_{2}\right)>0, \quad\left(x_{1}, x_{3} ; x_{2}, x_{4}\right)<0 .
$$

We recall:

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)^{-1}+\left(x_{1}, x_{4} ; x_{3}, x_{2}\right)^{-1}=1, \quad \leftarrow \text { van der Pauw }
$$

A new formula for the van der Pauw method

Following van der Pauw, we assume (to fix an attention):
$x_{1}<x_{2}<x_{3}<x_{4}$. Then:

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)>0, \quad\left(x_{1}, x_{4} ; x_{3}, x_{2}\right)>0, \quad\left(x_{1}, x_{3} ; x_{2}, x_{4}\right)<0 .
$$

We recall:

$$
\begin{aligned}
& \left(x_{1}, x_{2} ; x_{3}, x_{4}\right)^{-1}+\left(x_{1}, x_{4} ; x_{3}, x_{2}\right)^{-1}=1, \leftarrow \text { van der Pauw } \\
& \left(x_{1}, x_{2} ; x_{3}, x_{4}\right)+\left(x_{1}, x_{3} ; x_{2}, x_{4}\right)=1 . \leftarrow \text { new formula? }
\end{aligned}
$$

A new formula for the van der Pauw method

Following van der Pauw, we assume (to fix an attention):
$x_{1}<x_{2}<x_{3}<x_{4}$. Then:

$$
\left(x_{1}, x_{2} ; x_{3}, x_{4}\right)>0, \quad\left(x_{1}, x_{4} ; x_{3}, x_{2}\right)>0, \quad\left(x_{1}, x_{3} ; x_{2}, x_{4}\right)<0 .
$$

We recall:

$$
\begin{aligned}
& \left(x_{1}, x_{2} ; x_{3}, x_{4}\right)^{-1}+\left(x_{1}, x_{4} ; x_{3}, x_{2}\right)^{-1}=1, \leftarrow \text { van der Pauw } \\
& \left(x_{1}, x_{2} ; x_{3}, x_{4}\right)+\left(x_{1}, x_{3} ; x_{2}, x_{4}\right)=1 . \leftarrow \text { new formula? } \\
& \exp \left(-\frac{\pi d R_{12,34}}{\rho}\right)+\exp \left(-\frac{\pi d R_{14,32}}{\rho}\right)=1 \\
& \exp \frac{\pi d R_{12,34}}{\rho}-\exp \frac{\pi d R_{13,24}}{\rho}=1 \leftarrow \text { new formula! }
\end{aligned}
$$

Was our "new identity" known to van der Pauw?

From identities: $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)^{-1}+\left(z_{1}, z_{4} ; z_{3}, z_{2}\right)^{-1}=1$, $\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)+\left(z_{1}, z_{3} ; z_{2}, z_{4}\right)=1$, it follows

$$
\left(z_{1}, z_{3} ; z_{2}, z_{4}\right)=-\left(z_{1}, z_{2} ; z_{3}, z_{4}\right)\left(z_{1}, z_{4} ; z_{3}, z_{2}\right)^{-1}
$$

Rewriting it in terms of $R_{i j, k l}$

$$
\exp \frac{\pi d R_{13,24}}{\rho}=\exp \frac{\pi d R_{12,34}}{\rho} \exp \left(-\frac{\pi d R_{14,32}}{\rho}\right)
$$

we obtain an identity known to van der Pauw:

$$
R_{13,24}=R_{12,34}-R_{14,23} .
$$

Some consequences of van der Pauw formulas (old and new)

$$
\begin{gathered}
\exp \left(-\frac{\pi d R_{12,34}}{\rho}\right)+\exp \left(-\frac{\pi d R_{14,32}}{\rho}\right)=1 \\
\exp \frac{\pi d R_{12,34}}{\rho}-\exp \frac{\pi d R_{13,24}}{\rho}=1
\end{gathered}
$$

Corollary: $\quad R_{12,34}>0, \quad R_{14,32}>0, \quad R_{12,34}>R_{13,24}$
Assuming (without loss of generality): $R_{12,34}>R_{14,32}$ we have:

Some consequences of van der Pauw formulas (old and new)

$$
\begin{gathered}
\exp \left(-\frac{\pi d R_{12,34}}{\rho}\right)+\exp \left(-\frac{\pi d R_{14,32}}{\rho}\right)=1 \\
\exp \frac{\pi d R_{12,34}}{\rho}-\exp \frac{\pi d R_{13,24}}{\rho}=1
\end{gathered}
$$

Corollary: $R_{12,34}>0, \quad R_{14,32}>0$,
Assuming (without loss of generality): $R_{12,34}>R_{14,32}$ we have:

Some consequences of van der Pauw formulas (old and new)

$$
\begin{gathered}
\exp \left(-\frac{\pi d R_{12,34}}{\rho}\right)+\exp \left(-\frac{\pi d R_{14,32}}{\rho}\right)=1 \\
\exp \frac{\pi d R_{12,34}}{\rho}-\exp \frac{\pi d R_{13,24}}{\rho}=1
\end{gathered}
$$

Corollary: $\quad R_{12,34}>0, \quad R_{14,32}>0, \quad R_{12,34}>R_{13,24}$.
Assuming (without loss of generality): $R_{12,34}>R_{14,32}$
we have: $\quad R_{13,24}>0$.

Determining ρ by the Banach fixed point method

 J.L.Cieśliński, preprint arXiv (2012).We use the new formula: $\exp \frac{\pi d R_{12,34}}{\rho}-\exp \frac{\pi d R_{13,24}}{\rho}=1$.

Banach fixed point theorem: $\quad \sigma=F(\sigma)$.

$0 \leqslant k<1$, therefore $\left|F^{\prime}(\sigma)\right|<1$, i.e., the iteration procedure is convergent (usually fast).

Determining ρ by the Banach fixed point method

 J.L.Cieśliński, preprint arXiv (2012).We use the new formula: $\exp \frac{\pi d R_{12,34}}{\rho}-\exp \frac{\pi d R_{13,24}}{\rho}=1$.

$$
\sigma=\frac{\ln \left(1+\exp \left(\pi d R_{13,24} \sigma\right)\right)}{\pi d R_{12,34}}, \quad \sigma=\frac{1}{\rho}
$$

Banach fixed point theorem:
$\sigma=F(\sigma)$.

$0 \leqslant k<1$, therefore $\left|F^{\prime}(\sigma)\right|<1$, i.e., the iteration procedure is convergent (usually fast).

Determining ρ by the Banach fixed point method

 J.L.Cieśliński, preprint arXiv (2012).We use the new formula: $\exp \frac{\pi d R_{12,34}}{\rho}-\exp \frac{\pi d R_{13,24}}{\rho}=1$.

$$
\sigma=\frac{\ln \left(1+\exp \left(\pi d R_{13,24} \sigma\right)\right)}{\pi d R_{12,34}}, \quad \sigma=\frac{1}{\rho}
$$

Banach fixed point theorem: $\quad \sigma=F(\sigma)$.

$$
F^{\prime}(\sigma)=\frac{k}{1+\exp \left(-\pi d R_{13,24} \sigma\right)}, \quad k=\frac{R_{13,24}}{R_{12,34}}
$$

$0 \leqslant k<1$, therefore $\left|F^{\prime}(\sigma)\right|<1$, i.e., the iteration procedure is convergent (usually fast).

Determining ρ by the Banach fixed point method J.L.Cieśliński, preprint arXiv (2012).

We use the new formula: $\exp \frac{\pi d R_{12,34}}{\rho}-\exp \frac{\pi d R_{13,24}}{\rho}=1$.

$$
\sigma=\frac{\ln \left(1+\exp \left(\pi d R_{13,24} \sigma\right)\right)}{\pi d R_{12,34}}, \quad \sigma=\frac{1}{\rho}
$$

Banach fixed point theorem: $\quad \sigma=F(\sigma)$.

$$
F^{\prime}(\sigma)=\frac{k}{1+\exp \left(-\pi d R_{13,24} \sigma\right)}, \quad k=\frac{R_{13,24}}{R_{12,34}}
$$

$0 \leqslant k<1$, therefore $\left|F^{\prime}(\sigma)\right|<1$, i.e., the iteration procedure is convergent (usually fast).

Conclusions

- Van der Pauw formula can be expressed by the cross ratio.
- We found a modification of the van der Pauw formula, solvable by the fast convergent fixed point iteration.
- A work on van der Pauw method for samples with a hole is in progress (Szymański-Cieśliński-Łapiński).

Conclusions

- Van der Pauw formula can be expressed by the cross ratio.
- We found a modification of the van der Pauw formula, solvable by the fast convergent fixed point iteration.
- A work on van der Pauw method for samples with a hole is in progress (Szymański-Cieśliński-Łapiński).

Conclusions

- Van der Pauw formula can be expressed by the cross ratio.
- We found a modification of the van der Pauw formula, solvable by the fast convergent fixed point iteration.
- A work on van der Pauw method for samples with a hole is in progress (Szymański-Cieśliński-Łapiński).

Conclusions

- Van der Pauw formula can be expressed by the cross ratio.
- We found a modification of the van der Pauw formula, solvable by the fast convergent fixed point iteration.
- A work on van der Pauw method for samples with a hole is in progress (Szymański-Cieśliński-Łapiński).

Discrete nets

Discrete nets: maps $F: \mathbb{Z}^{n} \rightarrow \mathbb{R}^{m}$.
The case $n=2$: discrete surfaces immersed in \mathbb{R}^{m}.
The map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, obtained in the continuum limit from a discrete net, corresponds to a specific choice of coordinates on some smooth surface.

Notation. Forward and backward shift:

$$
\begin{aligned}
& T_{j} f\left(m^{1}, \ldots, m^{j}, \ldots, m^{n}\right)=f\left(m^{1}, \ldots, m^{j}+1, \ldots, m^{n}\right) \\
& T_{j}^{-1} f\left(m^{1}, \ldots, m^{j}, \ldots, m^{n}\right)=f\left(m^{1}, \ldots, m^{j}-1, \ldots, m^{n}\right)
\end{aligned}
$$

Special classes of integrable discrete nets Bobenko-Pinkall, Doliwa-Santini, Cieślínski-Doliwa-Santini, Nieszporski, ..

Discrete asymptotic nets: any point F and its all four neighbours ($T_{1} F, T_{2} F, T_{1}^{-1} F, T_{2}^{-1} F$) are co-planar.
Discrete pseudospherical surfaces: asymptotic, Chebyshev (segments joining the neighbouring points have equal lengths).
Discrete conjugate nets: planar elementary quadrilaterals. Conjugate nets: the second fundamental form is diagonal.

Circular nets (every quadrilateral is inscribed into a circle) correspond to curvature lines (fundamental forms are diagonal).
Discrete isothemic nets: the cross-ratio for any elementary quadrilateral is a negative constant. Isothermic immersions: curvature lines admit conformal parameterization.

Circular nets have scalar cross ratios

Elementary quadrilateral: four points $F, T_{k} F, T_{j} F, T_{k} T_{j} F$. Sides of the quadrilateral: $D_{k} F, D_{j} F, T_{k} D_{j} F, T_{j} D_{k} F$, where $D_{k} F:=T_{k} F-F$. We define $Q_{k j}(F):=Q\left(F, T_{k} F, T_{k j} F, T_{j} F\right)=\left(D_{k} F\right)\left(T_{k} D_{j} F\right)^{-1}\left(T_{j} D_{k} F\right)\left(D_{j} F\right)^{-1}$

Proposition. The net $F=F\left(m^{1}, \ldots, m^{n}\right)$ is a circular net if and only if $Q_{k j}(F) \in \mathbb{R}$ for any $k, j \in\{1, \ldots, n\}$.

Circular nets by the Sym formula

We consider the Clifford algebra $\mathcal{C}(V \oplus W)$, where $\operatorname{dim} V=q, \operatorname{dim} W=r$. Let Ψ satisfies:

$$
T_{j} \Psi=U_{j} \Psi, \quad(j=1, \ldots, n)
$$

where $n \leqslant q$, and $U_{j}=U_{j}\left(m^{1} \ldots, m^{n}, \lambda\right) \in \Gamma_{0}(V \oplus W)$ have the following Taylor expansion around a given λ_{0} :

$$
\begin{aligned}
& U_{j}=\mathbf{e}_{j} B_{j}+\left(\lambda-\lambda_{0}\right) \mathbf{e}_{j} A_{j}+\left(\lambda-\lambda_{0}\right)^{2} C_{j} \ldots, \\
& A_{j} \in W, \quad B_{j} \in V, \quad \mathbf{e}_{j} \in V,
\end{aligned}
$$

A_{j}, B_{j} are invertible, and $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are orthogonal unit vectors.

Circular nets by the Sym formula (continued)

Proposition. Discrete net F, defined by the Sym-Tafel formula

$$
F=\left.\Psi^{-1} \Psi_{, \lambda}\right|_{\lambda=\lambda_{0}},
$$

(where ψ solves the above linear problem and mild technical assumptions that at least at a single point $m_{0}^{1}, \ldots, m_{0}^{n}$ we have: $\left.\Psi\left(m_{0}^{1}, \ldots, m_{0}^{n}, \lambda_{0}\right) \in \Gamma_{0}(V), \Psi\left(m_{0}^{1}, \ldots, m_{0}^{n}, \lambda\right) \in \Gamma_{0}(V \oplus W)\right)$,
can be identified with a circular net in $V \wedge W$ provided that

$$
A_{k}\left(T_{k} A_{j}\right)^{-1}\left(T_{j} A_{k}\right) A_{j}^{-1} \in \mathbb{R}
$$

Namely: $\left(F\left(m^{1}, \ldots, m^{n}\right)-F\left(m_{0}^{1}, \ldots, m_{0}^{n}\right)\right) \in V \wedge W$.

Special projections generalizing Sym's approach.

Let $P: W \rightarrow \mathbb{R}$ is a projection $\left(P^{2}=P\right)$.
We extend its action on $V \wedge W$ (in order to get $P: V \wedge W \rightarrow V$) in a natural way. Namely, if $\mathbf{v}_{k} \in V$ and $\mathbf{w}_{k} \in W$, then

$$
P\left(\sum_{k} \mathbf{v}_{k} \mathbf{w}_{k}\right):=\sum_{k} P\left(\mathbf{w}_{k}\right) \mathbf{v}_{k} .
$$

Proposition. Let P is a projection and F is defined by the Sym-Tafel formula. Then $P(F)$ is a circular net.

Discrete isothermic surfaces in \mathbb{R}^{q}

$$
\begin{aligned}
& U_{j}=\mathbf{e}_{j} B_{j}+\lambda \mathbf{e}_{j} A_{j} \quad(j=1,2), \\
& A_{j} \in W \simeq \mathbb{R}^{1,1}, \quad B_{j} \in V \simeq \mathbb{R}^{q}, \quad \mathbf{e}_{j} \in V \\
& \left(C_{j}=0, \quad \lambda_{0}=0\right), \\
& \text { projection: } \quad P\left(\mathbf{e}_{q+1}\right)=1, \quad P\left(\mathbf{e}_{q+2}\right)= \pm 1
\end{aligned}
$$

Smooth isothermic immersions admit isothermic (isometric) parameterization of curvature lines. In these coordinates $d s^{2}=\Lambda\left(d x^{2}+d y^{2}\right)$ and the second fundamental form is diagonal.

Discrete Guichard nets in \mathbb{R}^{q}

Conjecture:

$$
\begin{aligned}
& U_{j}=\mathbf{e}_{j} B_{j}+\lambda \mathbf{e}_{j} A_{j}, \\
& A_{j} \in W \simeq \mathbb{R}^{2,1}, \quad B_{j} \in V \simeq \mathbb{R}^{q}, \quad \mathbf{e}_{j} \in V \\
& \left(C_{j}=0, \quad \lambda_{0}=0\right) \\
& P\left(\mathbf{e}_{q+1}\right)=\cos \varphi_{0}, P\left(\mathbf{e}_{q+2}\right)=\sin \varphi_{0}, P\left(\mathbf{e}_{q+3}\right)= \pm 1
\end{aligned}
$$

Guichard nets in \mathbb{R}^{3} are characterized by the constraint $H_{1}^{2}+H_{2}^{2}=H_{3}^{2}$, where H_{j} are Lamé coefficients, i.e., $d s^{2}=H_{1}^{2} d x^{2}+H_{2}^{2} d y^{2}+H_{3}^{2} d z^{2}$.

Discretization of some class of orthogonal nets in \mathbf{R}^{n}

$$
\begin{aligned}
& U_{j}=\mathbf{e}_{j} B_{j}+\lambda \mathbf{e}_{j} A_{j}, \\
& A_{j} \in W \simeq \mathbb{R}^{n}, \quad B_{j} \in V \simeq \mathbb{R}^{n}, \quad \mathbf{e}_{j} \in V, \\
& \left(C_{j}=0, \quad \lambda_{0}=0\right), \\
& P\left(\mathbf{e}_{n+k}\right)=1, \quad P\left(\mathbf{e}_{n+j}\right)=0(j \neq k), \quad k \text { - fixed }
\end{aligned}
$$

This class in the smooth case is defined by the constraint $H_{1}^{2}+\ldots+H_{n}^{2}=$ const, where $d s^{2}=H_{1}^{2}\left(d x^{1}\right)^{2}+\ldots+H_{n}^{2}\left(d x^{n}\right)^{2}$.

Discrete Lobachevsky n-spaces in $\mathbb{R}^{2 n-1}$

$$
\begin{aligned}
& U_{j}=\mathbf{e}_{j}\left(\frac{1}{2}\left(\lambda-\frac{1}{\lambda}\right) A_{j}+\frac{1}{2}\left(\lambda+\frac{1}{\lambda}\right) P_{j}+Q_{j}\right), \\
& V=V_{1} \oplus V_{2}, \quad V_{1} \simeq \mathbb{R}^{n}, \quad V_{2} \simeq \mathbb{R}^{n-1}, \quad W \simeq \mathbb{R}, \quad \lambda_{0}=1, \\
& \mathbf{e}_{j} \in V_{1}, \quad Q_{j} \in V_{1}, \quad P_{j} \in V_{2}, \quad A_{j} \in W, \quad P_{j}+Q_{j}=B_{j} .
\end{aligned}
$$

In the continuum limit we get immersions with the constant negative sectional curvature (Lobachevsky spaces).

Conclusions and open problems

- Cliford cross ratio is a convenient tool to study circular nets (discrete analogue of curvature lines).
- Open problem: find purely geometric characterization of discrete nets generated by the Sym formula
- Open problem: Clifford cross ratio identities.
- Plans: Darboux-Bäcklund transformations and special solutions.
Thank you for attention!

Conclusions and open problems

- Cliford cross ratio is a convenient tool to study circular nets (discrete analogue of curvature lines).
- Open problem: find purely geometric characterization of discrete nets generated by the Sym formula
- Open problem: Clifford cross ratio identities.
- Plans: Darboux-Bäcklund transformations and special solutions.
Thank you for attention!

Conclusions and open problems

- Cliford cross ratio is a convenient tool to study circular nets (discrete analogue of curvature lines).
- Open problem: find purely geometric characterization of discrete nets generated by the Sym formula
- Open problem: Clifford cross ratio identities.
- Plans: Darboux-Bäcklund transformations and special solutions.

Thank you for attention!

Original sources on the van der Pauw method

嗇 Leo J. van der Pauw,
A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,
Philips Research Reports 13 (1958) 1-9.
Reo J. van der Pauw,
A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape, Philips Technical Review 20 (1958) 220-224.

Both papers available through Wikipedia. Moreover, perpaps:
Q L.V. Bewley.
Two-dimensional fields in electrical engineering.
MacMillan, New York 1948.

Generalization of the Riemann mapping theorem. Uniformization theorem [Riemann-Poincaré-Koebe]

Uniformization theorem extends the Riemann mapping theorem on Riemann surfaces:

Any simply connected Riemann surface is conformally equivalent (biholomorphically isomorphic) to

- unit disc $|z|<1$
- complex plane \mathbb{C}
- Riemann sphere $\mathbb{C} P(1)$

