Canonical Coordinate Transformations in Quantum Mechanics

Part 1

Maciej Błaszak and Ziemowit Domański

Adam Mickiewicz University, Faculty of Physics
Division of Mathematical Physics

$$
\text { June 21-22, } 2012
$$

Motivation

Classical harmonic oscillator

Hamiltonian:

$$
H(x, p)=\frac{1}{2}\left(p^{2}+\omega^{2} x^{2}\right)
$$

Born's quantization rule

$$
x \rightarrow \hat{q}=x, \quad p \rightarrow \hat{p}=-i \hbar \partial_{x}, \quad \text { symmetric ordering of } \hat{q}, \hat{p}
$$

After applying it to the Hamiltonian of the harmonic oscillator:

$$
\hat{H}=H(\hat{q}, \hat{p})=\frac{1}{2}\left(\hat{p}^{2}+\omega^{2} \hat{q}^{2}\right)
$$

Motivation

Perform a classical canonical transformation of coordinates $T:(\mathbb{R} \backslash\{0\}) \times \mathbb{R} \rightarrow(\mathbb{R} \backslash\{0\}) \times \mathbb{R}, T\left(x^{\prime}, p^{\prime}\right)=(x, p)$ where

$$
x=\left\{\begin{array}{rl}
\sqrt{\left|2 x^{\prime}\right|}, & x^{\prime}>0 \\
-\sqrt{\left|2 x^{\prime}\right|}, & x^{\prime}<0
\end{array}, \quad p=p^{\prime} \sqrt{\left|2 x^{\prime}\right|}\right.
$$

receiving

$$
H^{\prime}\left(x^{\prime}, p^{\prime}\right)=H\left(T\left(x^{\prime}, p^{\prime}\right)\right)=\left|x^{\prime}\right| p^{\prime 2}+\omega^{2}\left|x^{\prime}\right| .
$$

Born's quantization rule:

$$
\hat{H}^{\prime}=H^{\prime}\left(\hat{q}^{\prime}, \hat{p}^{\prime}\right)=\frac{1}{2}\left|\hat{q}^{\prime}\right| \hat{p}^{\prime 2}+\frac{1}{2} \hat{p}^{\prime 2}\left|\hat{q}^{\prime}\right|+\omega^{2}\left|\hat{q}^{\prime}\right| .
$$

Hamiltonians \hat{H} and \hat{H}^{\prime} are not unitarily equivalent — they describe different quantum systems. Inconsistency of the quantization of classical Hamiltonian systems?

Quantum mechanics on phase space

The idea of a quantization of a classical Hamiltonian system

A deformation, with respect to the Planck's constant \hbar, of a classical Hamiltonian system:

- a deformation of a phase space (a Poisson manifold) to a noncommutative phase space (a noncommutative Poisson manifold),
- a deformation of a classical space of states to a quantum space of states.

A deformation of a phase space

A Poisson manifold (M, \mathcal{P}) (\mathcal{P} being a Poisson tensor) is fully described by a Poisson algebra $\mathcal{A}_{C}=\left(C^{\infty}(M), \cdot,\{\cdot, \cdot\}\right)$. By deforming \mathcal{A}_{C} to some noncommutative algebra $\mathcal{A}_{Q}=\left(C^{\infty}(M), \star, \llbracket \cdot, \cdot \rrbracket\right)$, where \star is some noncommutative associative product of functions being a deformation of a point-wise product • and $\llbracket \cdot, \cdot \rrbracket$ is a deformation of the Poisson bracket $\{\cdot, \cdot\}$, we can think of \mathcal{A}_{Q} as describing a noncommutative Poisson manifold.

Quantum mechanics on phase space

Moyal quantization scheme

Let $M=\mathbb{R}^{2}$ and $\mathcal{P}=\partial_{x} \wedge \partial_{p}$. Define the \star-product by

$$
f \star g=f \exp \left(\frac{1}{2} i \hbar \overleftarrow{\partial}_{x} \vec{\partial}_{p}-\frac{1}{2} i \hbar \overleftarrow{\partial}_{p} \vec{\partial}_{x}\right) g, \quad f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)
$$

and the deformed Poisson bracket by

$$
\llbracket f, g \rrbracket=\frac{1}{i \hbar}[f, g]=\frac{1}{i \hbar}(f \star g-g \star f), \quad f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)
$$

Space of states

Define a quantum space of states as a Hilbert space $\mathcal{H}=L^{2}\left(\mathbb{R}^{2}\right)$. It is possible to define the \star-product on \mathcal{H} by extending it from the algebra $C^{\infty}\left(\mathbb{R}^{2}\right)$.

Quantum mechanics on phase space

Observables and states as operators

Observables $A \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and states $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$ can be treated as operators \hat{A} and $\hat{\Psi}$ defined on the Hilbert space of states $L^{2}\left(\mathbb{R}^{2}\right)$ by the following prescription

$$
\hat{A}=A \star, \quad \hat{\Psi}=\sqrt{2 \pi \hbar} \Psi \star .
$$

The operator \hat{A} can be written as a symmetrically-ordered function A of operators of position $\hat{q}_{M}=x \star=x+\frac{1}{2} i \hbar \partial_{p}$ and momentum $\hat{p}_{M}=p \star=p-\frac{1}{2} i \hbar \partial_{x}$:

$$
\hat{A}=A \star=A_{M}\left(\hat{q}_{M}, \hat{p}_{M}\right) .
$$

Canonical transformations of coordinates in phase space quantum mechanics

Transformations of phase space coordinates

A transformation of phase space coordinates is defined as in classical mechanics, i.e. as a smooth bijective map

$$
T: \mathbb{R}^{2} \supset U \ni\left(x^{\prime}, p^{\prime}\right) \rightarrow(x, p) \in W \subset \mathbb{R}^{2}
$$

We will assume that T is defined on almost the whole phase space, i.e. $\mathbb{R}^{2} \backslash U$ and $\mathbb{R}^{2} \backslash W$ are sets of measure zero.

Observables $A \in C^{\infty}\left(\mathbb{R}^{2}\right)$ and states $\psi \in L^{2}\left(\mathbb{R}^{2}\right)$ transform according to the formulae

$$
A^{\prime}\left(x^{\prime}, p^{\prime}\right)=A\left(T\left(x^{\prime}, p^{\prime}\right)\right), \quad \Psi^{\prime}\left(x^{\prime}, p^{\prime}\right)=\Psi\left(T\left(x^{\prime}, p^{\prime}\right)\right)
$$

Canonical transformations of coordinates in phase space quantum mechanics

The \star-product has to transform according to the formula

$$
(f \star g) \circ T=(f \circ T) \star_{T}^{\prime}(g \circ T), \quad f, g \in C^{\infty}\left(\mathbb{R}^{2}\right) .
$$

The \star_{T}^{\prime}-product is in fact given by the following equation

$$
f \star_{T}^{\prime} g=f \exp \left(\frac{1}{2} i \hbar \overleftarrow{D_{x^{\prime}}} \overrightarrow{D_{p^{\prime}}}-\frac{1}{2} i \hbar \overleftarrow{D_{p^{\prime}}} \overrightarrow{D_{x^{\prime}}}\right) g
$$

where vector fields $D_{x^{\prime}}, D_{p^{\prime}}$ are derivations $\partial_{x}, \partial_{p}$ transformed by the transformation T according to the formulae

$$
\begin{array}{ll}
\left(\partial_{x} f\right) \circ T=D_{x^{\prime}}(f \circ T), & f \in C^{\infty}\left(\mathbb{R}^{2}\right), \\
\left(\partial_{p} f\right) \circ T=D_{p^{\prime}}(f \circ T), & f \in C^{\infty}\left(\mathbb{R}^{2}\right) .
\end{array}
$$

Canonical transformations of coordinates in phase space quantum mechanics

Example: Linear transformations

$$
(x, p)=T\left(x^{\prime}, p^{\prime}\right)=\left(d x^{\prime}-b p^{\prime},-c x^{\prime}+a p^{\prime}\right),
$$

where $a, b, c, d \in \mathbb{R}, a d-b c=1$. The linear transformation T is generated by a function $F\left(x, x^{\prime}\right)=\frac{1}{b} x x^{\prime}-\frac{a}{2 b} x^{2}-\frac{d}{2 b} x^{\prime 2}$, i.e.

$$
p=\frac{\partial F}{\partial x}\left(x, x^{\prime}\right), \quad p^{\prime}=-\frac{\partial F}{\partial x^{\prime}}\left(x, x^{\prime}\right)
$$

The linear transformation T preserves the \star-product, i.e.

$$
(f \star g) \circ T=(f \circ T) \star^{\prime}(g \circ T), \quad f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)
$$

where

$$
\star^{\prime}=\exp \left(\frac{1}{2} i \hbar \overleftarrow{\partial}_{x^{\prime}} \vec{\partial}_{p^{\prime}}-\frac{1}{2} i \hbar \overleftarrow{\partial}_{p^{\prime}} \vec{\partial}_{x^{\prime}}\right)
$$

Canonical transformations of coordinates in phase space quantum mechanics

Example: A class of nonlinear transformations

$$
(x, p)=T\left(x^{\prime}, p^{\prime}\right)=\left(-a p^{\prime}-a \phi^{\prime}\left(x^{\prime}\right), a^{-1} x^{\prime}\right) .
$$

where $a \in \mathbb{R}, a \neq 0, \phi$ is an arbitrary smooth function. The transformation T is generated by the function $F\left(x, x^{\prime}\right)=a^{-1} x x^{\prime}+\phi\left(x^{\prime}\right)$. The Moyal \star-product transforms to the following product

$$
\star_{T}^{\prime}=\exp \left(\frac{1}{2} i \hbar \overleftarrow{D_{x^{\prime}}} \overrightarrow{D_{p^{\prime}}}-\frac{1}{2} i \hbar \overleftarrow{D_{p^{\prime}}} \overrightarrow{D_{x^{\prime}}}\right)
$$

where

$$
D_{x^{\prime}}=-a^{-1} \partial_{p^{\prime}}, \quad D_{p^{\prime}}=a \partial_{x^{\prime}}-a \phi^{\prime \prime}\left(x^{\prime}\right) \partial_{p^{\prime}} .
$$

Canonical transformations of coordinates in phase space quantum mechanics

Example: Nonlinear point transformations

$$
(x, p)=T\left(x^{\prime}, p^{\prime}\right)=\left(\phi\left(x^{\prime}\right),\left(\phi^{\prime}\left(x^{\prime}\right)\right)^{-1} p^{\prime}\right)
$$

where ϕ is an arbitrary smooth bijective function. The transformation T is generated by the function $F\left(x^{\prime}, p\right)=-p \phi\left(x^{\prime}\right)$, i.e.

$$
x=-\frac{\partial F}{\partial p}\left(x^{\prime}, p\right), \quad p^{\prime}=-\frac{\partial F}{\partial x^{\prime}}\left(x^{\prime}, p\right) .
$$

The Moyal \star-product transforms to the following product

$$
\star_{T}^{\prime}=\exp \left(\frac{1}{2} i \hbar \overleftarrow{D_{x^{\prime}}} \overrightarrow{D_{p^{\prime}}}-\frac{1}{2} i \hbar \overleftarrow{D_{p^{\prime}}} \overrightarrow{D_{x^{\prime}}}\right)
$$

where

$$
D_{x^{\prime}}=\left(\phi^{\prime}\left(x^{\prime}\right)\right)^{-1} \partial_{x^{\prime}}+\left(\phi^{\prime}\left(x^{\prime}\right)\right)^{-2} \phi^{\prime \prime}\left(x^{\prime}\right) p^{\prime} \partial_{p^{\prime}}, \quad D_{p^{\prime}}=\phi^{\prime}\left(x^{\prime}\right) \partial_{p^{\prime}}
$$

Special case of the previous example

For

$$
\phi\left(x^{\prime}\right)=\left\{\begin{aligned}
\sqrt{\left|2 x^{\prime}\right|}, & x^{\prime}>0 \\
-\sqrt{\left|2 x^{\prime}\right|}, & x^{\prime}<0
\end{aligned}\right.
$$

we receive the following point transformation

$$
(x, p)=T\left(x^{\prime}, p^{\prime}\right)=\left\{\begin{array}{ll}
\left(\sqrt{\left|2 x^{\prime}\right|}, p^{\prime} \sqrt{\left|2 x^{\prime}\right|}\right), & x^{\prime}>0 \\
\left(-\sqrt{\left|2 x^{\prime}\right|}, p^{\prime} \sqrt{\left|2 x^{\prime}\right|}\right), & x^{\prime}<0
\end{array} .\right.
$$

The transformed Moyal product takes the form

$$
\star_{T}^{\prime}=\exp \left(\frac{1}{2} i \hbar \overleftarrow{D_{x^{\prime}}} \overrightarrow{D_{p^{\prime}}}-\frac{1}{2} i \hbar \overleftarrow{D_{p^{\prime}}} \overrightarrow{D_{x^{\prime}}}\right),
$$

where

$$
D_{x^{\prime}}=\sqrt{\left|2 x^{\prime}\right|} \partial_{x^{\prime}}-\frac{\operatorname{sgn}\left(x^{\prime}\right)}{\sqrt{\left|2 x^{\prime}\right|}} p^{\prime} \partial_{p^{\prime}}, \quad D_{p^{\prime}}=\frac{1}{\sqrt{\left|2 x^{\prime}\right|}} \partial_{p^{\prime}}
$$

Classical canonical transformations

A transformation T of coordinates is a classical canonical transformation if

$$
\left\{x^{\prime}, p^{\prime}\right\}^{\prime}=1
$$

where $\{\cdot, \cdot\}^{\prime}$ denotes a Poisson bracket transformed to the new coordinate system:

$$
\{f, g\}^{\prime}=\left\{f \circ T^{-1}, g \circ T^{-1}\right\} \circ T, \quad f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)
$$

Quantum canonical transformations

A transformation T of coordinates is a quantum canonical transformation if

$$
\llbracket x^{\prime}, p^{\prime} \rrbracket^{\prime}=1
$$

where $\llbracket \cdot, \cdot \rrbracket^{\prime}$ denotes a deformed Poisson bracket transformed to the new coordinate system:

$$
\llbracket f, g \rrbracket^{\prime}=\llbracket f \circ T^{-1}, g \circ T^{-1} \rrbracket \circ T, \quad f, g \in C^{\infty}\left(\mathbb{R}^{2}\right) .
$$

The transformations from previous examples are simultaneously classical and quantum canonical transformations.

Canonical transformations of coordinates in phase space quantum mechanics

A transformation T of coordinates transforms the space of states $L^{2}\left(\mathbb{R}^{2}\right)$ into the Hilbert space $L^{2}\left(\mathbb{R}^{2}, \mu_{T}\right)$ with the standard scalar product, where $\mathrm{d} \mu_{T}\left(x^{\prime}, p^{\prime}\right)=\left|\operatorname{det} T^{\prime}\left(x^{\prime}, p^{\prime}\right)\right| \mathrm{d} x^{\prime} \mathrm{d} p^{\prime}$. Of course, if T is also a classical canonical transformation then $\mathrm{d} \mu_{T}\left(x^{\prime}, p^{\prime}\right)=\mathrm{d} x^{\prime} \mathrm{d} p^{\prime}$, since the Jacobian of a classical canonical transformation is equal 1 .

An important observation useful when passing to the ordinary description of quantum mechanics is the following. For a given quantum canonical transformation T the transformed star-product is equivalent with the Moyal product, i.e. there exist a unique vector space automorphism S_{T} of $C^{\infty}\left(\mathbb{R}^{2}\right)$ satisfying

- $S_{T}=\sum_{k=0}^{\infty} \hbar^{k} S_{k}, S_{0}=1$,
- $S_{T}\left(f \star^{\prime} g\right)=\left(S_{T} f\right) \star_{T}^{\prime}\left(S_{T} g\right), f, g \in C^{\infty}\left(\mathbb{R}^{2}\right)$,
- $S_{T} x^{\prime}=x^{\prime}, S_{T} p^{\prime}=p^{\prime}$,
- $S_{T}\left(f^{*}\right)=\left(S_{T} f\right)^{*}, f \in C^{\infty}\left(\mathbb{R}^{2}\right)$,
where S_{k} are differential operators.

For a quantum canonical transformation T of coordinates

$$
S_{T}: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}, \mu_{T}\right)
$$

and S_{T} is a Hilbert space isomorphism.

Canonical transformations of coordinates in phase space quantum mechanics

Transformation of observables treated as operators

Let T be a quantum canonical transformation of coordinates and $A \in C^{\infty}\left(\mathbb{R}^{2}\right)$. The transformed observable $A^{\prime}=A \circ T$ can be treated as the following operator

$$
\hat{A}^{\prime}=A^{\prime} \star_{T}^{\prime}=A_{M, S_{T}}^{\prime}\left(\hat{q}_{T}^{\prime}, \hat{p}_{T}^{\prime}\right) \equiv\left(S_{T}^{-1} A^{\prime}\right)_{M}\left(\hat{q}_{T}^{\prime}, \hat{p}_{T}^{\prime}\right),
$$

where $\hat{q}_{T}^{\prime}=x^{\prime} \star_{T}^{\prime}, \hat{p}_{T}^{\prime}=p^{\prime} \star_{T}^{\prime}$.

Example: Linear transformations

For a linear transformation

$$
(x, p)=T\left(x^{\prime}, p^{\prime}\right)=\left(d x^{\prime}-b p^{\prime},-c x^{\prime}+a p^{\prime}\right)
$$

an isomorphism $S_{T}=1$.

Example: A class of nonlinear transformations

For a transformation

$$
(x, p)=T\left(x^{\prime}, p^{\prime}\right)=\left(-a p^{\prime}-a \phi^{\prime}\left(x^{\prime}\right), a^{-1} x^{\prime}\right)
$$

an isomorphism S_{T} is equal

$$
\begin{aligned}
S_{T} & =\exp \left(-\sum_{n=1}^{\infty} \frac{1}{(2 n+1)!}(-1)^{n}\left(\frac{\hbar}{2}\right)^{2 n} \phi^{(2 n+1)}\left(x^{\prime}\right) \partial_{p^{\prime}}^{2 n+1}\right) \\
& =\exp \left(\frac{i}{\hbar}\left(\phi\left(x^{\prime}+\frac{1}{2} i \hbar \partial_{p^{\prime}}\right)-\phi\left(x^{\prime}-\frac{1}{2} i \hbar \partial_{p^{\prime}}\right)-i \hbar \phi^{\prime}\left(x^{\prime}\right) \partial_{p^{\prime}}\right)\right) .
\end{aligned}
$$

Canonical transformations of coordinates in phase space quantum mechanics

Example: Nonlinear point transformations

For a point transformation

$$
(x, p)=T\left(x^{\prime}, p^{\prime}\right)=\left(\phi\left(x^{\prime}\right),\left(\phi^{\prime}\left(x^{\prime}\right)\right)^{-1} p^{\prime}\right)
$$

an isomorphism S_{T} is equal

$$
\begin{aligned}
S_{T}= & 1+\frac{1}{3!}\left(\frac{\hbar}{2}\right)^{2}\left(\phi^{\prime}\left(x^{\prime}\right)\right)^{-2}\left(\left(3\left(\phi^{\prime \prime}\left(x^{\prime}\right)\right)^{2}-\phi^{\prime}\left(x^{\prime}\right) \phi^{\prime \prime \prime}\left(x^{\prime}\right)\right) p^{\prime} \partial_{p^{\prime}}^{3}\right. \\
& \left.+3 \phi^{\prime}\left(x^{\prime}\right) \phi^{\prime \prime}\left(x^{\prime}\right) \partial_{x^{\prime}} \partial_{p^{\prime}}^{2}+3\left(\phi^{\prime \prime}\left(x^{\prime}\right)\right)^{2} \partial_{p^{\prime}}^{2}\right)+o\left(\hbar^{4}\right) .
\end{aligned}
$$

Canonical transformations of coordinates in phase space quantum mechanics

Special case of the previous example

For a point transformation

$$
(x, p)=T\left(x^{\prime}, p^{\prime}\right)= \begin{cases}\left(\sqrt{\left|2 x^{\prime}\right|}, p^{\prime} \sqrt{\left|2 x^{\prime}\right|}\right), & x^{\prime}>0 \\ \left(-\sqrt{\left|2 x^{\prime}\right|}, p^{\prime} \sqrt{\left|2 x^{\prime}\right|}\right), & x^{\prime}<0\end{cases}
$$

an isomorphism S_{T} is equal

$$
\begin{aligned}
S_{T} & =\exp \left(\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{\hbar}{2}\right)^{2 n}\left(A_{n} \operatorname{sgn}\left(x^{\prime}\right)\left|2 x^{\prime}\right|^{-2 n+1} \partial_{x^{\prime}} \partial_{p^{\prime}}^{2 n}-B_{n}\left|2 x^{\prime}\right|^{-2 n} \partial_{p^{\prime}}^{2 n}\right)\right) \\
& =1-\frac{1}{8} \hbar^{2} \operatorname{sgn}\left(x^{\prime}\right)\left|2 x^{\prime}\right|^{-1} \partial_{x^{\prime}} \partial_{p^{\prime}}^{2}+\frac{1}{8} \hbar^{2}\left|2 x^{\prime}\right|^{-2} \partial_{p^{\prime}}^{2}+o\left(\hbar^{4}\right),
\end{aligned}
$$

where A_{n}, B_{n} are some rational constants.

The End of

Part 1

