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Abstract Random Matrix models, nonlinear integrable waves, Painleve’ transcendents, determinantal random point processes seem
very unrelated topics.

They have, however, a common point in that they can be formulated or related to a Riemann-Hilbert problem, which then enters

prominently as a very versatile tool. Its importance is not only in providing a common framework, but also in that it opens the way to

rigorous asymptotic analysis using the nonlinear steepest descent method. I will briefly sketch and review some results in the above

mentioned areas.
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Outline

Nonlinear Schrödinger and KdV

Orthogonal polynomials

Hermitean Random Matrices

Determinantal Random Point Fields and Gap probabilities;

Painlevé equations (Example: Painlevé II)

Tying it all together: Riemann–Hilbert problems.
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Nonlinear Schrödinger equation

The focusing Nonlinear Schrödinger (NLS) equation,

i~Btq � �~2B2
xq � 2|q|2q (1)

models self-focusing and self-modulation (optical fibers). It is integrable by inverse
scattering methods (Zakharov–Shabat). It exhibits interesting behaviour as ~ Ñ 0
(modulational instability); in different regions of spacetime, there are different
asymptotic behaviors (phases) separated by breaking curves (or nonlinear caustics).
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KdV equation and small–dispersion

The KdV equation

ut � uux � ε2uxxx , upx, 0q � u0pxq rapidly decaying (2)

For ε � 0 we have Burger’s equation ut � uux, solved by the hodograph method
(characteristics), locally

fpuq � x� u t fpuq � u�1
0 (3)

It shocks at t0 � 1
maxu10pxq

.

The small-dispersion also exhibits interesting behavior:

Near the point of gradient catastrophe px0, t0q its behavior is described in terms

of a generalization of the Painlevé I equation with critical scale ~
6
7 ;

Near the trailing edge (after the time t0) it is described by the Hastings-McLeod

solution of the Painlevé II equation y2psq � sypsq � 2y3psq with critical scale ~
2
3 ;

Near the leading edge the behavior is described in terms of elementary function
(superposition of soliton solutions) with scale ~ ln ~.
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KdV-small dispersion KdV-zero dispersion = Burgers
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Orthogonal Polynomials

Let V pzq : R Ñ R be a real analytic (or smooth) function (potential) growing s.t.

lim inf |z|Ñ8
V pzq
ln |z|

� �8. Define the Orthgonal Polynomials as the polynomial basis

for L2pR, e�NV pzq dzq»
R
pnpzqpmpzqe�NV pzq dz � hnδnm, hn � }pn}2, pnpxq � xn � . . . (4)

They satisfy the following three term recurrence relation

zpnpzq � pn�1pzq � αnpnpzq � λnpn�1pzq (5)

If V pzq � V0pzq � xz then the recurrence coefficients solve the Toda lattice equations

d2

dx2
µnpxq � eµn�µn�1 � eµn�1�µn , eµnpxq :� hnpxq (6)

Here hnpxq plays the rôle of qpx, tq.
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Random Matrix Models

The typical setup: HN :� tM Hermitean N �N matrix (M �M:)u.

dµ :� dMe�trV pMq (7)

dM �
¹
i j

d<pMijq d=pMijq
¹
k

dMkk (8)

Z1MM
N rV s :�

»
dµ � Partition function. (9)

Questions of interest (among others)

Characterize the statistical properties of the eigenvalues of M using the
probability measure pZ1MM

N q�1 dµ.

Study their limits as the size N Ñ8 (and V is suitably scaled).
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It can be shown that

ZN rV s �
»
UpNq

dU

»
RN

N¹
i�1

dxi∆pXq2e�N
°N
i�1 V pxiq

∆pXq :�
¹
i j

pxi � xjq � det

�
�����

1 x1 . . . xN�1
1

1 x2 . . . xN�1
2

... . . .
...

1 xN . . . xN�1
N

�
����

Up to the volume of the unitary group (which can by computed) the partition function
shows that the eigenvalues behave like a random Coulomb gas with (unnormalized)
density

ρN px1, . . . , xN q �
1

ZN
exp�N2

�
� 1

N

Ņ

j�1

V pxjq � 2

N2

¸
j�k

ln |xj � xk|
�
� (10)
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Connection to OPs: Dyson’s theorem and Determinantal
Random Point Fields

One can show that the correlation functions

ρkpx1, . . . , xkq :� N !

pN � kq!k!

»
RN�k

dxk�1 � � � dxNρN px1, . . . , xN q (11)

define a random point process of determinantal form

ρkpx1, . . . , xkq � det rKN pxj , x`qsj,`¤k (12)

KN px, yq � e�
N
2
pV pxq�V pyqq

N�1¸
j�0

1

hj
pjpxqpjpyq (13)

where pj are the orthogonal polynomials of e�ΛV pxq dx.

This last formula shows that the statistics of the eigenvalues of the RM is an example
of determinantal random point field (process); all correlation functions are expressed
in terms of determinants of a single kernel Kpx, yq.
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Main source of inspiration: the GUE

This is the simplest model, with V pxq � x2

dµ9dMe�NTrM2 � dMe�
N
2

°
i j |Mij |

2�N
°
j |Mjj |

2

(14)

The entries are independent and normal. The eigenvalues xj are not independent:

dµpx1, . . . , xN q9e�
N
2

°
i x

2
i
¹
i j

|xi � xj |2 (15)

The density of eigennvalues can be computed in closed form and has a limit as
N Ñ8 given by the Wigner semicircle law

ρW pxq � 1

π

a
2� x2 (16)
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Universality (edge)

If we zoom in to the edge of the spectrum at x � ?
2

N
1
3

?
2

2
ρN

�?
2�

?
2

2N
2
3

ξ

�
ÝÑ
NÑ8

�
Ai1pξq�2 � ξAi2pξq (17)

were Aipξq is the Airy function, (special) solution of the Airy equation

f2pξq � ξfpξq (18)
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Figure: Comparison between the actual density and the Airy density (in red )

11 / 30



Gap probability, Tracy-Widom distro. and Painlevé II

The behavior is universal: the constants may change but the scaling and the limit is
independent of the matrix model.
Tracy and Widom were studying the gap probability of eigenvalues of the Gaussian
random matrix model in a certain scaling regime near the edge of the spectrum

FN pxq :� Ppλmax   xq (19)

with λmax the largest eigenvalue.
Then

F pxq :� lim
NÑ8

FN

�?
2�

?
2ξ

2N
2
3

�
� exp

�
�
» 8
ξ
ps� ξqypsq2 ds



(20)

where ypxq is the Hastings–McLeod solution of the Painlevé II equation, namely the
unique solution of

y2 � ξy � 2y3 (21)

that has the asymptotics ypξq � Aipξq as ξ Ñ8. The same distribution appears in
other areas: if `N pπq is the length of the longest increasing subsequence of the
random permutation π P SN then

lim
NÑ8

Prob

�
`N � 2

?
N

N
1
6

¤ ξ

�
� e

�
³
8
ξ ps�ξqypsq

2 ds � TW distro (22)
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Random Point Fields (Processes)

We refer to the excellent review of A. Soshnikov [’00].

Definition

A Random Point Process is a probability on the space of configuration of N ¤ 8
points in a configuration measure space pX, dxq (e.g. R). It is determined by the
correlation functions

ρkpx1, x2, . . . , xkq
¹

dxj � E pNumber of particles in each rxj , xj � dxjsq (23)

It may depend on parameters (time ñ nonstationary RPP)

If Bj are (Borel) subsets of X and #j � number of points in Bj (an integer-valued
random variable) then the above readsC

m¹
j�1

�#j
kj


G
� 1±m

j�1 kj !

»
B
k1
1 �...B

km
m

ρkpx1, . . . , xk1 , xk1�1 . . . qdkx (24)

where k � °m
j�1 kj .
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Gap probability

Question

What is the probability of finding zero (`) particles in a subset B � X?

B� 7B
k


F
� 1

k!

»
Bk

ρkpx1, . . . xkq dkx �
8̧

n�k

�n
k

	
P t there are n particles in Bu

(25)
Now multiply by p�1qk and sum over k ¥ 1:

8̧

k�1

p � 1qk 1

k!

»
Bk

ρkpx1, . . . xkq dkx �
8̧

k�1

p � 1qk
8̧

n�k

�n
k

	
P tn particles in Bu � (26)

�
8̧

n�1

P tn particles in Bu
ņ

k�1

�n
k

	
p � 1qk � �

8̧

n�1

P tn particles in Bu � (27)

� �1� P t0 particles in Bu (28)

We now interchange the summations...
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The sum over k is equal to p1� 1qn � 1 � �1:
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ņ

k�1

�n
k

	
p � 1qk � �

8̧

n�1

P tn particles in Bu � (27)

� �1� P t0 particles in Bu (28)

The sum over the probabities of having n ¥ 0 particles must be one! So we have
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P t0 particles in Bu � 1�
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We can repeat all by multiplying by p�zqk (z an indeterminate) to get the
generating function
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Generation function of occupation numbers

FBpzq � 1�
8̧

k�1

p�zqk
k!

»
Bk

ρkpx1, . . . xkqdkx �
A
p1� zq7B

E
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Generating functions

In general

Definition

The generating functions of the occupation numbers in the sets Bj

F~Bpz1, . . . , zmq :�
C

m¹
j�1

p1� zjq#j
G
�

8̧

`1,...,`m�0

C
m¹
j�1

�#j
kj



p�zjq`j

G
(28)

We take the simplest case of one set (as before), for simplicity:

FBpzq :�
A
p1� zq#B

E
�

8̧

k�0

B�#B
k



p�zqk

F
(29)

We now introduce a special class of Random Point Fields, called Determinantal
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Determinantal Random Point Fields

Definition

The RPP is determinantal (DRPP) if all corr. functions are determinants of a Kernel

Kpx, yq : X2 Ñ R (30)

ρkpx1, . . . , xkq � det

�
����

Kpx1, x1q Kpx1, x2q . . . Kpx1, xkq
Kpx2, x1q . . .

...
Kpxk, x1q . . . Kpxk, xkq

�
���� (31)

It is clear that a necessary condition for the well-definiteness is that the above
determinants are all positive (Total Positivity (TP) of the kernel).
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One then has

Lemma

The generating function F~Bp~zq admits the following representation

F~Bpz1, . . . , zmq :�
C

m¹
j�1

p1� zjq#j
G
� det

�
�Id�

m̧

j�1

zjK

����
Bj

�
� (32)

Thus the probability of observing no particles in a subset Bj � R (zj � 1) is given by
a Fredholm determinant. If the configuration space X is of the form X0 � t1, . . . , ru
then the scalar kernel on X is the same as a r � r matrix valued kernel on X0.
There is a condition that K as an integral operator on L2pX, dxq must satisfy so that
the process is well-defined and this is that its (operator) norm is ¤ 1. We now prove
this lemma for the simplest case; Skip Proof
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One then has

Lemma

The generating function FBp~zq admits the following representation

FBpzq :�
A
p1� zq#B

E
� det

�
Id� zK

����
B

�
(32)

Proof. We have seen before that

FBpzq � 1�
8̧

k�1

p�zqk
k!

»
Bk

ρkpx1, . . . xkq dkx �
A
p1� zq7B

E
(33)

But the correlations are determinants! Hence

� 1�
8̧

k�1

p�zqk
k!

»
Bk

det
�
Kpxi, xjq

�
i,j¤k

dkx (34)

...and this is the definition of Fredholm determinant, to be seen now.
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Fredholm determinants

Given an integral operator K : L2pX, dxq Ñ L2pX, dxq then

pKfqpxq �
»
X
Kpx, yqfpyq dy (35)

detpId� zKq � 1�
8̧

n�1

p�zqn
n!

»
Xn

det rKpxj , xkqsj,k¤n dx1 . . . dxn. (36)

The series defines an entire function of z as long as K is trace-class. For sufficiently
small z (less than the spectral radius of K) then the following can be used equivalently

ln detpId� zKq � �
8̧

n�1

zn

n
TrKn (37)

Remark

The definition of Fredholm determinant coincides with the usual determinant for
finite-dimensional matrices (if the measure dx is finitely supported, i.e.).
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I will now show how these topics, NLS, KdV, OPs, RM, RPP, Fredholm dets, can be
addressed using a very versatile tool which has appeared in many facies also as Lax
pairs and it is pervasive in all integrable systems. The tool is often referred to as a
Riemann–Hilbert Problem (RHP); the name refers (with a stretch) to one of Hilbert
problems, namely, the reconstruction of a matrix ODE with Fuchsian singularities
given its monodromy representation. However nowadays it takes a wider scope, as we
shall see momentarily.
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The common feature: Riemann–Hilbert problems

OPs, NLS, KdV, Gap probatilities, Painlevé equations, etc. are related to a particular
type of boundary value problem in the complex plane. A Riemann–Hilbert problem is
a boundary–value problem for a matrix–valued, piecewise analytic function Γpzq. We
will not enter in the details of smoothness. Everything is assumed smooth enough.

Problem

Let Σ be an oriented (union of) curve(s) and Mpzq a (sufficiently smooth) matrix
function defined on Σ. Find a matrix-valued function Y pzq with the properties that

Y pzq is analytic on CzΣ;

limzÑ8 Y pzq � 1 (or some other normalization);

for all z P Σ, denoting by Y pzq� the (nontangential) boundary values of Y pzq
from the left/right of Σ, we have

Y�pzq � Y�pzqMpzq . (38)

+
+

+

+
+

+
+

+
+++

+

+

+

+
+

+ + + +
+

+
+

+

+

--
-

-

-

-

-

-

-

-
-

-
----

-
-

-

-

-

-

- - -
-

--
-

-
-

Y�pzq

Σ

Y�pzq � Y�pzqMpzq
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In the scalar case, a RHP is reducible to the Sokhotsky-Plemelji formula and a
solution can be written explicitly as a Cauchy transform;

Theorem (Sokhotsky-Plemelji formula)

Let hpwq be α–Hölder on Σ and

fpzq :� 1

2iπ

»
Σ

hpwq dw

w � z
(39)

Then f�pwq � f�pwq � hpwq and f�pwq � f�pwq �: Hphqpwq exists (the Cauchy
principal value).

In the matrix case -however- the solution cannot be written explicitly (at best an
integral equation can be derived) and hence the problem is genuinely transcendental.

We will now parade the Riemann–Hilbert problems that are associated to each of the
objects introduced earlier.
We will then conclude with some remarks on their practical use.
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Orthogonal polynomials and Riemann–Hilbert problems

Theorem (Fokas-Its-Kitaev ’92)

The solution of the following RHP determines the OPs

Γ�pzq � Γ�pzq
�
1 e�V pzq

0 1

�
, z P R (40)

Γpzq � �
1�Opz�1q� �zn 0

0 z�n

�
(41)

where pnpxq � Γ11pzq is the n-th orthogonal polynomial. Moreover

hn � �2iπ lim
zÑ8

zn�1Γ12pzq (42)

Theorem

The previous Problem admits a unique solution of the form

Γnpzq :�

�
�����

pnpzq 1

2iπ

»
R

pnpxqe�V pxq dx

x� z

�2iπ

hn�1
pn�1pzq �1

hn�1

»
R

pn�1pxqe�V pxq dx

x� z

�
����� (43)

where pn, pn�1 are the monic orthogonal polynomials for the measure e�V pxq dx 22 / 30



NLS and RHP

The nonlinear Schrödinger equation (in 1 spatial dimension)

i~qtpx, tq � �~2qxxpx, tq � 2|qpx, tq|2qpx, tq (44)

The version with the � is called defocusing while the other is called focusing.

Theorem (Zakharov)

Let Γpz;x, tq be a 2� 2 matrix, analytic in z P CzR, admitting (nontangential)
boundary values on R from the top/bottom, denoted Γ�pz;x, tq and such that

Γ�pz;x, tq � Γ�pz;x, tq
�

1� |rpzq|2 �rpzqe� 2i
~ p2tz

2�xzq

rpzqe 2i
~ p2tz

2�xzq 1

�
(45)

Γpz;x, tq � 1�Opz�1q , |z| Ñ 8 (46)

Then the function of x, t

qpx, tq :� 2i lim
zÑ8

zΓ12pz;x, tq (47)

is a solution of the defocusing NLS, with initial data given by the data that was
associated to the scattering transform.

The advantage of the formulation of the Theorem is that the x, t dependence is in
plain sight; the disadvantage is that it is not possible (in general) to obtain a closed
formula for the solution of the advocated Riemann–Hilbert problem.
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Korteweg-deVries and Riemann–Hilbert

Theorem (Solitonless case)

Let ~mpz;x, tq be a 1� 2 vector, analytic on CzR, admitting nontangential boundary
values ~m� and such that

~m�pz;x, tq � ~m�pz;x, tq
�

1� |rpzq|2 �rpzqe� 2i
ε
p4tz3�xzq

rpzqe 2i
ε
p4tz3�xzq 1

�
(48)

~mpz;x, tq Ñ p1, 1q |z| Ñ 8 (49)

Then the function

upx, tq � �2i
B
Bx lim

zÑ8
~m1pz;x, tq (50)

solves the KdV equation, with initial datum encoded in the scattering data rpzq.
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Fredholm determinants and RHPs:
Its-Izergin-Korepin-Slavnov (IIKS) theory

This theory links certain types of integral operators to Riemann–Hilbert problems:
Let Σ � C be a collection of contours and

Kpl, µq :� fT plq � gpµq
l � µ

, f, g PMatpr � p,Cq , fT plq � gplq � 0 (51)

The integral operator with kernel Kpl, µq acts on L2pΣ,Cpq.

K : L2pΣ,Cpq Ñ L2pΣ,Cpq
ϕpµq ÞÑ pKϕqpλq �

»
Σ

fT plq � gpµq
l � µ

ϕplq dl
(52)

Remark

The Airy kernel is of this type:

KAipx, yq �
AipxqAi1pyq �Ai1pxqAipyq

x� y
(53)

and hence the Tracy-Widom distribution can be derived using the methods of RHPs
(this is not the way it was originally derived) [B-Cafasso 2010]
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The integral operator with kernel Kpl, µq acts on L2pΣ,Cpq.
Remark

The Airy kernel is of this type:

KAipx, yq �
AipxqAi1pyq �Ai1pxqAipyq

x� y
(52)

and hence the Tracy-Widom distribution can be derived using the methods of RHPs
(this is not the way it was originally derived) [B-Cafasso 2010]

We can get informations on the Fredholm determinant of K by using the

Jacobi variational formula

B ln detpId�Kq � TrL2pΣq ppId�Rq � BKq (53)

where R is the resolvent operator:

R :� �K � pId�Kq�1 (54) 25 / 30



The resolvent operator

Rpl, µq :� �K � pId�Kq�1pl, µq � fT plqΓT plqΓ�T pµqgpµq
l � µ

(55)

where Γplq solves the RHP

Γ�plq � Γ�plq
�
1r � 2iπfplqgT plq

	
, l P Σ (56)

Γplq � 1r �Opl�1q , lÑ8 (57)
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Painlevé equations

Paul Painlevé studied (1900) and classified all second order ODEs

y2 � Rpy1, y, xq (58)

with R a rational function, such that the only moveable singularities of the solutions
are poles (i.e. not essential singularities or branchpoint). This is highly nontrivial since
the equations are nontlinear. Of all the 50 canonical form, all but 6 are reducible to
previously known ODEs and special functions. The six extra are known ever since as
Painlevé equations.

P-I

y2 � 6y2 � x (59)

P-II

y2 � 2y3 � xy � α (60)

P-III

x y y2 � xpy1q2 � yy1 � δx� βy � αy3 � γxy4 (61)

Etc.
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Painlevé and RHP

All the Painlevé equations are related to a Riemann–Hilbert problem. For example P-II

Lp�s2q
`4

`3

Lps3q

Up�s1q

`5

Ups2q

Up�s3q

`6

`2

Lps1q

`1

Lpsq :�
�

1 0

s e
i4
3
z3�ixz 1

�
,

Upsq :�
�

1 s e�
i4
3
z3�ixz

0 1

�

s1 � s2 � s3 � s1s2s3 � 0

Γpzq � 1�Opz�1q

u � upx;~sq � 2 lim
zÑ8

z Γ12pz;x,~sq
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Conclusions

The reformulation of integrable systems in terms of RHPs produces (or is produced,
depending on the point of view) a Lax representation. However, this connection is not
only of pure theoretical interest: it actually helps in studying asymptotic behaviors and
has been used in the proof of

small dispersion of KdV;

semiclassical asymptotics of NLS;

strong asymptotic of general orthogonal polynomials in the complex plane for
large degrees;

first proofs of universality of scaling regimes in random matrices.

The method of analysis is the Deift-Zhou nonlinear steepest descent method; it is a
“matrix analogue” of the classical steepest descent method for oscillatory integrals
depending on a (large) parameter.
In this respect there are still many (more or less technical) questions that require
continuing improvements of the method.
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