The Hirota equation and its reductions from the point of view of root lattices

Adam Doliwa

doliwa@matman.uwm.edu.pl

Faculty of Mathematics and Computer Science University of Warmia and Mazury (Olsztyn, Poland)

Integrable Systems in Newcastle

Newcastle upon Tyne, 26-27 September, 2014

Outline

The affine Weyl group symmetry of Desargues maps

- The A_N root lattice and its affine $W(A_N)$ Weyl group
- Desargues maps of the Q(A_N) root lattice
- The non-commutative Hirota system
- Planar quadrilaterals lattices and their reductions
 - The quadrilateral lattice
 - B and C reductions of the Hirota system
- Periodic reduction of Desargues maps
 - Gel'fand–Dikii systems
 - Yang–Baxter maps
 - Self-similarity (2,2) reduction to q P_{VI}

Outline

The affine Weyl group symmetry of Desargues maps

- The A_N root lattice and its affine $W(A_N)$ Weyl group
- Desargues maps of the Q(A_N) root lattice
- The non-commutative Hirota system
- Planar quadrilaterals lattices and their reductions
 The quadrilateral lattice
 - B and C reductions of the Hirota system
 - Periodic reduction of Desargues maps
 - Gel'fand–Dikii systems
 - Yang–Baxter maps
 - Self-similarity (2,2) reduction to $q P_{VI}$

The A_N root lattice

 $Q(A_N)$ is the lattice generated by vectors along the edges of regular *N*-simplex. If we take the vertices of the simplex to be the vectors of the canonical basis in \mathbb{R}^{N+1}

$$e_i = (0, \dots, \overset{i}{1}, \dots, 0), \qquad 1 \le i \le N+1$$

then the generators are

$$arepsilon_j^i = oldsymbol{e}_i - oldsymbol{e}_j, \qquad 1 \leq i
eq j \leq N+1$$

$$Q(A_N) = \{(n_1, \ldots, n_{N+1}) \in \mathbb{Z}^{N+1} | n_1 + \cdots + n_{N+1} = 0\}$$

 $\alpha_i = oldsymbol{e}_i - oldsymbol{e}_{i+1}$ - simple root vectors

$$(\boldsymbol{\omega}_i|\boldsymbol{\alpha}_j) = \delta_{ij}, \qquad i,j = 1,\ldots,N$$

 ω_i - fundamental weights

Tiles (Delunay polytopes) of the A_N root lattice

Holes - points locally maximally distant from the lattice Delaunay polytope - convex hull of the lattice points closest to the hole

The Delaunay polytopes of $Q(A_N)$: P(k, N), k = 1, ..., N truncations of order k - 1 of the regular *N*-simplex

 $\omega_k + Q(A_N)$ - centers of tiles of type P(k, N)

The *A_N* Weyl group

The Weyl group $W_0(A_N)$ is generated by the reflections r_i

$$r_i: \mathbf{v} \mapsto \mathbf{v} - rac{2(\mathbf{v}|\alpha_i)}{(lpha_i|lpha_i)} lpha_i, \qquad i=1,\ldots,N$$

 $W_0(A_N) \equiv S_{N+1}$, where r_i is identified with transposition $\sigma_i = (i, i+1)$

The A_N affine Weyl group

The *affine Weyl group* $W(A_N)$ is generated by the reflections r_i , $1 \le i \le N$, and by the affine reflection r_0

$$r_0: \boldsymbol{v} \mapsto \boldsymbol{v} - \left(1 - rac{2(\boldsymbol{v}|\tilde{lpha})}{(\tilde{lpha}|\tilde{lpha})}
ight) \tilde{lpha}$$

 $ilde{lpha}=-lpha_0=lpha_1+\dots+lpha_N=oldsymbol{e}_1-oldsymbol{e}_{N+1}$ - the highest root vector

$$W(A_N) = Q(A_N) \rtimes W_0(A_N)$$

Theorem (Coxeter)

The affine Weyl group acts on the Delaunay tiling by permuting tiles within each class P(k, N).

Desargues maps and their affine Weyl group symmetry

Definition of Desargues maps

Maps $\phi : Q(A_N) \to \mathbb{P}^M$ such that for any translate of the *N*-simplex its vertices are mapped into collinear points [AD 2011]

By the Coxeter theorem we have

Theorem

If $\phi : Q(A_N) \to \mathbb{P}^M$ is a Desargues map then for an arbitrary $w \in W(A_N)$ acting on $Q(A_N)$ the map $\phi \circ w$ is a Desargues map.

\mathbb{Z}^N - Desargues maps

Identify $\mathbb{Z}^N = \sum_{i=1}^N \mathbb{Z}\varepsilon_i^{N+1} = Q(A_N)$

\mathbb{Z}^N – Desargues maps

Maps $\phi : \mathbb{Z}^N \to \mathbb{P}^M$, such that the points $\phi(n)$, $\phi_{(i)}(n)$ and $\phi_{(j)}(n)$ are collinear, for all $n \in \mathbb{Z}^N$, $i \neq j$ [AD 2010]

Notation: $\phi_{(i)}(n_1, ..., n_i, ..., n_N) = \phi(n_1, ..., n_i + 1, ..., n_N)$

Observation: There are N + 1 equivalent choices of \mathbb{Z}^N coordinates in $Q(A_N)$ (with fixed origin) respecting geometrically the Desargues map condition!

Linear problem for Desargues maps

Algebraic description in homogeneous coordinates $\Phi : \mathbb{Z}^N \to \mathbb{D}^{M+1}$

$$\mathbf{\Phi} + \mathbf{\Phi}_{(i)} \mathbf{A}_{ij} + \mathbf{\Phi}_{(j)} \mathbf{A}_{ji} = \mathbf{0}, \qquad i
eq j, \qquad \mathbf{A}_{ij} : \mathbb{Z}^N o \mathbb{D}^{ imes}$$

 \mathbb{D} – arbitrary division ring (skew field)

The first part of the Desargues map equations

 $A_{ij}^{-1}A_{ik} + A_{kj}^{-1}A_{ki} = 1, \quad i, j, k \text{ distinct}$

The Veblen configuration and the second part of the Desargues map equations

Four dimensional consistency of Desargues maps

Desargues theorem

In projective space two triangles are in perspective from a point if and only if they are in perspective from a line

Desargues configuration is the image of P(3,4) cell

Remark: The four dimensional consistency of the Hirota–Miwa equation or the discrete Schwarzian KP equation has combinatorics of the Desargues configuration [Schief 2009]

Adam Doliwa (UWM Olsztyn)

The non-commutative Hirota system

Gauge transformations: $\Phi = \tilde{\Phi}F$, where $F : \mathbb{Z}^N \to \mathbb{D}^{\times}$ - gauge function results in $\tilde{A}_{ij} = F_{(i)}A_{ij}F^{-1}$

One can find homogeneous coordinates such that $A_{ji} = -A_{ij} = U_{ij}^{-1}$

$$\Phi_{(i)} - \Phi_{(j)} = \Phi U_{ij}, \qquad 1 \le i \ne j \le N,$$

Fact to remember

The gauge functions which do not change the structure of the above linear problem are characterized by the condition $F_{(i)} = F_{(j)}$ for all pairs of indices, i.e. *F* is a function of $n_{\sigma} = n_1 + n_2 + \cdots + n_N$.

$$U_{ij} + U_{ji} = 0, \qquad U_{ij} + U_{jl} + U_{li} = 0,$$
$$U_{li}U_{lj(i)} = U_{lj}U_{li(j)} \implies U_{ij} = \rho_i^{-1}\rho_{i(j)}$$

[Nimmo 2006]

The non-commutative Hirota system

The Hirota equation

When $\mathbb{D} = \mathbb{F}$ is commutative then the functions U_{ij} can be parametrized in terms of a single potential $\tau : \mathbb{Z}^N \to \mathbb{F}$

$$U_{ij} = \frac{\tau \tau_{(ij)}}{\tau_{(i)} \tau_{(j)}}, \qquad 1 \le i < j \le N$$

The nonlinear system reads

[Hirota 1981], [Miwa 1982]

$$\tau_{(i)} \tau_{(jl)} - \tau_{(j)} \tau_{(il)} + \tau_{(l)} \tau_{(ij)} = 0, \qquad 1 \le i < j < l \le N$$

Remark: Other gauges lead to

- the non-commutative discrete mKP system
- the generalized lattice spin system
- non-commutative Schwarzian discrete KP system [Konopelchenko-Schief 2005]

[Nijhoff-Capel 1990]

[Nijhoff-Capel 1990]

Back to the root lattice

In the
$$N$$
 + 1th sector $\mathbb{Z}^N = \sum_{j=1}^N \mathbb{Z} \varepsilon_j^{N+1} = Q(A_N)$

$$\phi^{N+1}(n+\varepsilon_i^{N+1}) - \phi^{N+1}(n+\varepsilon_j^{N+1}) = \phi^{N+1}(n)U_{ij}^{N+1}(n), \quad 1 \le i \ne j \le N$$
$$U_{ij}^{N+1}(n) = \left[\rho_i^{N+1}(n)\right]^{-1}\rho_i^{N+1}(n+\varepsilon_j^{N+1})$$

In the *i*th sector $\mathbb{Z}^N = \sum_{j=1, j \neq i}^{N+1} \mathbb{Z} \varepsilon_j^i = Q(A_N)$

The "rotated" linear problems

Theorem

The functions
$$\phi^i:\mathbb{Z}^N=\sum_{j=1,j
eq i}^{N+1}\mathbb{Z}arepsilon_j^i o\mathbb{D}_*^{M+1}$$
 given by

$$\phi^{i}(n) = (-1)^{(n|\varepsilon_{i}^{N+1})}\phi^{N+1}(n)\left[\rho_{i}^{N+1}(n)\right]^{-1}$$

satisfy the linear system

$$\phi^{i}(n+\varepsilon^{i}_{j})-\phi^{i}(n+\varepsilon^{i}_{k})=\phi^{i}(n)U^{i}_{jk}(n), \qquad i,j,k \quad distinct,$$

where

$$U_{jk}^{i}(n) = \left[\rho_{j}^{i}(n)\right]^{-1} \rho_{j}^{i}(n + \varepsilon_{k}^{i}),$$

$$\rho_{j}^{i}(n) = \begin{cases} \rho_{j}^{N+1}(n) \left[\rho_{i}^{N+1}(n)\right]^{-1}, & j \neq N+1, \\ \left[\rho_{i}^{N+1}(n)\right]^{-1}, & j = N+1. \end{cases}$$

Outline

The affine Weyl group symmetry of Desargues maps
 The A_N root lattice and its affine W(A_N) Weyl group
 Desargues maps of the Q(A_N) root lattice
 The non-commutative Hirota system
 Planar quadrilaterals lattices and their reductions

- The quadrilateral lattice
- B and C reductions of the Hirota system
- Periodic reduction of Desargues maps
 - Gel'fand–Dikii systems
 - Yang–Baxter maps
 - Self-similarity (2,2) reduction to $q P_{VI}$

Adam Doliwa (UWM Olsztyn)

Embedding of B_{κ} into $A_{2\kappa-1}$

Algebraic description of $Q(A_N)$

$$(\mathbf{e}_i)_{i=1}^{N+1}$$
 – the standard orthonormal basis of \mathbb{E}^{N+1}
 $\mathbb{E}^{N+1} \supset Q(A_N) \ni \sum_{i=1}^{N+1} x_i \mathbf{e}_i, x_i \in \mathbb{N}$, such that $x_1 + x_2 + \cdots + x_{N+1} = 0$
 $\varepsilon_i = \mathbf{e}_{N+1} - \mathbf{e}_i, i = 1, \dots, N$ a parallelogram basis of $Q(A_N)$

Fix N = 2K - 1 then the vectors $\mathbf{E}_i = \mathbf{e}_{2i-1} - \mathbf{e}_{2i}$, i = 1, ..., K satisfy $(\mathbf{E}_i | \mathbf{E}_j) = 2\delta_{ij}$ and generate the $\mathbb{Z}^K = Q(B_K)$ sub-lattice in $Q(A_{2K-1})$

$$\sum_{i=1}^{2K-1} n_i \varepsilon_i = -\sum_{j=1}^K m_j \mathbf{E}_j + \sum_{j=1}^K \ell_j \mathbf{e}_{2j}, \qquad \ell = \sum_{j=1}^K \ell_j \mathbf{e}_{2j} \in Q(A_{K-1})$$

m — quadrilateral lattice variables, [i] — shift by **E**_{*i*} ℓ — Laplace transformation variables

Discrete Darboux equations

Fix $\ell \in Q(A_{K-1})$ define $\psi^{\ell} : \mathbb{Z}^K \to \mathbb{P}^M$ by $\psi^{\ell}(m) = \phi(n)$

- the points ψ^ℓ, ψ^ℓ_[i], ψ^ℓ_[j], and ψ^ℓ_[ij] are coplanar
 the functions β^ℓ_{ij} = sgn(j i) (^{τℓ+e_{2i}-e_{2j}}/_{τ^ℓ})_[i], i ≠ j, satisfy the discrete Darboux equations [Bogdanov, Konopelchenko 1995]

$$\beta_{ij[k]}^{\ell} = \beta_{ij}^{\ell} + \beta_{ik[j]}^{\ell} \beta_{kj}^{\ell}, \qquad i, j, k \quad \text{distinct}$$

$$\tau^{\ell}\tau_{[k]}^{\ell+\mathbf{e}_{2i}-\mathbf{e}_{2j}} = \tau_{[k]}^{\ell}\tau^{\ell+\mathbf{e}_{2i}-\mathbf{e}_{2j}} + \operatorname{sgn}(j-i)\operatorname{sgn}(k-j)\operatorname{sgn}(i-k)\tau_{[k]}^{\ell+\mathbf{e}_{2i}-\mathbf{e}_{2k}}\tau^{\ell+\mathbf{e}_{2k}-\mathbf{e}_{2j}}$$

Quadrilteral lattices and their Laplace transformations

Quadrilateral lattice is a map $\psi : \mathbb{Z}^{K} \to \mathbb{P}^{M}(\mathbb{D}), 2 \leq K \leq M$, whose all elementary quadrilaterals are planar.

- 2D lattices of planar quadrilaterals discrete conjugate nets [Sauer 1937]
- Laplace sequence of 2D discrete conjugate nets geometric interpretation of the Hirota–Miwa equation in the 2D discrete Toda system form [AD 1997]
- multidimensional quadrilateral lattices geometric interpretation of the discrete Darboux equations [AD, Santini 1997]
- Laplace transformations of generic K-dimensional quadrilateral lattices are parametrized by points of the root lattice Q(A_{K-1}) [AD, Mañas, Martínez Alonso, Medina, Santini 1999]
- FCC = Q(A₃) description of 2D quadrilatral lattice and its Laplace sequence [Schief 2007]

 $(20_3, 15_4)$ configuration as the image of P(3, 5) cell, and the quadrilateral lattice construction

The discrete C-KP system

Problem

Find constraints on τ which result in a single equation involving fixed ℓ

$$\tau_{[j]}^{\ell_{C}+\mathbf{e}_{2i}-\mathbf{e}_{2j}} + \tau_{[i]}^{\ell_{C}+\mathbf{e}_{2j}-\mathbf{e}_{2i}} = \mathbf{0}, \qquad i \neq j,$$
[AD, Santini 2000]

 $(\tau_{[i]}\tau_{[jk]} - \tau_{[j]}\tau_{[ik]} + \tau_{[k]}\tau_{[ij]} - \tau\tau_{[ijk]})^2 - 4 (\tau_{[i]}\tau_{[jk]}\tau_{[k]}\tau_{[ij]} + \tau_{[j]}\tau_{[ik]}\tau\tau_{[ijk]}) +$ $+ 4\tau_{[i]}\tau_{[j]}\tau_{[jk]}\tau_{[ijk]} + 4\tau\tau_{[ij]}\tau_{[jk]}\tau_{[ik]} = 0 \qquad \tau = \tau^{\ell_C}$

[Kashaev 1996] , [Schief 2003]

Remark

"Half" of the discrete KP variables is fixed

Adam Doliwa (UWM Olsztyn)

The discrete **B-KP** system

$$\left(\tau_{[j]}^{\ell_{B} + \mathbf{e}_{2i} - \mathbf{e}_{2j}} - \tau_{[i]}^{\ell_{B} + \mathbf{e}_{2j} - \mathbf{e}_{2i}} \right)^{2} = 4\tau_{[i]}^{\ell_{B}} \tau_{[j]}^{\ell_{B}}, \quad i \neq j \qquad (*)$$

$$\left[\left(\tau_{[i]} \tau_{[jk]} - \tau_{[j]} \tau_{[ik]} + \tau_{[k]} \tau_{[ij]} - \tau \tau_{[ijk]} \right)^{2} - 4 \left(\tau_{[i]} \tau_{[jk]} \tau_{[k]} \tau_{[ij]} + \tau_{[j]} \tau_{[ik]} \tau_{[ijk]} \right) \right]^{2} =$$

$$= 64\tau \tau_{[i]} \tau_{[j]} \tau_{[k]} \tau_{[ij]} \tau_{[jk]} \tau_{[ik]} \tau_{[ijk]}, \qquad \tau = \tau^{\ell_{B}} \qquad (**)$$

Proposition

One can consistently parametrize (*) by $\mu \colon \mathbb{Z}^K \to \mathbb{F}$ such that $\mu^2 = \tau^{\ell_B}$

$$\begin{aligned} \tau_{[J]}^{\ell_{B}+\mathbf{e}_{2i}-\mathbf{e}_{2j}} &= -(-1)^{\sum_{i \leq k < j} m_{k}} \left(\mu \mu_{[j]} + \mu_{[i]} \mu_{[j]} \right) & i < \\ \tau_{[i]}^{\ell_{B}+\mathbf{e}_{2j}-\mathbf{e}_{2i}} &= -(-1)^{\sum_{i \leq k < j} m_{k}} \left(\mu \mu_{[j]} - \mu_{[i]} \mu_{[j]} \right) \end{aligned}$$

Then equation (**) gives

 $\mu \mu_{[ijk]} = \mu_{[i]} \mu_{[jk]} - \mu_{[j]} \mu_{[ik]} + \mu_{[k]} \mu_{[ij]}, \qquad i < j < k$

Adam Doliwa (UWM Olsztyn)

[Miwa 1982]

Outline

The affine Weyl group symmetry of Desargues maps
 The A_N root lattice and its affine W(A_N) Weyl group
 Desargues maps of the Q(A_N) root lattice
 The non-commutative Hirota system
 Planar quadrilaterals lattices and their reductions

- The quadrilateral lattice
- B and C reductions of the Hirota system
- Periodic reduction of Desargues maps
 - Gel'fand–Dikii systems
 - Yang–Baxter maps
 - Self-similarity (2,2) reduction to q P_{VI}

The orthogonal projection of $Q(A_{N+1}) \subset \mathbb{E}^{N+1}$ onto the hyperplane of $Q(A_N)$ gives the weight lattice $P(A_N)$

Adam Doliwa (UWM Olsztyn)

The Hirota equation and root lattices

The non-commutative KP hierarchy

Replace $N \rightarrow N + 1$, and distinguish the last variable $k = n_{N+1}$, denote also

$$n = (n_1, ..., n_N), \quad \Phi(n, k) = \Psi_k(n), \quad U_{N+1,i}(n, k) = u_{i,k}(n)$$

which allows the rewrite a part (that with the distinguished variable) of the linear problem in the form

$$\Psi_{k+1}-\Psi_{k(i)}=\Psi_k u_{i,k}, \qquad i=1,\ldots,N.$$

[Kajiwara, Noumi, Yamada 2002]

The compatibility of the above linear system reads

$$u_{j,k}u_{i,k(j)} = u_{i,k}u_{j,k(i)}, \quad i \neq j,$$

$$u_{i,k(j)} + u_{j,k+1} = u_{j,k(i)} + u_{i,k+1}.$$

The first part allows to define potentials $r_k(n) = \rho_{N+1}(n, k)$ such that $u_{i,k} = r_k^{-1} r_{k(i)}$, while the other equations give the system

$$(r_{k(j)}^{-1} - r_{k(i)}^{-1})r_{k(ij)} = r_{k+1}^{-1}(r_{k+1(i)} - r_{k+1(j)}), \qquad i \neq j$$

Adam Doliwa (UWM Olsztyn)

Matrix

Periodic Desargues maps: $\phi_{k+P}(n) = \phi_k(n)$

$$\Psi_{k+P}(n) = \Psi_k(n)\mu_k(n), \quad \mu_{k+1}(n) = \mu_{k(i)}(n), \quad r_{k+P} = r_k\mu_k$$
linear problem

$$(\Psi_1,\ldots,\Psi_P)_{(i)} = (\Psi_1,\ldots,\Psi_P) \begin{pmatrix} -u_{i,1} & 0 & \cdots & 0 & \mu_1 \\ 1 & -u_{i,2} & 0 & \cdots & 0 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & & -u_{i,P-1} & 0 \\ 0 & 0 & \cdots & 1 & -u_{i,P} \end{pmatrix}$$

where μ_1 is a function of the variable $n_{\sigma} = n_1 + \cdots + n_N$. The corresponding (lattice non-isospectral non-commutative modified Gel'fand–Dikii) system of non-linear equations

$$(r_{k(j)}^{-1} - r_{k(i)}^{-1})r_{k(ij)} = r_{k+1}^{-1}(r_{k+1(i)} - r_{k+1(j)}), \quad k = 1, \dots, P-1, (r_{P(j)}^{-1} - r_{P(i)}^{-1})r_{P(ij)} = \mu_1^{-1}r_1^{-1}(r_{1(i)} - r_{1(j)})\mu_{1(\sigma)} \qquad i \neq j.$$

Comutative and iso-spectral case [Nijhoff, Papageorgiou, Capel, Quispel 1992] Adam Doliva (UWM Olszwa) The Hirota equation and root lattices 26–27 September, 2014 31/43

Three dimensional consistency of the GD systems

 $\textbf{\textit{r}}=(\textbf{\textit{r}}_k)$ where $k\in\mathbb{Z}/(\textbf{\textit{P}}\mathbb{Z})$ – periodic case, or $k\in\mathbb{Z}$ in the full KP case

Multidimensional consistency of a discrete system — possibility of extending the number of independent variables of the system by adding its copies in different directions

Fact

The lattice non-isospectral non-commutative modified Gel'fand–Dikii system is three-dimensionally consistent.

Gel'fand-Dikii systems

Multidimensional consistency of the KP map

Theorem

The non-commutative KP map (edge system $u_{i,k} = r_k^{-1} r_{k(i)}$)

$$u_{i,k(j)} = (u_{i,k} - u_{j,k})^{-1} u_{i,k} (u_{i,k+1} - u_{j,k+1}), \qquad 1 \le i \ne j \le N,$$

is multidimensionaly consistent

 $oldsymbol{u}_i = (oldsymbol{u}_{i,k}), \, k \in \mathbb{Z} ext{ or } k \in \mathbb{Z}/(P\mathbb{Z}), \, oldsymbol{u}_{i,k+P} = \mu_k^{-1} oldsymbol{u}_{i,k} \mu_{k(i)}$

From KP map to Yang-Baxter map

A map $R: \mathcal{X} \times \mathcal{X}$ is called Yang–Baxter map if

$$R_{12} \circ R_{13} \circ R_{23} = R_{23} \circ R_{13} \circ R_{12}, \quad \text{in} \quad \mathcal{X} \times \mathcal{X} \times \mathcal{X}$$

If moreover $\pi \circ R \circ \pi \circ R = Id_{\mathcal{X} \times \mathcal{X}}$, where π is the transposition, then R is called reversible YB map

Non-commutative rational Yang–Baxter maps

Theorem

Given two assemblies of non-commuting variables $\mathbf{x} = (x_1, \dots, x_P)$, $\mathbf{y} = (y_1, \dots, y_P)$ define polynomials

$$\mathcal{P}_{k} = \sum_{a=0}^{P-1} \left(\prod_{i=0}^{a-1} y_{k+i} \prod_{i=a+1}^{P-1} x_{k+i} \right), \qquad k = 1, \dots, P,$$

where subscripts in the formula are taken modulo *P*. If the products $\alpha = x_1 x_2 \dots x_P$ and $\beta = y_1 y_2 \dots y_P$ are central then the map

$$\boldsymbol{R}(\boldsymbol{x},\boldsymbol{y}) = (\tilde{\boldsymbol{x}},\tilde{\boldsymbol{y}}), \qquad \tilde{x}_k = \mathcal{P}_k x_k \mathcal{P}_{k+1}^{-1}, \qquad \tilde{y}_k = \mathcal{P}_k^{-1} y_k \mathcal{P}_{k+1},$$

is reversible Yang-Baxter map

commutative case [Kajiwara, Noumi, Yamada 2001], [Etingov 2003]

Yang-Baxter maps

Non-commutative F_{III} map

Fact

The products α and β are conserved (for arbitrary *P*)

The simplest case: P = 2 we put $x = x_1$, $y = y_1$ to get a parameter dependent reversible Yang–Baxter map $R(\alpha, \beta) : (x, y) \mapsto (\tilde{x}, \tilde{y})$

$$\tilde{\mathbf{x}} = \left(\alpha \mathbf{x}^{-1} + \mathbf{y}\right) \mathbf{x} \left(\mathbf{x} + \beta \mathbf{y}^{-1}\right)^{-1},$$
$$\tilde{\mathbf{y}} = \left(\alpha \mathbf{x}^{-1} + \mathbf{y}\right)^{-1} \mathbf{y} \left(\mathbf{x} + \beta \mathbf{y}^{-1}\right),$$

which in the commutative case is equivalent to the *F*_{III} map in the list of [Adler, Bobenko, Suris 2004]

Non-commutative Gel'fand–Dikii systems with centrality assumptions

Proposition

In the *P*-periodic reduction $u_{i,k+P} = \mu_k^{-1} u_{i,k} \mu_{k(i)}$ of the non-commutative KP system assume centrality of the monodromy factors μ_k and of the products $U_i = u_{i,1} u_{i,2} \dots u_{i,P} \mu_1^{-1}$. Then U_i is a function of n_i only.

In particular, for P = 2 we obtain the non-autonomous, non-isospectral lattice modified KdV equation for non-commutative variable $r = r_1$

$$\left(r_{(j)}^{-1} - r_{(i)}^{-1}\right)r_{(ij)} = \left(r_{(i)}^{-1}\mathcal{U}_{i} - r_{(j)}^{-1}\mathcal{U}_{j}\right)r\mu_{1}$$
 (nc-ni-na-l-mKdV)

iso-spectral case [Bobenko, Suris 2002]

Self-similarity (2, 2) reduction to $q - P_{VI}$

In nc-ni-na-I-mKdV take N = 2, $x_{(1122)} = x$

$$\frac{\mathcal{U}_{i(ii)}}{\mathcal{U}_{i}} = \frac{\mu}{\mu_{(\sigma\sigma\sigma\sigma\sigma)}}, \qquad i = 1, 2$$

By separation of variables there exists a non-zero central constant q

$$\mu(n_{\sigma}) = \alpha_k q^{n_{\sigma}}, \qquad k = n_{\sigma} \mod 4,$$

 $\mathcal{U}_i(n_i) = \beta_{i,k} q^{-2n_i}, \qquad k = n_i \mod 2, \qquad i = 1, 2,$

for certain non-zero parameters α_k , $\beta_{i,k}$

Remark: We will need only $\alpha_{k+2} = \alpha_k$

The repeating pattern for q-P_{VI}

$$w_n^0 = x(n_1, n_2 - 1), w_n^1 = x(n_1, n_2), w_n^2 = x(n_1 + 1, n_2), w_n^3 = x(n_1 + 1, n_2 + 1)$$

Adam Doliwa (UWM Olsztyn)

A non-commutative *q*-P_{VI} system

$$t_n = t_0 \lambda^n, \qquad \lambda = q^4, \qquad t_0 = \sqrt{\frac{\beta_{1,0}\beta_{1,1}}{\beta_{2,0}\beta_{2,1}}},$$

 $c_{1} = \alpha_{0}\sqrt{\beta_{1,1}\beta_{2,0}}, \quad c_{2} = \alpha_{0}\sqrt{\beta_{1,0}\beta_{2,1}}, \quad c_{3} = \alpha_{1}\sqrt{\beta_{1,1}\beta_{2,1}}, \quad c_{4} = \alpha_{1}\sqrt{\beta_{1,0}\beta_{2,0}}$

nc q-P_{VI}

$$f_{n+1} = \frac{g_n + t_n c_1^{-1}}{g_n + c_2^{-1}} f_n^{-1} \frac{g_n + t_n c_1}{g_n + c_2}, \qquad t_{n+1} = \lambda t_n,$$

$$g_{n+1} = \frac{f_{n+1} + t_n \sqrt{\lambda} c_3^{-1}}{f_{n+1} + c_4^{-1}} g_n^{-1} \frac{f_{n+1} + t_n \sqrt{\lambda} c_3}{f_{n+1} + c_4}$$

[Ramani, Grammaticos 1992], [Jimbo, Sakai 1996] reduction in commutative and iso-spectral case [Ormerod 2012]

Adam Doliwa (UWM Olsztyn)

The Hirota equation and root lattices

26-27 September, 2014 40 / 43

Conclusion

- we recalled (SIDE IX, Varna 2010) the A-type root lattice description of Desargues maps and of the Hirota equation
- K dimensional lattices of planar quadrilaterals can be described from the corresponding Q(B_k) ⊂ Q(A_{2K-1}) perspective
- the discrete *C*-KP and *B*-KP equations were given as reductions of the discrete (*A*-)KP equation
- periodicity in one direction of the lattice gives nc-ni-na-l-mGD systems and corresponding YB maps
- self-similarity (2,2) reduction of nc-ni-na-l-mKdV equaion gives nc q-P_{VI} system

References

- A. Doliwa, *Desargues maps and the Hirota–Miwa equation*, Proc. R. Soc. A 466 (2010) 1177–1200.
- A. Doliwa, The affine Weyl group symmetry of Desargues maps and of the non-commutative Hirota-Miwa system, Phys. Lett. A 375 (2011) 1219–1224.
- A. Doliwa, Non-commutative lattice modified Gel'fand-Dikii systems, J. Phys. A: Math. Theor. 46 (2013) 205202 (14pp).
- A. Doliwa, *Desargues maps and their reductions*, [in:] Nonlinear and Modern Mathematical Physics, W.X. Ma, D. Kaup (eds.), AIP Conference Proceedings, Vol. 1562, AIP Publishing 2013, pp. 30-42.
- A. Doliwa, Non-commutative q-Painlevé VI equation, J. Phys. A: Math. Theor. 47 (2014) 035203 (8pp).
- A. Doliwa, *Non-commutative rational Yang-Baxter maps*, Lett. Math. Phys. **104** (2014) 299–309.

THANK YOU!

Adam Doliwa (UWM Olsztyn)

The Hirota equation and root lattices