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The Ay root lattice and its affine W(Ay) Weyl group
The Ay root lattice

Q(Ay) is the lattice generated by vectors along the edges of regular
N-simplex. If we take the vertices of the simplex to be the vectors of
the canonical basis in RVt

e=(0,...,1,...,0), 1<i<N+1
then the generators are

ej=e—e, 1<i#j<N+1

Q(AN) = {(n17"'7nN+1) GZNH\IH +"'+nN+1 :0}

a; = e; — ej,1 - simple root vectors
(w,-|aj):5,-j, i,j:1,...,N

wj - fundamental weights
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The Ay root lattice and its affine W(Ay) Weyl group
Tiles (Delunay polytopes) of the Ay root lattice

Holes - points locally maximally distant from the lattice
Delaunay polytope - convex hull of the lattice points closest to the hole

The Delaunay polytopes of Q(An): P(k,N),k=1,...N
truncations of order k — 1 of the regular N-simplex

wk + Q(An) - centers of tiles of type P(k, N)
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The Ay Weyl group
The Weyl group Wy(An) is generated by the reflections r;
2(v]ey)

[V V—
' (aj|axj)

g, i:1,...,N

Wo(An) = Sna1, Where r; is identified with transposition o = (i,i + 1)

o
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The Ay root latice and its affine W(Ay) Wey group
The Ay affine Weyl group

The affine Weyl group W(Ay) is generated by the reflections r;,
1 < i < N, and by the affine reflection r,

novev- (1-208) 4

(&la)

&=—-ag=ao1+--+ay= ey — en.1 - the highest root vector

W(An) = Q(ANn) x Wo(An)

The affine Weyl group acts on the Delaunay tiling by permuting tiles

Theorem (Coxeter)
within each class P(k, N).
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The affine Weyl group symmetry of Desargues maps Desargues maps of the Q(Ay) root lattice

Desargues maps and their affine Weyl group
symmetry

Definition of Desargues maps
Maps ¢ : Q(Ay) — PM such that for any translate of the N-simplex its

vertices are mapped into collinear points [AD 2011]
ﬁ ] // ii \E\ ) j :
The Veblen
configuration
(6,.45)
P(1,3) P(2,3)

By the Coxeter theorem we have
Theorem

If  : Q(An) — PM is a Desargues map then for an arbitrary
w € W(Ap) acting on Q(Ay) the map ¢ o w is a Desargues map.
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ZN - Desargues maps
; N _ N N+1 _
Identify N =%l Ze; " = Q(AN)

ZN — Desargues maps

Maps ¢ : ZN — PM, such that the points ¢(n), ¢(;(n) and ¢;(n) are
collinear, forallne ZN, i #j [AD 2010]

., N n1, R o T
Observation: There are N + 1 equivalent choices of ZN coordinates in

Q(An) (with fixed origin) respecting geometrically the Desargues map
condition!
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Desargues maps of the Q(Ay) root lattice
Linear problem for Desargues maps

Algebraic description in homogeneous coordinates ® : ZN — DM+1
b+ ‘D(,)A,/ + ¢(j)A/, =0, i #J, A,‘j . ZN — D

D — arbitrary division ring (skew field)

Adam Doliwa (UWM Olsztyn) The Hirota equation and root lattices 2627 September, 2014 12/43



Desargues maps of the Q(Ay) root lattice
The first part of the Desargues map equations
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The affine Weyl group symmetry of Desargues maps Desargues maps of the Q(Ay) root lattice

The Veblen configuration and the second part of the
Desargues map equations

Aik(j)Ajk = Ajk(i)Aik i,j, k distinct
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Desargues maps of the Q(Ay) root lattice
Four dimensional consistency of Desargues maps

Desargues theorem

In projective space two triangles are in perspective from a point if and
only if they are in perspective from a line

Desargues configuration is the image of P(3,4) cell

P
P34) —=

Remark: The four dimensional consistency of the Hirota—Miwa

equation or the discrete Schwarzian KP equation has combinatorics of

the Desargues configuration [Schief 2009]
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The non-commutative Hirota system
The non-commutative Hirota system

Gauge transformations: ® = ®F, where F : ZN — D* - gauge function
results in Aj = FpAjF
One can find homogeneous coordinates such that A; = —A; = Uij_1

Sy -y =0U;, 1<i#j<N,

Fact to remember

The gauge functions which do not change the structure of the above
linear problem are characterized by the condition F(;) = F(; for all pairs
of indices, i.e. F is afunctionof n, =ny +no +---+ ny.

Ui+ U; =0, Ui+ U+ U; =0,
UiUjiy = UjUji — U = p; " pigy

[Nimmo 2006]
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The non-commutative Hirota system
The Hirota equation

When D = [ is commutative then the functions U; can be
parametrized in terms of a single potential 7 : ZN — F

Uj=—U  q<i<j<N
T 7()
The nonlinear system reads [Hirota 1981], [Miwa 1982]

TiTey — )Ty T T =0, 1=i<j<I<N

Remark: Other gauges lead to
@ the non-commutative discrete mKP system [Nijhoff-Capel 1990]
@ the generalized lattice spin system [Nijhoff-Capel 1990]

@ non-commutative Schwarzian discrete KP system
[Konopelchenko-Schief 2005]
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The non-commutative Hirota system
Back to the root lattice

Inthe N + 1th sector ZN = 3 | Ze)™" = Q(Ay)

¢N+1 n+€N+1 7¢N+1 n+€/_\/+1 :¢N+1nU-N+1n, 1§I7éj§N
/ / I

UI;_V-H ( ) |:pr+1 ( )] p/N+1 (n + €N+1 )

In the ith sector ZN = Y Zel = Q(Aw)
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The non-commutative Hirota system
" " |;
The "rotated" linear problems

Theorem

The functions ¢' : ZN = Z}iﬂ i Zej — DY given by

&(n) = (=1)" DN () [ (m)]
satisfy the linear system
¢'(n+ef) — ¢'(n+ek) = ¢'(MUj(n),  i,j.k distinct,
where

Ui(n) = [pl(m)] ™" pl(n+€}),

) [m)] T AN,
1

o= ) j=N+1.
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Outline

9 Planar quadrilaterals lattices and their reductions
@ The quadrilateral lattice
@ B and C reductions of the Hirota system
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d their reducti
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The quadrilateral lattioe
Embedding of Bk into Aok 1

Algebraic description of Q(Ay)

(e;)M;! —the standard orthonormal basis of EN+!
ENtT 5 Q(AN) 3 ZN+1 xie;, X; € N,suchthat xy + X + -+ xy44 =0
ei=enr1 —¢€;, i =1,..., N aparallelogram basis of Q(Ay)

Fix N=2K — 1 then the vectors E; = e5;_1 —eg;, i = 1,..., K satisfy
(E/|E;) = 25;; and generate the ZX = Q(Bx) sub-lattice in Q(Azx_1)

2K—1

K
Z nie; = ijE - Ze,eg,, 0= "ties; € Q(Ak—1)

=1

m — quadrilateral lattice variables, [i] — shift by E;
¢ — Laplace transformation variables
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The quadrilateral lattice
Discrete Darboux equations

Fix £ € Q(Ak_1) define ¢ : ZK — PM by o*(m) = ¢(n)

Paict-2)

q)(zjf 1,-2j)

Ouzic1 -2 2j-1,-2)

¢(2¢-1,-2;7

Ire,e, 0 9 2i2j-0)
v ol (-2j)

e the points 1, wf,], @bfn, and gbf,j] are coplanar
TZ+e2,-7e

72’)[/_], i # j, satisfy the discrete

Tt

» the functions j3j = sgn(j — /) (
Darboux equations [Bogdanov, Konopelchenko 1995]
Biwg = B + By By -J,k  distinct

i 4epi— € _ €+ezi—92kT€+ezk—ezj

Z+e2/ e2/ _ _ _
TIK] [k]T +sgn(j—i)sgn(k—j)sgn(i—k) TIK]
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The quadilateral lattice
Quadrilteral lattices and their Laplace transformations

Quadrilateral lattice is a map v : ZX — PM(D), 2 < K < M, whose all
elementary quadrilaterals are planar.

@ 2D lattices of planar quadrilaterals — discrete conjugate nets [Sauer
1937]

@ Laplace sequence of 2D discrete conjugate nets — geometric
interpretation of the Hirota—Miwa equation in the 2D discrete Toda

system form [AD 1997]
@ multidimensional quadrilateral lattices — geometric interpretation of the
discrete Darboux equations [AD, Santini 1997]

@ Laplace transformations of generic K-dimensional quadrilateral lattices
are parametrized by points of the root lattice Q(Ax_1) [AD, Manas,
Martinez Alonso, Medina, Santini 1999]

@ FCC = Q(As) description of 2D quadrilatral lattice and its Laplace
sequence [Schief 2007]
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Planar quadrilaterals lattices and their reductions The quadrilateral lattice

(203, 154) configuration as the image of P(3,5) cell,
and the quadrilateral lattice construction

O
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The discrete C-KP system

Problem
Find constraints on 7 which result in a single equation involving fixed /¢ J
Téc—i-eg,-—eg/ T€C+92j—ezi . 0 / 7£ H
[ U =5 J:

[AD, Santini 2000]
2
(M7 = 770k + T — T7k) " — 4 (T TGk T T T Tk )
AT T T TR+ AT T TR = O 7=l
[Kashaev 1996] , [Schief 2003]

Remark
"Half" of the discrete KP variables is fixed J
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B and C reductions of the Hirota system
The discrete B-KP system

(Téls+e2,—e2/ B [z;]s+e2, e2,>2 _ 47_[[]8 [t;f? oy (%)
[ (a0 = 770 + 7007 = 770) *= 4 (T T + T )| =
= 84T T 7Y Tk 71 Tk T i T=7% ()

Proposition

One can consistently parametrize (x) by u: ZX — F such that p2 = r‘8

3 i—©€2) . .
[jf+e2 e _ (- 1)Z,<k</ k (uu[,,] + M[/]/L[Jl) </

0 i i<k<j
T % = (1) ™ (g — pggpey)

Then equation (xx) gives [Miwa 1982]

[k = Ppage — PRk Rkag, <0 <k )
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Outline

Q Periodic reduction of Desargues maps
@ Gel'fand-Dikii systems
@ Yang—Baxter maps
@ Self-similarity (2, 2) reduction to g — Py,
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Periodic reduction of Desargues maps

The orthogonal projection of Q(An.1) € EN*' onto the hyperplane of
Q(An) gives the weight lattice P(Ay)
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The non-commutative KP hierarchy
Replace N — N + 1, and distinguish the last variable kK = ny. 1, denote
also
n=(n,...,nn), DN k)=Wr(n), Uni1,i(n k)= uik(n)
which allows the rewrite a part (that with the distinguished variable) of
the linear problem in the form
Wy — Wiy = Wrlik, i=1,....N.
[Kajiwara, Noumi, Yamada 2002]
The compatibility of the above linear system reads
Uj kUi k() = UikYj k(i)s I# ],
Ui k() T Ujk+1 = Ujk@i) + Uik41-
The first part allows to define potentials rx(n) = pni1(n, k) such that
Uik = rk‘1 Ik(i» While the other equations give the system

(r/:(}) B rl:(}))rk(ij) = r/:+11(rk+1(i) — Ik41(j))s i #J
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Periodic Desargues maps: ¢k p(n) = ¢x(n)

Wi p(n) = Wi(Muk(n),  pk1(N) = pkiy(N),  Ferp = Ttk
Matrix linear problem

-ur 0 0 14
1 —Uj2 0 0
(W1,...,Wp),) = (Wy,...,Wp) 0 1 :
; —Uj,p_1 0
0 0 1 —Uujp

where 11 is a function of the variable n, = ny +--- + np.
The corresponding (lattice non-isospectral non-commutative modified
Gel'fand-Dikii) system of non-linear equations

(i) — M)kt = Tipr (Tesi() = Trenp)s - K =1,....P =1,
(regy = Fegy) ety = 13 ' 1y Ry — r) i)y 1 # ]
Comutative and iso-spectral case [Nijhoff, Papageorgiou, Capel, Quispel

qgQg
Adam Doliwa (UWM Olsztyn) The Hirota equation and root lattices 2627 September, 2014 31/43



Golfand-DIKii systems
Three dimensional consistency of the GD systems

r = (rc) where k € Z/(PZ) — periodic case, or k € Z in the full KP case

" T i)

) (i n

TG T,

i1 1

r r(”

Multidimensional consistency of a discrete system — possibility of
extending the number of independent variables of the system by
adding its copies in different directions

Fact

The lattice non-isospectral non-commutative modified Gel'fand—Dikii
system is three-dimensionally consistent.
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Golfand-DIKii systems
Multidimensional consistency of the KP map
Theorem

The non-commutative KP map (edge system u; x = r,- ! Tk(i))

Uik(y = Uik — Upk) ™ Ui k(Ui ket — Uikt 1<i#j<N,

is multidimensionaly consistent

Uity

ujl)
uigj)

Ui

. 1 Y
J u,.
uj UjGi) u Ui |0

u /j e
; ) Yj(i)
ui i

u;

—1
u, = (U,'7k), keZorke Z/(PZ), Ui k+P = [y Ui,kﬂk(i)
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Periodic reduction of Desargues maps Yang-Baxter maps

From KP map to Yang-Baxter map

Amap R: X x X is called Yang—Baxter map if

R120R130R23:R23OR13OR12, in XxXxX

If moreover m o Romo R =Idyxx, Where « is the transposition, then R
is called reversible YB map

A
=%
A R;, 3 13 3
- R —
uj=y €} )=y " = " R
Ry; . 12/
2
u;=x 1 7
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Yang-Baxter maps
Non-commutative rational Yang—Baxter maps

Theorem

Given two assemblies of non-commuting variables x = (x1, ..., xp),
y = (¥1,-..,yp) define polynomials

P—1 sa-1
<HYk+: H Xk—H)a k:17"'aP7
a=0 i=a+1

where subscripts in the formula are taken modulo P. If the products
a=XiXo...Xp and 8 = y1)y» ... yp are central then the map

R(x,y) = (x,¥), Xy = 73ka7’,;:1, k= Pk_1}/k7)k+17

is reversible Yang—Baxter map

commutative case [Kajiwara, Noumi, Yamada 2001], [Etingov 2003]
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Periodic reduction of Desargues maps Yang-Baxter maps

Non-commutative F;; map

Fact
The products « and 3 are conserved (for arbitrary P)

The simplest case: P = 2 we put x = xq, ¥y = y; to get a parameter
dependent reversible Yang—Baxter map R(«, 5) : (x,y) — (X, ¥)

X = (aX_1 +y>x(x+ﬁy_1)_1,
j = (ax! er)_1 y(x+8y71),

which in the commutative case is equivalent to the F;; map in the list of
[Adler, Bobenko, Suris 2004]
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Periodic reduction of Desargues maps Yang-Baxter maps

Non-commutative Gel'fand-Dikii systems with
centrality assumptions

Proposition

In the P-periodic reduction uj x+p = Mf Uj k k(i Of the
non-commutative KP system assume centrality of the monodromy
factors ik and of the products U/; = uj 1uj2 . .. u,'7pu1‘1. Then U; is a
function of n; only.

In particular, for P = 2 we obtain the non-autonomous, non-isospectral
lattice modified KdV equation for non-commutative variable r = r

<r(;)1 - r(7)1) i) = (r(7)1u,- - r(;;u,-) ruy  (nc-ni-na-l-mKdv)

iso-spectral case [Bobenko, Suris 2002]
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Self-similarity (2, 2) reduction to g — Py,
Self-similarity (2, 2) reduction to g — Py,

In nc-ni-na-I-mKdV take N = 2, x(1122) = X

Uiy __ p i=1,2

U; H(oooo) ’

By separation of variables there exists a non-zero central constant q

n(ns) = axq™, k=n, mod4,
Un) =Bixkq 2", k=n mod2  i=1.2

for certain non-zero parameters ax, 3 k

Remark: We will need only a2 = ak
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Self-similarity (2, 2) reduction to g — Py,
The repeating pattern for g-Py;

W,‘,’:x(n1,n2—1), W,17 :X(n17n2), W§:X(n1+1,n2), W,?;:x(n1+1,n2+1)

3 ,
Wikl M/y,/L,[
v
)2
w! Wikl
+1 W w2
m n
0
L S
n+l w,f w”(J
I
p1 )2
M/l W"ll
)3 "
w; wp

shift in n = double shift in ny

1
fo = WO (W2) "2y (m)pu(ny).
qao/B1,002,0
1 1 3\—1
On = ———=——==Wp(Wp)™ Ua(n2)p(n5)
@0/ B1,002,1
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Self-similarity (2, 2) reduction to g — Py,
A non-commutative g-Py; system

b= oA, A= gt . 51,051,17
n q 0 \/ B2,002,1

C1 = oo/ P1,1082,0, C = ao/B1,082,1, G =a1\/B1,1021, Ca= a1+/B1,0062,0
nc g-Pvi

Gn + tacy 190+ InCy

gn+ 02_1 " 9n+C2

fn+‘| + tn\/XC§1 1 fn+1 + tn\/XC@,
fop1 + C4_1 " fag1 + Ca

fn+1 = ) tn+1 = )\tna

gny1 =

v

[Ramani, Grammaticos 1992], [Jimbo, Sakai 1996]
reduction in commutative and iso-spectral case [Ormerod 2012]
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Conclusion

@ we recalled (SIDE IX, Varna 2010) the A-type root lattice
description of Desargues maps and of the Hirota equation

@ K dimensional lattices of planar quadrilaterals can be described
from the corresponding Q(Bx) C Q(A2k_1) perspective

@ the discrete C-KP and B-KP equations were given as reductions
of the discrete (A-)KP equation

@ periodicity in one direction of the lattice gives nc-ni-na-I-mGD
systems and corresponding YB maps

@ self-similarity (2, 2) reduction of nc-ni-na-I-mKdV equaion gives nc
g-Pyi system
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Self-similarity (2, 2) reduction to g — Py
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