Hopf algebras of trees and Dyck languages

Adam Doliwa

doliwa@matman.uwm.edu.pl

University of Warmia and Mazury (Olsztyn, Poland)

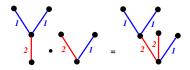
Forum Informatyki Teoretycznej 5–6 February 2016, Warszawa

Outline

- ROC-tree algebra of Foissy and Dyck languages
- 2 Hopf algebra diagrams
- 3 The second Hopf algebra structure on Dyck words
- Distinguished subalgebras

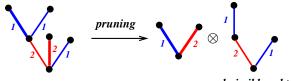
Dyck coding of ROC-trees

Rooted (distinguished vertex) Ordered (set of children of any vertex ordered) Colored (n-colors of edges) tree can be coded by a Dyck word on n pairs of letters $\{a_1, b_1, \ldots, a_n, b_n\}$


ROC–tree coded by the Dyck word $w = a_1 a_2 b_2 b_1 a_1 a_2 b_2 a_1 b_1 b_1 \in D_2$ and its L. Foissy [2002] version in terms of rooted ordered (vertex-) colored forest

The number of ROC-trees with *k* edges equals

$$n^k C_k = \frac{n^k}{k+1} \left(\begin{array}{c} 2k \\ k \end{array} \right)$$


The Foissy-type Hopf algebra structure of Dyck words

 $(\mathbb{k}D_n, \bullet, \eta)$ – algebra with concatenation product and \emptyset as unit

 $a_2a_1b_1a_1b_1b_2 \bullet a_2b_2a_1b_1 = a_2a_1b_1a_1b_1b_2a_2b_2a_1b_1$

Admissible subtrees and subwords

admissible subtree

 $a_2 a_1 b_1 a_1 b_1 b_2 a_2 b_2 a_1 b_1 \longrightarrow a_1 b_1 a_2 b_2 \otimes a_2 a_1 b_1 b_2 a_1 b_1$

The Foissy-type Hopf algebra structure of Dyck words

$$\Delta(w) = \sum_{w_s \in A(w)} (w \setminus w_s) \otimes w_s$$

$$\Delta \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = 1 \otimes \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$\Delta(a_2a_1b_1b_2a_1b_1) = 1 \otimes a_2a_1b_1b_2a_1b_1 + a_1b_1 \otimes a_2b_2a_1b_1 + a_2a_1b_1b_2 \otimes a_1b_1 + a_1b_1 \otimes a_2a_1b_1b_2 + a_1b_1a_1b_1 \otimes a_2b_2 + a_2a_1b_1b_2a_1b_1 \otimes 1$$

Proposition

 $(\Bbbk D_n, \bullet, \Delta, \eta, \epsilon)$ – is graded, locally finite, connected bialgebra

$$\epsilon(w) = \begin{cases} 1_{\mathbb{k}} & \text{if} \quad w = \emptyset \\ 0_{\mathbb{k}} & \text{otherwise} \end{cases}$$

Algebra diagrams

Associativity of multiplication

$$\begin{array}{ccc} \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} & \xrightarrow{\mathrm{id} \otimes \bullet} & \mathcal{H} \otimes \mathcal{H} \\ \bullet \otimes \mathrm{id} \Big| & & \Big| \bullet \\ \mathcal{H} \otimes \mathcal{H} & \xrightarrow{\bullet} & \mathcal{H} \end{array}$$

Unity (k-linear) map in k-algebra \mathcal{H}

$$\eta \colon \Bbbk o \mathcal{H}, \qquad \eta(\mathbf{1}_{\Bbbk}) = \mathbf{1}_{\mathcal{H}}$$
 $\mathcal{H} \otimes \Bbbk = \mathcal{H} = \mathbb{k} \otimes \mathcal{A}$
 $\mathrm{id} \otimes \eta \downarrow \qquad \mathrm{id} \downarrow \qquad \qquad \downarrow \eta \otimes \mathrm{id}$
 $\mathcal{H} \otimes \mathcal{H} = \mathcal{H} \otimes \mathcal{H} \leftarrow \mathcal{H} \otimes \mathcal{H}$

Coalgebra diagrams

Coassociativity of comultiplication

$$egin{array}{cccc} \mathcal{H} & \stackrel{\Delta}{\longrightarrow} & \mathcal{H} \otimes \mathcal{H} \\ \Delta & & & & & \downarrow \Delta \otimes \mathrm{id} \\ \mathcal{H} \otimes \mathcal{H} & \stackrel{\mathrm{id} \otimes \Delta}{\longrightarrow} & \mathcal{H} \otimes \mathcal{H} \otimes \mathcal{H} \end{array}$$

Counit (\Bbbk -linear) map $\epsilon \colon \mathcal{H} \to \Bbbk$

Two $(\mathcal{H}, \bullet, \eta)$ – algebra, and $(\mathcal{H}, \Delta, \epsilon)$ – coalgebra structures on \mathcal{H} give bialgebra structure on \mathcal{H} when Δ and ϵ are unital algebra morphisms

Hopf algebra

is a bialgebra $(\mathcal{H}, \bullet, \Delta, \eta, \epsilon)$ with a linear map $T \colon \mathcal{H} \to \mathcal{H}$ satisfying

$$\bullet(T\otimes \mathrm{id})\circ\Delta=\bullet(\mathrm{id}\otimes T)\circ\Delta=\eta\circ\epsilon$$

In all cases considered here all bialgebras are graded $\mathcal{H}=\bigoplus_{n\geq 0}\mathcal{H}^{(n)}$

$$\mathcal{H}^{(n)} \otimes \mathcal{H}^{(m)} \xrightarrow{\bullet} \mathcal{H}^{(n+m)}, \quad \mathcal{H}^{(n)} \xrightarrow{\Delta} \bigoplus_{i+j=n} \mathcal{H}^{(i)} \otimes \mathcal{H}^{(j)}, \quad \epsilon(\mathcal{H}^{(n)}) = 0, \quad n > 0$$

locally finite and connected

$$\dim \mathcal{H}^{(n)} < \infty$$
, $\dim \mathcal{H}^{(0)} = 1$

thus (by Takeuchi theorem) they are Hopf algebras

Applications of Hopf algebras

topology of manifolds (H. Hopf), combinatorics (G.-C. Rota), quantum groups and noncommutative geometry, renormalization in quantum field theory, ...

The dual coproduct δ to the concatenation product \bullet

The prime Dyck words are of the form a_iwb_i , $w \in D_n$, $i=1,\ldots,n$ For Dyck words $w=u_1 \bullet u_2 \bullet \cdots \bullet u_k$ decomposed into prime factors

$$\delta(u_1 \bullet u_2 \bullet \cdots \bullet u_k) = \sum_{i=0}^k u_1 \bullet \cdots \bullet u_i \otimes u_{i+1} \bullet \cdots \bullet u_k$$

$$\delta \begin{pmatrix} I \\ 2 \end{pmatrix} = I \otimes \begin{pmatrix} I \\ 2 \end{pmatrix} + \begin{pmatrix} I \\ 2 \end{pmatrix} \otimes I + \begin{pmatrix} I \\ 2 \end{pmatrix} \otimes I$$

 $\delta(a_2a_1b_1b_2a_1b_1) = 1 \otimes a_2a_1b_1b_2a_1b_1 + a_2a_1b_1b_2 \otimes a_1b_1 + a_2a_1b_1b_2 \otimes a_1b_1 + a_2a_1b_1b_2 \otimes a_1b_1 \otimes 1$

define

Proposition

The second coproduct of the characteristic series S of the n-th Dyck language D_n decomposes as follows

$$\delta(S) = \left(\sum_{i=1}^n a_i S b_i\right)^* \otimes S$$

Proof: Equations

$$S = 1 + a_1 S b_1 S + \cdots + a_n S b_n S$$

$$\delta(a_i u b_i v) = 1 \otimes a_i u b_i v + (a_i u b_i \otimes 1) \bullet \delta(v)$$

give

$$\delta(S) = 1 \otimes S + \left(\sum_{i=1}^{n} a_{i}Sb_{i} \otimes 1\right) \bullet \delta(S)$$

Graded dual bialgebra to $(\mathbb{k}D_n, \bullet, \Delta, \eta, \epsilon)$

Define the asymmetric shuffle product $\sqcup : \Bbbk D_n \otimes \Bbbk D_n \to \Bbbk D_n$ on two Dyck words w and v as shuffling of prime factors of w into letters of v

$$a_2b_2 a_1b_1 \sqcup a_1b_1 = a_2b_2 a_1b_1 a_1b_1 + a_2b_2 a_1a_1b_1b_1 + a_2b_2 a_1b_1 a_1b_1 + a_1a_2b_2 a_1b_1 + a_1a_2b_2 a_1b_1 + a_1b_1 a_2b_2 a_1b_1$$

Facts (Foissy)

- $(\mathbb{k}D_n, \sqcup, \delta, \eta, \epsilon)$ is a graded dual bialgebra to $(\mathbb{k}D_n, \bullet, \Delta, \eta, \epsilon)$
- 3 the above duality is self-duality (!)

Connection to the theorem of Reutenauer

The Hopf subalgebra of $(\mathbb{k}D_n, \bullet, \Delta, \eta, \epsilon)$ generated by $\alpha_1 = a_1b_1$, $\alpha_2 = a_2 b_2, \dots \alpha_n = a_n b_n$ is the free Hopf algebra $\mathbb{R}\langle A \rangle$ on the set $A = \{\alpha_1, \dots, \alpha_n\}$ with its natural concatenation product The dual (deconcatenation) coproduct

$$\delta(\alpha_{i_1}\cdots\alpha_{i_m})=\sum_{k=0}^m\alpha_{i_1}\cdots\alpha_{i_k}\otimes\alpha_{i_{k+1}}\cdots\alpha_{i_m}$$

Theorem (Reutenauer)

Let S_L be characteristic series of a language $L \subset A^*$. Then L is recognizable if and only if there exists finite decomposition

$$\delta(S_L) = \sum_{i=1}^k S_i \otimes T_i, \qquad S_i, T_i \in \mathbb{Q}\langle\langle A \rangle\rangle$$

i.e. S_l belongs to the Sweedler dual of $\mathbb{Q}\langle A\rangle$

Hopf algebra of noncommutative symmetric functions

$$\text{NSym} = \mathbb{Q}\langle \boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3, \dots \rangle, \qquad \Delta(\boldsymbol{e}_n) = \sum_{k=0}^n \boldsymbol{e}_k \otimes \boldsymbol{e}_{n-k}$$

Gelfand, Krob, Lascoux, Leclerc, Retakh, Thibon [1995] $Sym = \mathbb{Q}[e_1, e_2, e_3, \dots]$ where

$$e_1 = \sum_{1 \le i} x_i, \quad e_2 = \sum_{1 \le i < j} x_i x_j, \quad e_3 = \sum_{1 \le i < j < k} x_i x_j x_k, \dots$$

are elementary symmetric functions (in infinitely many variables)

Proposition

- NSym is a Hopf subalgebra of $(\mathbb{Q}D_1, \bullet, \Delta, \eta, \epsilon)$ generated by $\mathbf{e}_1 = ab, \mathbf{e}_2 = a^2b^2, \mathbf{e}_3 = a^3b^3, \dots$ (sticks)
- ② graded dual QSym (quasisymmetric functions by Gessel) of NSym inherits its Hopf algebra structure from $(\mathbb{Q}D_1, \sqcup, \delta, \eta, \epsilon)$

THANK YOU

Related works

- Darli Grinberg, Victor Reiner, Hopf algebras in combinatorics, arXiv:1409.8356.
- Loïc Foissy, Les algébres de Hopf des arbres enracinés décorés.
 I, II, Bull. Sci. Math. 126 (2002) no. 3, 193–239, no. 4, 249–298.
- Marcelo Aguiar, N. Bergeron, Frank Sottile, Combinatorial Hopf algebras and generalized Dehn-Sommerville relations, Compositio Mathematica 142 (2006) 1–30.