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Abstract. Consider the problem of reconstruction of a small perturbation of the acoustic wave

speed field from traveltime data with linear background slowness. Mathematically, the problem is

equivalent to reconstruction of a function from the data of integrals along the circle arcs. The data are

limited, in the sense that the arc base points belong to a compact set. We propose and numerically test

a new approach, based on reduction of the problem to the inverse problem for the Radon transform.

The data completion procedure is considered as well.

Key words: Radon transform, Seismic tomography, Inverse kinematic problem, Spherical mean

transform, Interpolation of band-limited function

1. Introduction

Let H be a half-disk {x21+x22 < 1, x2 > 0}. For a function f , supp f ⊂ H define the arc
mean transform as an integral over an arcAa,R, centered at the daylight surface {x2 = 0}:

M f(a,R) = R

∫ π

0

f(a+ R cosϕ,R sinϕ) dϕ, (1)

where a is the center, R is the radius of the arc, Fig. 1.

This transform appears in several applications. In seismic tomography, the traveltime
in ray approximation is given by an integral:

Tobs =

∫

ray

ds

v
,

where v = v(x) is the velocity structure of the Earth, integration is over the ray, which
is a geodesic line of the metrics ds

v . Under assumption that the slowness (inverse to
the velocity) field of the media is of form 1/v(x1, x2) = (bx2 + c)−1 + εf(x1, x2), where
b, c > 0, ε≪ 1, the mean transform M f in (1) is a linearized perturbation of the travel
time data. We refer to books [4, 19] for the practical problem of seismic waves modeling
and substantiation of this model.

In the synthetic radar aperture image processing f(x1, x2) is considered as a ground
reflectivity and measured M f(a,R) is interpreted as a mean reflectivity at distance a
around the position of the radar carrier at a time R ([2], [8]).
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Fig. 1. Domain H and arc Aa,R

In thermoacoustic and photoacoustic tomography ([20, 21]) f(x1, x2) describes the
energy distribution function, and, in case of the constant wave speed, the inverse problem
can be reduced to inversion of the mean operator (1).

The inversion problem for the complete data of arcs was considered by various authors
in [4, 1, 9, 7, 6, 11, 8, 20] and some others.

We assume, that the data are known only for |a|+R < 1, i. e. Aa,R ⊂ H . Following
the paper [17], we call it the local arc problem. The local arc problem looks more realistic
from the practical point of view, at least for the seismic tomography.

In [17] the problem was reduced to the limited angle problem for the Radon transform
on the plane. In [14] the problem was reduced to other incomplete data problem for the
Radon transform on the plane. In [13] an algebraic discretization method based on the
microlocal analysis of the geometry of the arc family was proposed. This method was
implemented in [16].

In this paper we propose and numerically test a new approach, based on reduction of
the problem to the inverse problem for the Radon transform. This approach is similar
to considerations from [14].

In comparison with commonly-used algebraic discretization algorithms, the proposed
approach gives more quick algorithm. Besides, since the problem is reduced to the
standard tomographical algorithms, it is possible to apply analysis of tomographical
reconstruction algorithms to the spherical mean transform.

It is well-known (cf. [18]) that the limited angle problem for the Radon transform,
and therefore, the local arc problem, are ill-posed and the standard reconstruction al-
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gorithms work poor. To recover as much information as possible, we propose a data
completion procedure. The data completion procedure is based on the interpolation
formula from [10]. As it is shown in numerical simulation, data completion permits to
eliminate some artifacts in reconstruction.

x1

x2

0 1−1

1

Fig. 2. Phantom function is equal to 1 inside ellipses and to 0 elsewhere

For the purpose of numerical simulation we consider a phantom, that consists of
characteristic function of two ellipses with semi-axes parallel to coordinate axes (see
Fig. 2). One of them is the long ellipse with the center at (−0.25, 0.33) and semi-axes
of 0.1 and 0.3 respectively. The second is the wide ellipse with the center at (0.4, 0.15)
and semi-axes of 0.47 and 0.1. Both ellipses locate inside the circle {|x| < 0.9}

We will reconstruct from a discrete set of data. Fix N + 1 = 129 points on the
daylight surface:

ak = −1 + 2k/N, k = 0, . . . , N. (2)

Denote by Ak,l the arc with the diameter [ak, al].

We suppose that the array Gk,l, 0 ≤ k < l ≤ N of data is known. Here Gk,l is the
mean transform (1) for Ak,l.

The microlocal analysis, realized in [17], implies that reconstruction in the local arc
problem is stable only in directions that are orthogonal to known arcs. In other directions
the problem is of exponential instability with respect to the noise gain. Specifically, one
can expect strong artifacts in form of arcs, tangent to each ellipse’s boundary at point
that is not covered by the given arcs.

Similarly, we expect that the boundary of wide ellipse will be reconstructed better
than that of the long one. For most of the wide ellipse boundary points there is an arc
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from incomplete family that is tangent to the boundary at this point. It means that
most of the wide ellipse conormal bundle is covered by the family of arcs. This condition
fails for most of the long ellipse boundary points. We expect only the points that are
near to the daylight surface {x2 = 0} will be reconstructed well. By the same reason
we expect that the right side of the wide ellipse boundary and the left side of the long
ellipse boundary will be reconstructed worse than opposite ones.

Despite of strong ill-posedness, reconstruction results are still of practical use. Specif-
ically, one can consider algorithm, which recover only a part of unknown function. Such
an algorithm can be stable (cf. [15]).

We test each algorithm on noisy data as well. By noisy data we mean the arc means
perturbed by uniform random number up to 10% of its length. The inversion results
characterizes stability of the algorithm.

2. Filtered back projections

In this section we reduce the problem to various incomplete data problems for the Radon
transform on the plane. All unknown data in this section will be equaled to zero. The
data completion procedure will be considered in section 5.

2.1. Limited-angle problem

The problem of reconstruction of a function by limited data of arc integrals is equivalent
to the limited angle problem for the Radon transform. For 0 < e < 1 let He ⊂ H be
a half-disk He = {x21 + x22 < e2, x2 > 0}. Let Pe ⊂ R

2 be a domain bounded by the
branch of hyperbola

{y22 − y21 = 1, y2 > 0} (3)

and the line {y2 = (1 + e2)/(1− e2)}. (See figure 3.)

Let us rewrite the theorem from [17] in the following form:

Thrm 2.1. Let f(x) and g(y) be two functions supported at He and Pe respectively.
The following relations are equivalent:

f(x) =
4x2

(1− x2)2
g
( 2x1
1− x2

,
1 + x2

1− x2

)

, (4)

R g(ω, p) =
1

√

p2 − ω2
2 + ω2

1

M f
(

− ω1

p+ ω2
,

√

p2 − ω2
2 + ω2

1

|p+ ω2|
)

, (5)

where the Radon transform is defined as follows:

R g =

∫

ω1y1+ω2y2=p

g(y) ds,
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Fig. 3. Domains He and Pe. Arc C1C2 maps to line segment C1C2

ds is the Euclidean length element on the line {ω1y1 + ω2y2 = p}, ω2
1 + ω2

2 = 1.

This theorem is based on the mapping

(x1, x2) 7→
( 2x1
1− x2

,
1 + x2

1− x2

)

, (6)

which maps arcs into lines, segment [−1, 1] ⊂ {x2 = 0} into hyperbola (3). In particular,
arc {|x| = e} is mapped into the line {y2 = (1 + e2)/(1 − e2)}. All the arcs located
inside H , and, therefore intersecting the segment [−1, 1] twice, are mapped into the
lines, which intersect twice the hyperbola (3).

To reconstruct the function f one should calculate the Radon transform R g by the
formula (5), then by any standard procedure recover function g, and then by (4) calculate
function f .

We consider filtered backprojection algorithm for standard parallel geometry [18]. In
this case one should have the values of R g in points (ωj , sl), j = 1, . . . , P , l = −Q, . . . , Q,
where ωj = (cosϕj , sinϕj), ϕj = π(j − 1)/P , sl = l/Q.

To choose parameters P and Q in this algorithms, i. e. the number of angles and
samples, note that R g(ω, p) is known only for those lines, that intersect upper branch
of the hyperbola (3) in two points, i.e. for π/4 < ϕ < 3π/4. So, the known is a half of
all data. The amount of given arcs is equal to N(N + 1)/2. This provides the following
relation:

P (2Q+ 1) = N(N + 1)

On the other hand, the analysis realized in [18] gives the optimum relation:

P = πQ (7)
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Solving approximately this two equations, one obtains:

Q ≈
√

N(N + 1)/(2π), P ≈
√

πN(N + 1)/2 (8)

In our case (N = 128), we get P = 161, Q = 51.

The function to be recovered should be supported in the unit circle. So, before
applying the filtered backprojection algorithm, we displace the region Pe into the unit
circle with the following linear transform:

(y1, y2) 7→ (y1/Re, (y2 − Ce)/Re), (9)

where
Ce = 1/(1− e2) (10)

is the “center” of Pe,

Re =
√

1 + 4e2/(1− e2) (11)

is the distance from Ce to the most far point of the boundary ∂Pe (v. picture 4). That
means that instead of g(y) we consider the function g1(y) = g(y1Re, y2Re + Ce). From
the properties of the Radon transform [18] we know that

R g1(ω, p) = R−1
e R g(ω, pRe + Ceω2).

✲

✻

Pe

y1

y2

Fig. 4. Domain Pe displaced into the unit circle

The considered discrete set of arcs is not mapped into the set of parallel lines. To
calculate the Radon transform with (5) we apply linear with respect to each argument
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interpolation (cf. [5]). All unknown data are equaled to zero. Data completion procedure
will be considered in the section 5.

Combining this considerations with filtered backprojection algorithm from [18], we
obtain the following algorithm:

Algthm 2.1. Step 1. Calculate P and Q by (8), Re by (11), Ce by (10).

Step 2. For j = 1, . . . , P , l = −Q, . . . , Q, calculate interpolated Radon transform

Rj,l =
N2

4Re
√

p2 − ω2
2 + ω2

1

(

Gk,i(xk − ak+1)(xi − ai+1)−Gk,i+1(xk − ak+1)(xi − ai)

−Gk+1,i(xk − ak)(xi − ai+1) +Gk+1,i+1(xk − ak)(xi − ai)
)

,

where ω1 = cosϕj , ω2 = sinϕj , ϕj = π(j − 1)/P , p = Rel/Q+ Ceω2,

xk = − ω1

p+ ω2
−
√

p2 − ω2
2 + ω2

1

|p+ ω2|
,

xi = − ω1

p+ ω2
+

√

p2 − ω2
2 + ω2

1

|p+ ω2|
,

ak defined at (2). Integers k and i are chosen so that ak ≤ xk < ak+1, ai ≤ xi < ai+1:

k =

[

N(xk + 1)

2

]

, i =

[

N(xi + 1)

2

]

.

If p+ω2 = 0, the arc does not intersect He, so we set Ri,j = 0. If k or i does not belong
to the segment [0, N ] (data are unknown), we assume that Gk,i = 0.

Step 3. For j = 1, . . . p calculate the convolutions

vj,k = 1/Q

Q
∑

l=−Q

w(k − l)Rj,l, k = −Q, . . . , Q,

where w(l) is the filter. We use the Shepp-Logan filter [3]:

w(l) =
Q2

π2(1− 4l2)
. (12)

Step 4. For each point x ∈ He calculate discrete backprojection

fFBI(x) =
4x2

(1− x2)2
2π

P

P
∑

j=1

((1− u)vj,k + uvj,k+1),

where k and u for each pair of x and j obtained from the following relations:

p =
2x1 cosϕj
1− x2

+
(1 + x2) sinϕj

1− x2
, k ≤ Qp < k + 1, u = Qp− k.
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8 On numerical reconstruction of a function in seismic tomography

3. External problem—I

The transform (6) is the composition of two mappings. One of them maps H into
the unit circle and arcs centered at {x2 = 0} onto straight line chords. The other is
projective map, which reduces inversion problem to the limited angle problem for the
Radon transform (cf. [17]). In this section we will consider only the first map:

(x1, x2) 7→
( 2x1
1 + x2

,
1− x2

1 + x2

)

. (13)

This map transforms H to the half-disk D = {y21 + y22 < 1, y2 > 0} (figure 5). The
diameter [−1, 1] ⊂ {x2 = 0} of H is mapped to the upper arc [−1, 1] ⊂ ∂D. In this way
the reconstruction problem reduces to the inversion problem for the Radon transform
from the data of all lines, intersecting twice the upper arc. This is a kind of external
problem for the Radon transform.

x1

x2

0 1−1

1

H

C1 C2

y1

y2

0 1

C1

C2

−1

1

D

Fig. 5. Domains H and D. Arc C1C2 maps to the line segment C1C2

Thrm 3.1 (cf. [14]). Let f(x) and g(y) be two functions supported at H and D
respectively. The following relations are equivalent:

f(x) =
4x2

(1 + x2)2
g
( 2x1
1 + x2

,
1− x2

1 + x2

)

, (14)

R g(ω, p) =
1

√

1− p2
M f

( ω1

p+ ω2
,

√

1− p2

|p+ ω2|
)

. (15)
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Similar to the section 2.1, to reconstruct a function f one should calculate the Radon
transform R g by the formula (15), then by any standard procedure recover the function g,
and then by (14) calculate f .

Again, consider the filtered backprojection algorithm for standard parallel geome-
try [18]. Since the support of g belongs to the unit circle, we do not need to apply any
linear transform like 9.

As in the section 2.1, the discrete set of given arcs is not mapped into the set of parallel
lines. To calculate the Radon transform with (15), we apply linear with respect to each
argument interpolation. All the unknown data are equaled to zero. Data completion
procedure will be considered in the section 5.

Parameters P and Q in parallel geometry, i.e. the number of angles and samples, can
be chosen by the formulas (8).

Combining this considerations with the filtered backprojection algorithm from [18],
we obtain the algorithm similar to 2.1:

Algthm 3.1. Step 1. Calculate P and Q by (8).

Step 2. For j = 1, . . . , P , l = −Q, . . . , Q, calculate the interpolated Radon transform

Rj,l =
N2

4
√

1− p2

(

Gk,i(xk − ak+1)(xi − ai+1)−Gk,i+1(xk − ak+1)(xi − ai)

−Gk+1,i(xk − ak)(xl − ai+1) +Gk+1,i+1(xk − ak)(xi − ai)
)

,

where ω1 = cosϕj , ω2 = sinϕj , ϕj = π(j − 1)/P , p = l/Q,

xk =
ω1

p+ ω2
−
√

1− p2

|p+ ω2|
,

xi =
ω1

p+ ω2
+

√

1− p2

|p+ ω2|
,

ak defined at (2). Integers k and i are chosen so that ak ≤ xk < ak+1, ai ≤ xi < ai+1:

k = [(xk + 1)/(2N)], i = [(xi + 1)/(2N)].

If p+ ω2 = 0, the arc does not intersect H , so we let Ri,j = 0. If k or i does not belong
to the segment [0, N ] (data are unknown), we assume that Gk,i = 0.

Step 3. For j = 1, . . . p calculate the convolutions

vj,k = 1/Q

Q
∑

l=−Q

w(k − l)Rj,l, k = −Q, . . . , Q,

where w(l) is the filter. We use the Shepp-Logan filter (12).
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10 On numerical reconstruction of a function in seismic tomography

Step 4. For each point x ∈ H calculate the discrete backprojection

fFBI(x) =
4x2

(1 + x2)2
2π

P

P
∑

j=1

((1− u)vj,k + uvj,k+1),

where k and u for each pair of x and j obtained from the following relations:

p =
2x2 cosϕj
1 + x2

+
(1 − x2) sinϕj

1 + x2
, k ≤ Qp < k + 1, u = Qp− k.

3.1. External problem—II

Consider one more way of reduction of the problem to the Radon transform. Fix a point
B = (b1, b2) ∈ H in which the function is to be reconstructed. Consider the following
mapping:

(x1, x2) 7→
( 2b2(x1 − b1)

b22 + (x1 − b1)2 + x22
,
b22 − (x1 − b1)

2 − x22
b22 + (x1 − b1)2 + x22

)

. (16)

The map (13) coincides with (16) for B = (0, 1). This mapping maps H into the unit
circle, arcs centered at {x2 = 0} onto the chords and point B to the origin. The image of
H , domain Db is the upper part of the unit circle, bounded by the image of the boundary
arc of H (fugire 6). It is the chord C joining the points

P+ =
( 2(1− b1)b2
(1− b1)2 + b22

,
b22 − (1 − b1)

2

(1− b1)2 + b22

)

and P− =
( −2(1 + b1)b2
(1 + b1)2 + b22

,
b22 − (1 + b1)

2

(1 + b1)2 + b22

)

(17)
(the images of the points (±1, 0)). The given family of arcs (belonging to H) transforms
into the set of chords that does not intersect the chord C.

Note that when a point B tends to the daylight surface, i.e. b2 → 0, P± → (−1, 0).
The chord C vanishes, and transformed family turned into the complete family of chords,
contrary to the mappings (6) and (13), which provide the similar incomplete family of
lines for all points x ∈ H .

To construct a reconstruction algorithm we have to prove an analog to the theorems
2.1, and 3.1.

Thrm 3.2. Let f(x) and g(y) be two functions, supported at H and Db respectively.
The following relations are equivalent:

f(x) =
4b22x2

(b22 + (x1 − b1)2 + x22)
2
g
( 2b2(x1 − b1)

b22 + (x1 − b1)2 + x22
,
b22 − (x1 − b1)

2 − x22
b22 + (x1 − b1)2 + x22

)

, (18)

R g(ω, p) =
1

√

1− p2
M f

(

b1 +
ω1b2
p+ ω2

,
b2
√

1− p2

|p+ ω2|
)

. (19)
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Fig. 6. Domains H and Db (B = (0.2, 0.2)). Arc C1C2 maps to the line segment C1C2

Proof: The proof of the theorem is a straightforward calculation (cf. [14], [17]). Con-
sider the mapping (16), which provides diffeomorphism between H and D. Pulling the
equation of the line ω1y1 +ω2y2 = p from Db back to H , one obtains, after some simpli-
fication, the equation of the arc:

(

x1 −
(

b1 +
ω1b2
p+ ω2

)

)2

+ x22 =
1− p2

(p+ ω2)2
.

Let’s push forward the integral (1) from H to Db:

M f(a,R) =

∫

ω1y1+ω2y2=p

f((x(y)) dsH ,

where parameters (ω, p) and (a,R) are related as in (19), dsH is the image of the Eu-
clidean measure on the arc under the mapping (16). To calculate dsH one can use its
invariant definition:

dsH =
dyH
dψ(y)

‖ gradψ‖H |ψ(y)=0,

where ψ(y) = ω1y1 + ω2y2 − p, dyH/dψ is the Leray form, i. e. the form ρ such that
dyH = dψ ∧ ρ. Norm, gradient and the volume element dyH are calculated with respect
to the image of the Euclidean metric under (16). By direct calculation this image is
equal to

b22
(1− y22)dy

2
1 + 2y1y2dy1dy2 + (1− y21)dy

2
2

(1 + y2)2(1− y2)
.
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12 On numerical reconstruction of a function in seismic tomography

Therefore

dyH =
b22dy

√

1− y2(1 + y2)2
,

‖ gradψ‖H |ψ(y)=0 = b−2
2 (1 + y2)

2(1− p2),

dsH =
dy

dψ

b2
√

1− p2

(1 + y2)
√

1− y2
=
√

1− p2
((x1 − b1)

2 + x22 + b22)
2

4b22x2
ds,

where ds = dy/dψ(y) is the Euclidean measure on the line.

The theorem is proved.

So, to reconstruct f(b1, b2), one should calculate the Radon transform R g by the
formula (19), then, by any standard procedure recover function g(0, 0), and then by (18)
calculate function f , substituting x1 = b1, x2 = b2.

As usual, consider filtered backprojection algorithm for standard parallel geometry
and Shepp-Logan filter (12).

To compute parameters P and Q in this algorithms, i. e. the number of angles and
samples, let us estimate the portion of known data. Consider the projective transform
which maps points P± to the infinity. Apply this transform to the incomplete data
reconstruction problem for the Radon transform considered in this section. The problem
is reduced to the limited angle problem for the Radon transform with unknown angle
range of θ/2 (cf. [12], [17]), where θ is the angle measure of the arc (P− P+) of the unit
circle. So we can think that the portion of known data equals (π − θ/2)/π. This will
give us the following relation:

P (2Q+ 1)

(

π − θ/2

π

)

=
N(N + 1)

2

Solving approximately this equation together with optimal relation (7) one obtains the
formulas:

Q ≈
√

N(N + 1)

2(2π − θ)
P ≈ π

√

N(N + 1)

2(2π − θ)
(20)

Using explicit formulas for the coordinates of P± (17) we obtain the formula for θ:

θ = π − arcsin

(

(1 + b1)
2 − b22

(1 + b1)2 + b22

)

− arcsin

(

(1− b1)
2 − b22

(1− b1)2 + b22

)

(21)

Algthm 3.2. Step 1. Calculate P and Q by (20) and (21).
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Step 2. For j = 1, . . . , P , l = −Q, . . . , Q, calculate the interpolated Radon transform

Rj,l =
N2

4
√

1− p2

(

Gk,i(xk − ak+1)(xi − ai+1)−Gk,i+1(xk − ak+1)(xi − ai)

−Gk+1,i(xk − ak)(xl − ai+1) +Gk+1,i+1(xk − ak)(xi − ai)
)

, (22)

where ω1 = cosϕj , ω2 = sinϕj , ϕj = π(j − 1)/P , p = l/Q,

xk = b1 +
ω1b2
p+ ω2

− b2

√

1− p2

|p+ ω2|
, (23)

xi = b1 +
ω1b2
p+ ω2

+ b2

√

1− p2

|p+ ω2|
, (24)

ak defined at (2). Integers k and i are chosen so that ak ≤ xk < ak+1, ai ≤ xi < ai+1:

k = [(xk + 1)/(2N)], i = [(xi + 1)/(2N)].

If p+ ω2 = 0, the arc does not intersect H , so we let Ri,j = 0. If k or i does not belong
to the segment [0, N ] (data are unknown), we assume that Gk,i = 0.

Step 3. For j = 1, . . . p calculate the convolutions

vj,0 = 1/Q

Q
∑

l=−Q

w(−l)Rj,l,

where w(l) is defined in (12).

Step 4. Calculate the discrete backprojection

fFBI(b1, b2) =
4

b2

2π

P

P
∑

j=1

vj,0. (25)

3.2. Numerical tests

Numerical tests for algorithms 2.1, 3.1, 3.2 are presented on the figure 7. The left row
presents the reconstruction after exact data, the right row—after noisy data.

The reconstruction with algorithm 2.1 (on the top) looks less detailed, but it has
smaller artifacts. Furthermore, the reconstruction is more stable, there is a little differ-
ence between reconstruction by exact and noisy data. Another advantage of this method
is that algorithm is far quicker than algebraic algorithms.

The second line contains reconstruction with the algorithm 3.1. It looks more detailed
then reconstruction by the algorithm 2.1.
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14 On numerical reconstruction of a function in seismic tomography

Fig. 7. Reconstruction with the filtered backprojection algorithms: 2.1, 3.1, 3.2 (from the top) for exact
(left) and noisy (right) data.

The third line presents reconstruction with the algorithm 3.2. This reconstruction
looks more precise and detailed than previous ones. In particular, the boundary of the
wide ellipse and the upper boundary of the long ellipse look more sharp. On the other
hand, the reconstruction has larger and more artifacts, and is more unstable. One of the
sources of instability in the little factor b2 in denominator in (25), which increases the
errors especially near the boundary. The other disadvantage of the algorithm is that all
the parameter P , Q, Ri,j essentially depends on (b1, b2), (see (20), (21), (22)), so one
should recalculate it for all the reconstruction points. This increases the computing time.
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4. Local reconstruction

4.1. Reconstruction in the neighborhood of a fixed point

Consider another application of the theorem 3.2. Fix a point B = (b1, b2), called the cen-

ter of the reconstruction. To reconstruct the function f one should calculate the Radon
transform R g by the formula (19), then by any standard procedure recover function
g(y), and then by (18) calculate function f . This leads us to the following algorithm.

Algthm 4.1. Step 1. Fix point B = (b1, b2). Calculate P and Q by (20) and (21).

Step 2. For j = 1, . . . , P , l = −Q, . . . , Q, calculate the interpolated Radon transform

Rj,l =
N2

4
√

1− p2

(

Gk,i(xk − ak+1)(xi − ai+1)−Gk,i+1(xk − ak+1)(xi − ai)

−Gk+1,i(xk − ak)(xl − ai+1) +Gk+1,i+1(xk − ak)(xi − ai)
)

, (26)

where ω1 = cosϕj , ω2 = sinϕj , ϕj = π(j − 1)/P , p = l/Q,

xk = b1 +
ω1b2
p+ ω2

− b2

√

1− p2

|p+ ω2|
,

xi = b1 +
ω1b2
p+ ω2

+ b2

√

1− p2

|p+ ω2|
,

ak defined at (2). Integers k and i are chosen so that ak ≤ xk < ak+1, ai ≤ xi < ai+1:

k = [(xk + 1)/(2N)], i = [(xi + 1)/(2N)].

If p+ ω2 = 0, the arc does not intersect H , so we let Ri,j = 0. If k or i does not belong
to the segment [0, N ] (data are unknown), we assume that Gk,i = 0.

Step 3. For j = 1, . . . p calculate the convolutions

vj,k = 1/Q

Q
∑

l=−Q

w(k − l)Rj,l, k = −l, . . . , l,

where w(l) is the filter. We use the Shepp-Logan filter (12).

Step 4. For any point x ∈ H calculate discrete backprojection

fFBI(x) =
4b22x2

(b22 + (x1 − b1)2 + x22)
2

2π

P

P
∑

j=1

((1− u)vj,k + uvj,k+1),
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where k and u for each pair of x and j obtained from the following relations:

p =
2b2(x1 − b1) cosϕj
b22 + (x1 − b1)2 + x22

+
(b22 − (x1 − b1)

2 − x22) sinϕj
b22 + (x1 − b1)2 + x22

, (27)

k ≤ Qp < k + 1, u = Qp− k. (28)

Fig. 8. Local reconstruction with the centers (−0.5, 0.5), (0.5, 0.5), (0, 0.025) (from the top) for exact
(left) and noisy (right) data.

The numerical results are presented at the figure 8. We call it the local reconstruction

since the reconstruction is good only in a neighborhood of the center B. The details
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that are far from B are illegible. This method works ill, if b2 is small. Note that method
looks to be stable and is as quick as algorithms 2.1 and 3.1.

4.2. Combined local reconstruction

One can take the advantage of detailedness of the algorithm 3.2 and of speed of the
algorithm 4.1 in the following way. Divide investigated region into several regions. For
each region perform local reconstruction algorithm with the center of reconstruction
located inside this region. Glue together the results of reconstruction.

Fig. 9. Combined reconstruction for exact (left) and noisy (right) data. The region divided into two (at
the top) and 18 squares.

In the figure 9 the numerical results are presented. The region is divided into
18 squares. The centers of reconstruction are the centers of the squares. One can
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see that the method gives stable detailed reconstruction while computing time is smaller
than in algebraic algorithms as well as in the algorithm 3.2.

5. Data completion

5.1. Interpolation procedure

In this section we consider the procedure of data completion for the local arc problem.
We will make use of the theorem 2.1. Since the local arc problem is equivalent to the
limited angle problem for Radon transform, consider the data completion procedure for
the last problem.

Suppose that the Radon transform R f(ω, p) of a finite function f is unknown for
|ωn| > λ|ω′| for certain λ > 0, where ω′ = (ω1, . . . , ωn−1). Following the paper [10] we
start with the relation between the Radon and Fourier transforms:

f̃(s · ω) =
∫

R f(ω, p) e
−ipsdp. (29)

Limited angle problem is equivalent to interpolation of Fourier transform of finite func-
tion f̃(ξ), unknown in the cone { |ξn| > λ|ξ′| }, where ξ′ = (ξ1, . . . , ξn−1). The last
problem can be solved with the explicit formula [10]:

f̃(ξ′, ξn) =
1

π
eR

√
ρ2−ξ2

n

∫

|η|>ρ

sinR
√

η2 − ρ2

|η − ξn|
f̃(ξ′, η) dη, (30)

where ρ = λ|ξ′|, ξn ∈ [−ρ, ρ], supp f ⊂ { |x| ≤ R }.
To construct the numerical algorithm based on the formula (30) note that the re-

construction algorithms 2.1–4.1 include filtration. We will interpolate filtered Radon

transform:

RΛ f(ω, p) =
1

2π

∫ Λ

−Λ

f̃(s · ω)eispds. (31)

Substituting in (31) formulas (30) and (29) and calculating explicitly integral with
respect to s one obtains the following formula (cf. [10]):

RΛ(ω, p) =
1

2π

∫ ∞

0

dβ

∫

βEν(α, β, γ)
√

ρ2 + β2

×
(

R f
(

(ω′,
√

ρ2 + β2), p−Rα
)

|
√

ρ2 + β2 − ωn|
+

R f
(

(ω′,−
√

ρ2 + β2), p−Rα
)

|
√

ρ2 + β2 + ωn|

)

dα,

(32)
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where

Eν(α, β, γ) = 2β
γ2 − α2 + β2

(

γ2 + (α + β)2
)(

γ2 + (α− β)2
)

+ eγν
(

γ sin ν(α+ β)− (α+ β) cos ν(α+ β)

γ2 + (α+ β)2

−γ sin ν(α − β)− (α− β) cos ν(α − β)

γ2 + (α− β)2

)

,

γ =
√

ρ2 − ω2
n, |ωn| > λ|ω′|, ρ = λ|ω′|, ν = ΛR—the parameter which characterizes the

detailedness of the reconstruction.

5.2. Implementation

For numerical implementation split the integral (32):

RΛ f(ω, p) = Ino + Isp − Ism + Icm − Icp,

where

Ino =
1

π2

∫ ∞

0

dβ

∫

β2(γ2 − α2 + β2)
√

ρ2 + β2
(

γ2 + (α+ β)2
)(

γ2 + (α− β)2
) G(α, β) dα, (33)

Isp =
γeνγ

2π2

∫ ∞

0

dβ

∫

sin ν(α+ β)

γ2 + (α+ β)2
β

√

ρ2 + β2
G(α, β) dα, (34)

Ism =
γeνγ

2π2

∫ ∞

0

dβ

∫

sin ν(α− β)

γ2 + (α− β)2
β

√

ρ2 + β2
G(α, β) dα, (35)

Icp =
eνγ

2π2

∫ ∞

0

dβ

∫

cos ν(α+ β)

γ2 + (α+ β)2
β(α + β)
√

ρ2 + β2
G(α, β) dα, (36)

Icm =
eνγ

2π2

∫ ∞

0

dβ

∫

cos ν(α− β)

γ2 + (α− β)2
β(α − β)
√

ρ2 + β2
G(α, β) dα, (37)

G(α, β) =
R f
(

(ω′,
√

ρ2 + β2), p−Rα
)

|
√

ρ2 + β2 − ωn|
+

R f
(

(ω′,−
√

ρ2 + β2), p−Rα
)

|
√

ρ2 + β2 + ωn|
. (38)

We evaluate integrals (33)–(37) as multiple iterated.

Because of finiteness of f the function G(α, β) (38) vanishes when |p − Rα| ≥
R
√

|ω′|2 + ρ2 + β2, so internal integrals in (33)–(37) are along the finite segment [A−, A+],

A± = p/R±
√

|ω′|2 + ρ2 + β2.

To cut integrals with respect to β note that in (33), (36), (37) integrands decrease as
O(β−3) while in (34)–(35) as O(β−4) when β → ∞. So, one can consider finite segment
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respectively [0, ε−1/2] or [0, ε−1/4], where ε is the desired accuracy. In numerical tests
we set ε = 0.01.

To choose the filtration level Λ, note that there is a factor eγν = eγRΛ in the integrals
(34)–(37), which increases a computational error. So Λ should not be very large. For
instance, in our computation we set Λ = ln(25)/(Rγ), so computation error increases
≈ 25 times.

The integral (33) is evaluated by the trapezoid rule with N − 1 internal nodes, like
integrals in standard filtered backprojection tomography algorithms (cf. [18]).

Integrals (34)–(37) we evaluate with analogous formula, considering oscillating trigono-
metric factors as a weight functions:

∫ b

a

f(x) sin νx dx ≈ sin ν h2
ν h2

sin ν h2
ν
2

N−1
∑

i=1

f(xi) sin νxi

+ f(a)

(

cos νa

ν
− cos ν(a+ h

2 )

ν

sin ν h2
ν h2

)

+ f(b)

(

−cos νb

ν
+

cos ν(b− h
2 )

ν

sin ν h2
ν h2

)

,

∫ b

a

f(x) cos νx dx ≈ sin ν h2
ν h2

sin ν h2
ν
2

N−1
∑

i=1

f(xi) cos νxi

+ f(a)

(

− sin νa

ν
+

sin ν(a+ h
2 )

ν

sin ν h2
ν h2

)

+ f(b)

(

sin νb

ν
− sin ν(b− h

2 )

ν

sin ν h2
ν h2

)

,

where h = (b− a)/N .

In numerical tests we used N/2 = 64 nodes for the integrals (33)–(37) with respect
to α and N = 128 for these integrals with respect to β. The common amount of the
nodes N2/2 approximately coincides with N(N + 1)/2—the amount of given data.

5.3. Numerical tests

To perform the numerical test we add to the nodes (2) on the daylight surface new ones.
As in the section 2.1, we think that the half of the data are known. So we add N/4 = 32
nodes to the left from the segment [−1, 1], and N/4 = 32—to the right:

ℓj = − tan
π

4

(

1 +
4j

N + 1

)

, j = 1, . . . , N/4,

rj = tan
π

4

(

1 +
4j

N + 1

)

, j = 1, . . . , N/4.

(39)
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Fig. 10. Reconstruction with the interpolated (right) and given (left) data for exact data by algorithms:
3.1, 3.2, 4.1—the region is divided into 18 squares.

Note that the distance between the neighboring nodes ℓj and rj increases when
j → ∞, so the new family is transformed into “almost uniform” family under the map (6).

We add to the known data array Gk,l interpolated values of the arc mean transform
for arcs gathering nodes ℓj and rj with given nodes ak.

To compute the values of R f(ω, p) in the nodes of quadrature formulas we used linear
interpolation with respect to each coordinates.

To use completed data in the algorithms 2.1, 3.1, 3.2, and 4.1 we make changes in the
step 2. After calculating the feet of the arc xk and xi with the corresponding formula we
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22 On numerical reconstruction of a function in seismic tomography

Fig. 11. Reconstruction with the interpolated (right) and given (left) data for noisy data by algorithms:
3.1, 3.2, 4.1—the region is divided into 18 squares (from the top) for exact (left) and noisy (right)
data.

apply linear interpolation used nodes (39) as well as (2). To avoid new vertical artifacts
we need some filtration. For instance, we set Rj,l = 0, if max(xk, xi) > 25 (i. e. the arc
is “almost vertical”).

There is small difference in results for the algorithm 2.1.

On the figures 6 the results of the numerical tests for modified algorithms 3.1, 3.2,
and 4.1 are presented.

One can see that some artifacts disappeared or diminished. On the other hand some
new artifacts appeared. Note, however, that all the new artifacts that appear, locate

Machine GRAPHICS & VISION vol. , no. , pp.



Aleksander Denisiuk 23

near the boundary { |x| = 1 }, in the region of the worst reconstruction.

Reconstruction with interpolated noisy data (Fig. 11) is as stable as reconstruction
with noisy data without interpolation. So, data completion procedure seems to be stable.

6. Conclusion and future work

We proposed and numerically tested some algorithms for reconstruction of a function
from incomplete data of arc means in the seismic tomography model. Algorithms are
based on different reductions of the problem to the standard computer tomography
reconstruction. The data completion procedure is proposed as well.

Due to strong ill-posedness, reconstruction results unavoidably differ from the original
and have artifacts. However, they are still useful. And the question of stability of
reconstruction is very important. Our simulation shows that proposed algorithms are
quite stable.

Algorithms need further investigation. Specifically, it’s desirable to obtain error
estimates. These questions will be studied elsewhere.
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