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Plan for this talk:

In this talk we look at the existence of constant scalar curvature Sasaki
structures (cscS). We show that the modified Einstein–Hilbert functional
detects the Sasaki-Futaki invariant. For certain so-called Sasaki join
manifolds, we then apply this result to provide an explicit, computable,
necessary, and sufficient condition for the existence of cscS within a
certain sub cone of the Sasaki cone.
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Plan:

1. Kähler geometry and Scalar Curvature
2. Sasakian geometry and Scalar Curvature
3. The join construction in Sasakian geometry and cscS metrics
4. The Einstein-Hilbert functional and Sasaki-Futaki invariant
5. Main Result
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Kähler Geometry
Let N be a smooth compact manifold of real dimension 2dN .

I If J is a smooth bundle-morphism on the real tangent bundle,
J : TN → TN such that J2 = −Id and ∀X ,Y ∈ TN

J(LXY )− LX JY = J(LJX JY − JLJXY ),

then (N, J) is a complex manifold with complex structure J.
I A Riemannian metric g on (N, J) is said to be a Hermitian

Riemannian metric if

∀X ,Y ∈ TN, g(JX , JY ) = g(X ,Y )
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I This implies that ω(X ,Y ) := g(JX ,Y ) is a J− invariant
(ω(JX , JY ) = ω(X ,Y )) non-degenerate 2− form on N.

I If dω = 0, then we say that (N, J, g , ω) is a Kähler manifold (or
Kähler structure) with Kähler form ω and Kähler metric g .

I The second cohomology class [ω] is called the Kähler class.

I For fixed J, the subset in H2(N,R) consisting of Kähler classes is
called the Kähler cone.
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Scalar Curvature of Kähler metrics:
Given a Kähler structure (N, J, g , ω), the Riemannian metric g defines
(via the unique Levi-Civita connection ∇)

I the Riemann curvature tensor R : TN ⊗ TN ⊗ TN → TN

I and the trace thereoff, the Ricci tensor r : TN ⊗ TN → C∞(N)

I This gives us the Ricci form, ρ(X ,Y ) = r(JX ,Y ).
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I If ρ = λω, where λ is some constant, then we say that (N, J, g , ω) is
Kähler-Einstein (or just KE).

I the scalar curvature, Scal ∈ C∞(N), where Scal is the trace of the
map X 7→ r̃(X ) where ∀X ,Y ∈ TN, g(r̃(X ),Y ) = r(X ,Y ).

I If Scal is a constant function, we say that (N, J, g , ω) is a constant
scalar curvature Kähler metric (or just CSC).

I KE =⇒ CSC (with λ = Scal
2dN

)

I Not all complex manifolds (N, J) admit CSC Kähler structures.
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Admissible Kähler manifolds/orbifolds

I Special cases of the more general (admissible) constructions defined
by/organized by Apostolov, Calderbank, Gauduchon, and T-F.

I Credit goes to Calabi, Koiso, Sakane, Simanca, Pedersen, Poon,
Hwang, Singer, Guan, LeBrun, and others.
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I Let ωN be a primitive integral Kähler form of a CSC Kähler metric
on (N, J).

I Let 1l→ N be the trivial complex line bundle.
I Let n ∈ Z \ {0}.
I Let Ln → N be a holomorphic line bundle with c1(Ln) = [nωN ].
I Consider the total space of a projective bundle Sn = P(1l⊕ Ln)→ N.
I Note that the fiber is CP1.
I Sn is called admissible, or an admissible manifold.
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Admissible Kähler classes
I Let D1 = [1l⊕ 0] and D2 = [0⊕ Ln] denote the “zero” and “infinity”

sections of Sn → N.
I Let r be a real number such that 0 < |r | < 1, and such that r n > 0.
I A Kähler class on Sn, Ω, is admissible if (up to scale)

Ω = 2πn[ωN ]
r + 2πPD(D1 + D2).

(“PD” = Poincare Dual)
I In general, the admissible cone is a sub-cone of the Kähler cone.
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I In each admissible class we can now construct explicit Kähler
metrics g (called admissible Kähler metrics).

I We can generalize this construction to the log pair (Sn,∆), where ∆
denotes the branch divisor ∆ = (1− 1/m1)D1 + (1− 1/m2)D2.

I If m = gcd(m1,m2), then (Sn,∆) is a fiber bundle over N with fiber
CP1[m1/m,m2/m]/Zm.

I g is smooth on Sn \ (D1 ∪D2) and has orbifold singularities along D1

and D2

I This gives enough flexibility to produce CSC examples.
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Kähler orbifolds naturally lead to...
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Sasakian Geometry:
Odd dimensional version of Kählerian geometry and special case of
contact structure.
A Sasakian structure on a smooth manifold M of dimension 2n + 1 is
defined by a quadruple S = (ξ, η,Φ, g) where

I η is contact 1-form defining a subbundle (contact bundle) in TM
by D = ker η.

I ξ is the Reeb vector field of η [η(ξ) = 1 and ξcdη = 0]
I Φ is an endomorphism field which annihilates ξ and satisfies J = Φ|D

is a complex structure on the contact bundle (dη(J·, J·) = dη(·, ·))
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I g := dη ◦ (Φ⊗ 1l) + η ⊗ η is a Riemannian metric

I ξ is a Killing vector field of g which generates a one dimensional
foliation Fξ of M whose transverse structure is Kähler.

I we let (gT , ωT ) denote the transverse Kähler metric
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I If ξ is regular, the transverse Kähler structure lives on a smooth
manifold (quotient of regular foliation Fξ).

I If ξ is quasi-regular, the transverse Kähler structure has orbifold
singularities (quotient of quasi-regular foliation Fξ).

I If not regular or quasi-regular we call it irregular... (that’s most of
them)
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Transverse Homothety:

I If S = (ξ, η,Φ, g) is a Sasakian structure, so is
Sa = (a−1ξ, aη,Φ, ga) for every a ∈ R+ with
ga = ag + (a2 − a)η ⊗ η.

I So Sasakian structures come in rays.
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Deforming the Sasaki structure:
In its contact structure isotopy class:

I

η → η + dcφ, φ is basic

I This corresponds to a deformation of the transverse Kähler form

ωT → ωT + ddcφ

in its Kähler class in the regular/quasi-regular case.
I “Up to isotopy” means that the Sasaki structure might have to been

deformed as above.
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In the Sasaki Cone:
I Choose a maximal torus T k , 0 ≤ k ≤ n + 1 in the Sasaki

automorphism group

Aut(S) = {φ ∈ Diff (M) |φ∗η = η, φ∗J = J, φ∗ξ = ξ, φ∗g = g}.

I The unreduced Sasaki cone is t+ = {ξ′ ∈ tk | η(ξ′) > 0}, where tk

denotes the Lie algebra of T k .
I Each element in t+ determines a new Sasaki structure with the same

underlying CR-structure.
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Scalar Curvature of Sasaki metrics
I The scalar curvature of g behaves as follows

Scal = ScalT − 2n

I S = (ξ, η,Φ, g) has constant scalar curvature (CSC) if and only if
the transverse Kähler structure has constant scalar curvature.

I S = (ξ, η,Φ, g) has CSC iff its entire ray has CSC (“CSC ray”).
I We will say that S = (ξ, η,Φ, g)

is CSC whenever it is CSC up to isotopy.
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The Join Construction
I The join construction of Sasaki manifolds (Boyer, Galicki, Ornea) is

the analogue of Kähler products.
I Given quasi-regular Sasakian manifolds πi : Mi → Zi . Let

L = 1
2l1
ξ1 − 1

2l2
ξ2 be viewed as a vector field on M1 ×M2.

I Form (l1, l2)- join by taking the quotient by the action induced by L:

M1 ×M2

↘ πLyπ12 M1 ?l1,l2 M2

↙ π
Z1 ×Z2
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I M1 ?l1,l2 M2 is a S1-orbibundle (generalized Boothby-Wang fibration).

I M1 ?l1,l2 M2 has a natural quasi-regular Sasakian structure for all
relatively prime positive integers l1, l2. Fixing l1, l2 fixes the contact
orbifold. It is a smooth manifold iff gcd(µ1l2, µ2l1) = 1, where µi is
the order of the orbifold Zi .
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Join with a weighted 3-sphere
I Take π2 : M2 → Z2 to be the S1-orbibundle

π2 : S3
w → CP[w]

determined by a weighted S1-action on S3 with weights
w = (w1,w2) such that w1 ≥ w2 are relative prime.

I S3
w has an extremal Sasakian structure with transverse Kähler form

ωw on CP[w] satisfying [ωw] = [ω0]
w1w2

, where ω0 is the standard

Fubini-Study volume form on CP1.
I Let M1 = M be a regular CSC Sasaki manifold whose quotient is a

unit volume compact CSC Kähler manifold N with scalar curvature
equal to A

4π .
I Assume gcd(l2, l1w1w2) = 1 (equivalent with gcd(l2,wi ) = 1).
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I

M × S3
w

↘ πLyπ12 M ?l1,l2 S
3
w =: Ml1,l2,w

↙ π
N × CP[w]
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The w-Sasaki cone
I The Lie algebra aut(Sl1,l2,w) of the automorphism group of the join

satisfies aut(Sl1,l2,w) = aut(S1)⊕ aut(Sw),
mod (Ll1,l2,w = 1

2l1
ξ1 − 1

2l2
ξ2), where S1 is the Sasakian structure on

M, and Sw is the Sasakian structure on S3
w.

I The unreduced Sasaki cone t+l1,l2,w of the join Ml1,l2,w thus has a

2-dimensional subcone t+w is called the w-Sasaki cone.
I t+w is inherited from the Sasaki cone on S3
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I Each Reeb vector field in t+w is determined by a choice of
(v1, v2) ∈ R+ × R+. Indeed, ξv = v1H1 + v2H2, where Hi is the
restriction to Ml1,l2,w of the rotation zi 7→ e iθzi on S3.

I The ray of ξv is quasi-regular iff v2/v1 ∈ Q.

I t+w has a regular ray (given by (v1, v2) = (1, 1)) iff l2 divides w1 −w2.
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Motivating Question

I Does t+w have a CSC ray?
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Key Proposition (Boyer, T-F)
Let Ml1,l2,w = M ?l1,l2 S3

w be the join as described above.
Let v = (v1, v2) be a weight vector with relatively prime integer
components and let ξv be the corresponding Reeb vector field in the
Sasaki cone t+w .
Then the quotient of Ml1,l2,w by the flow of the Reeb vector field ξv is
(Sn,∆)
with n = l1

(
w1v2−w2v1

s

)
, where s = gcd(l2,w1v2 − w2v1), and the branch

divisor ∆ = (1− 1
m1

)D1 + (1− 1
m2

)D2, with ramification indices mi = vi
l2
s .
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The Kähler class on the (quasi-regular) quotient
I is admissible up to scale (when (v1, v2) 6= (w1,w2)).
I We can determine exactly which one it is.
I So we can test it for containing an admissible CSC Kähler metrics.
I Hence we can test if the ray of ξv is admissible CSC (up to isotopy).
I By lifting the admissible construction to the Sasakian level (in a way

so it depends smoothly on (v1, v2)), we can also handle the irregular
rays.

I In fact,
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Proposition (Boyer, T-F)

Consider a ray in the w-cone determined by a choice of b = v2/v1 > 0.
Then the Sasakian structures of the ray has admissible CSC metrics (up

to isotopy) if and only if fCSC (b) = 0, where fCSC (b) = −f (b)
(w1b−w2)3

and

f (b) is a polynomial given by:
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− (dN + 1)l1w2dN+3
1 b2dN+4

+ w
2(dN+1)
1 b2dN+3(Al2 + l1(dN + 1)w2)

− wdN+2
1 wdN

2 bdN+3((dN + 1)(A(dN + 1)l2 − l1((dN + 1)w1 + (dN + 2)w2)))

+ wdN+1
1 wdN+1

2 bdN+2(2AdN(dN + 2)l2 − (dN + 1)(2dN + 3)l1(w1 + w2))

− wdN
1 wdN+2

2 bdN+1(dN + 1)(A(dN + 1)l2 − l1((dN + 2)w1 + (dN + 1)w2))

+ w
2(dN+1)
2 (b(Al2 + l1(dN + 1)w1))

− (dN + 1)l1w2dN+3
2 .

f (b) has a root of order three at b = w2/w1 when w1 > w2 and order at
least four when w1 = w2 = 1 (where the case of b = w2/w1 = 1 gives a
product transverse CSC structure). Thus fCSC (b) is a polynomial of order
2dN + 1 with positive roots corresponding to the rays in the w-cone that
admit admissible CSC metrics.
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Theorem (Boyer, T-F)
I For each vector w = (w1,w2) ∈ Z+ × Z+ with relatively prime

components satisfying w1 > w2 there exists a Reeb vector field ξv in
the 2-dimensional w-Sasaki cone on Ml1,l2,w such that the
corresponding ray of Sasakian structures Sa = (a−1ξv, aηv,Φ, ga) has
constant scalar curvature.

I Suppose in addition that the scalar curvature of N is positive.
Then for sufficiently large l2 there are at least three CSC rays in the
w-Sasaki cone of the join Ml1,l2,w.

Remark: When N = CP1, Ml1,l2,w are S3-bundles over S2. These were
treated by Boyer and Boyer, Pati, as well as by E. Legendre.
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Motivating Question

I Within the w-Sasaki cone of Ml1,l2,w, how restrictive was it to look
for admissible CSC Sasaki structures?

I Collaborating with Eveline Legendre and Hongnian Huang, we found
that....

I it is not restrictive at all!
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The Sasaki-Futaki invariant
For a given Kähler class, the existence of a CSC Kähler representative is
obstructed by the so-called Futaki Invariant (Futaki 1983).

Likewise, there is a Sasaki version of this invariant, the so-called
Sasaki-Futaki Invariant or Transversal Futaki Invariant (Boyer, Galicki,
Simanca, Futaki, Ono, Wang, 2008–09)

Fξ : Lie algebra of transverse holomorphic vector fields −→ R
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I The vanishing of Fξ is a necessary, but in general not sufficient,
condition for the existence of a CSC Sasaki structure in the space of
Sasaki structures with fixed Reeb vector field ξ and fixed transverse
holomorphic structure.

I In particular, Fξ is an obstruction to the existence of CSC Sasaki
structure in the isotopy class of a given Sasaki structure.
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The (modified) Einstein-Hilbert functional
For a given Sasaki structure, let Vξ denoted the volume of the Sasaki
metric and let Sξ denoted the total transversal scalar curvature.
We define the Einstein–Hilbert functional

H(ξ) =
Sn+1
ξ

Vn
ξ

(1)

as a functional on the Sasaki cone.
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I Note that H is homogeneous since the rescaling ξ 7→ 1
λξ gives

λn+1dvg and
1

λ
ScalT .

I Note also that H(ξ) only depends on the isotopy class of the Sasaki
structure.
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A Lemma linking the SF-invariant and the EH
functional (Boyer, Huang, Legendre, T-F)

Given a ∈ Tξt
+, we have

dHξ(a) =
n(n + 1)Sn

ξ

Vn
ξ

Fξ(Φ(a)).
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The EH-functional on Ml1,l2,w

On the manifolds Ml1,l2,w with b = v2/v1 6= w2/w1 - up to an overall
positive constant rescale that does not depend on (v1, v2) - the
Einstein-Hilbert functional restricted to the w-cone takes the form

H(b) =

(
l1w

dN+1

1 bdN+2+(l2A−l1w2)w
dN
1 bdN+1+(l1w1−l2A)w

dN
2 b−l1w

dN+1

2

)dN+2

(w1b−w2)
(
w

dN+1

1 bdN+2−wdN+1

2 b
)dN+1 .

Furthermore, we have the boundary behavior

lim
b→0

H(b) = +∞, lim
b→+∞

H(b) = +∞.

Note that H(b) = H(H1 + bH2) = H(v1H1 + v2H2).
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Derivative of H(b)
If we consider a = H2, then dHξv (a) is just H ′(b).

We calculate that

H′(b) =

(
v
dN+1

1 bdN+1
∫
Ml1,l2,w

ScalT dvgv

)dN+1

fCSC (b)

bdN+2

(
v
dN+2

1 bdN+1
∫
Ml1,l2,w

dvgv

)dN+2

=

(∫
Ml1,l2,w

ScalT dvgv

)dN+1

fCSC (b)

(bv1)2dN+3

(∫
Ml1,l2,w

dvgv

)dN+2 .

=
(Sξv )

dN+1fCSC (b)

(bv1)2dN+3(Vξv )
dN+2 ,
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which with n = dN + 1 equals

Sn
ξv

fCSC (b)

(bv1)2n+1Vn+1
ξv
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The Link between the SF-invariant and fCSC (b)
So, on Ml1,l2,w in the w-Sasaki cone, for a = H2, up to an overall positive
constant rescale that does not depend on (v1, v2), we have

n(n + 1)Sn
ξv

Vn
ξv

Fξ(Φ(a)) = dHξv (a) =
Sn
ξv

fCSC (b)

(bv1)2n+1Vn+1
ξv

Since, as one may check, Sn
ξv

is a smooth rational function with only
isolated zeroes and fCSC as well as the Sasaki-Futaki invariant varies
smoothly in the Sasaki-cone, we conclude that, up to a positive multiple,
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fCSC (b) represents the value of the Sasaki-Futaki invariant Fξv in a
specific direction transversal to the rays.

Thus in this case, the vanishing of the Sasaki-Futaki invariant
actually does imply the existence of cscS metrics for the given ray.

In cases where the w-cone is the entire Sasaki cone we have that the
existence of cscS metrics is equivalent to the vanishing of fCSC (b) and
hence with the vanishing of Fξ.
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Main Result (Boyer, Huang, Legendre, T-F)
Consider a ray in the w-cone of Ml1,l2,w determined by a choice of
b = v2/v1 > 0. Then the Sasakian structures of the ray has admissible
CSC metrics (up to isotopy) if and only if fCSC (b) = 0, where

fCSC (b) = −f (b)
(w1b−w2)3

and f (b) is a polynomial given by:

bla bla bla

f (b) has a root of order three at b = w2/w1 when w1 > w2 and order at
least four when w1 = w2 = 1 (where the case of b = w2/w1 = 1 gives a
product transverse CSC structure). Thus fCSC (b) is a polynomial of order
2dN + 1 with positive roots corresponding to the rays in the w-cone that
admit admissible CSC metrics.
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Concluding Remarks
I Is it possible to prove the main result directly without using the

EH-functional?
I Maybe, but a lot of “useful facts” available in Kähler geometry are

still “under construction” for the Sasaki case.
I The EH-functional is also related to a stability notion.
I Next Question: Within the w-Sasaki cone of Ml1,l2,w, how restrictive

is it to look for admissible extremal Sasaki structures?
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Thank You For Your Attention
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