Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties

V. Matveev ¹ Y. Nikolayevsky ²

¹Institute of Mathematics, Friedrich-Schiller-Universität, Jena, Germany

²La Trobe University, Melbourne, Australia

Workshop on almost hermitian and contact geometry
Będlewo, Poland, October 20, 2015
Starting point:

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1} \times S^1$.

"Conformally flat" means "locally conformally Minkowski". We wanted to extend this to the "next simplest" class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

A connected closed locally conformally Berwald Finsler manifold is either globally conformally Berwald or is finitely covered by $S^{n-1} \times S^1$.
Starting point:

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1} \times S^1$.

“Conformally flat” means “locally conformally Minkowski”. We wanted to extend this to the “next simplest” class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

A connected closed locally conformally Berwald Finsler manifold is either globally conformally Berwald or is finitely covered by $S^{n-1} \times S^1$.
Starting point:

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1} \times S^1$.

“Conformally flat” means “locally conformally Minkowski”.

We wanted to extend this to the “next simplest” class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

A connected closed locally conformally Berwald Finsler manifold is either globally conformally Berwald or is finitely covered by $S^{n-1} \times S^1$.
Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1} \times S^1$.

"Conformally flat" means "locally conformally Minkowski". We wanted to extend this to the "next simplest" class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

A connected closed locally conformally Berwald Finsler manifold is either globally conformally Berwald or is finitely covered by $S^{n-1} \times S^1$.
Starting point:

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1} \times S^1$.

“Conformally flat” means “locally conformally Minkowski”. We wanted to extend this to the “next simplest” class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

A connected closed locally conformally Berwald Finsler manifold is either globally conformally Berwald or is finitely covered by $S^{n-1} \times S^1$.
Definition

A **Finsler metric** on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \rightarrow [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \text{(the zero section)}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a **Minkowski norm**, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- **Riemannian**: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- **Minkowski**: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
Definition

A *Finsler metric* on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \text{the zero section}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a *Minkowski norm*, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i \xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
A **Finsler metric** on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \{\text{the zero section}\}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a **Minkowski norm**, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- **Riemannian**: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- **Minkowski**: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
A **Finsler metric** on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \text{(the zero section)}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a **Minkowski norm**, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- **Riemannian:** $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i \xi^j}$.
- **Minkowski:** take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
Definition

A Finsler metric on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i \xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
Definition

A **Finsler metric** on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \text{(the zero section)}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a **Minkowski norm**, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- **Riemannian**: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- **Minkowski**: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
Definition

A *Finsler metric* on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \rightarrow [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \{\text{the zero section}\}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a *Minkowski norm*, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i \xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
Definition

A *Finsler metric* on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a *Minkowski norm*, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- **Riemannian**: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i \xi^j}$.
- **Minkowski**: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
Definition

A *Finsler metric* on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \{\text{the zero section}\}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_x M}$ is a *Minkowski norm*, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
Definition

A Finsler metric on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \text{(the zero section)}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
A **Finsler metric** on a smooth manifold M of dimension $n \geq 2$ is a continuous function $F : TM \to [0, \infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus \text{(the zero section)}$ and such that for every point $x \in M$ the restriction $F_x := F|_{T_xM}$ is a **Minkowski norm**, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

1. $F_x(\lambda \cdot \xi) = \lambda \cdot F_x(\xi)$ for any $\lambda \geq 0$.
2. $F_x(\xi + \eta) \leq F_x(\xi) + F_x(\eta)$.
3. $F_x(\xi) = 0 \iff \xi = 0$.

Examples:

- **Riemannian:** $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i \xi^j}$.
- **Minkowski:** take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.
A Finsler metric \(F \) is *Berwald*, if there exists a torsion-free affine connection \(\nabla \) on \(M \) whose parallel transport preserves \(F \).

Examples:

1. Riemannian: \(\nabla \) is the Levi-Civita connection.
2. Minkowski: \(\nabla \) is the standard flat connection of \(\mathbb{R}^n \).
3. *Cartesian product* \(M \) of two Berwald manifolds \((M_i, F_i, \nabla_i) \). Define the product connection on \(M \), and for an arbitrary Minkowski norm \(N \) on \(\mathbb{R}^2 \) define the Finsler metric \(F \) on \(M \) by

\[
F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).
\]

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
Definition

A Finsler metric F is *Berwald*, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. Riemannian: ∇ is the Levi-Civita connection.
2. Minkowski: ∇ is the standard flat connection of \mathbb{R}^n.
3. *Cartesian product* M of two Berwald manifolds (M_i, F_i, ∇_i). Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

 $$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

 This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
A Finsler metric F is *Berwald*, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. **Riemannian**: ∇ is the Levi-Civita connection.
2. **Minkowski**: ∇ is the standard flat connection of \mathbb{R}^n.
3. **Cartesian product** M of two Berwald manifolds (M_i, F_i, ∇_i). Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. Riemannian: ∇ is the Levi-Civita connection.
2. Minkowski: ∇ is the standard flat connection of \mathbb{R}^n.
3. Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i). Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
Definition

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. Riemannian: ∇ is the Levi-Civita connection.
2. Minkowski: ∇ is the standard flat connection of \mathbb{R}^n.
3. Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i). Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
Definition

A Finsler metric F is *Berwald*, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. Riemannian: ∇ is the Levi-Civita connection.
2. Minkowski: ∇ is the standard flat connection of \mathbb{R}^n.
3. *Cartesian product* M of two Berwald manifolds (M_i, F_i, ∇_i). Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
Definition

A Finsler metric F is *Berwald*, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. Riemannian: ∇ is the Levi-Civita connection.
2. Minkowski: ∇ is the standard flat connection of \mathbb{R}^n.
3. *Cartesian product* M of two Berwald manifolds (M_i, F_i, ∇_i).

Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
Definition

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. Riemannian: ∇ is the Levi-Civita connection.
2. Minkowski: ∇ is the standard flat connection of \mathbb{R}^n.
3. Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i). Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
A Finsler metric F is *Berwald*, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. **Riemannian**: ∇ is the Levi-Civita connection.
2. **Minkowski**: ∇ is the standard flat connection of \mathbb{R}^n.
3. *Cartesian product* M of two Berwald manifolds (M_i, F_i, ∇_i). Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

1. **Riemannian**: ∇ is the Levi-Civita connection.
2. **Minkowski**: ∇ is the standard flat connection of \mathbb{R}^n.
3. **Cartesian product** M of two Berwald manifolds (M_i, F_i, ∇_i). Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1, x_2), (\xi_1, \xi_2)) = N(F_1(x_1, \xi_1), F_2(x_2, \xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases for Berwald manifolds.
Theorem (Szabó, 1981)

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.

- (Local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank \(\geq 2 \).

Any of these factors may be absent.

“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole \(\text{SO}(n) \), then the Berwald space is Riemannian.

Dowód.

Theorem (Szabó, 1981)

- **(Metrizability)** Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- **(local de Rham)** Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole $\text{SO}(n)$, then the Berwald space is Riemannian.

Dowód.

Theorem (Szabó, 1981)

- **(Metrisability)** Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- **(local de Rham)** Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole $\text{SO}(n)$, then the Berwald space is Riemannian.

Dowód.

Theorem (Szabó, 1981)

- **(Metrisability)** Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- **(local de Rham)** Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole $\text{SO}(n)$, then the Berwald space is Riemannian.

Dowód.

Theorem (Szabó, 1981)

- **(Metrizability)** Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- **(local de Rham)** Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank \(\geq 2 \).

Any of these factors may be absent.

“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole \(\mathrm{SO}(n) \), then the Berwald space is Riemannian.

Dowód.

Theorem (Szabó, 1981)

- **(Metrisability)** Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- **(Local de Rham)** Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank \(\geq 2 \).

Any of these factors may be absent.

“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole \(\text{SO}(n) \), then the Berwald space is Riemannian.

Dowód.

Theorem (Szabó, 1981)

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (Local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank \(\geq 2 \).

Any of these factors may be absent.

“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole \(\text{SO}(n) \), then the Berwald space is Riemannian.

Dowód.

Theorem (Szabó, 1981)

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole $\text{SO}(n)$, then the Berwald space is Riemannian.

Dowód.

Theorem (Szabó, 1981)

- (Metrizability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.
“Symmetric space” means that the space has the same reduced holonomy; those were completely classified.
In particular, if the reduced holonomy group is the whole $\text{SO}(n)$, then the Berwald space is Riemannian.

Dowód.

Definition

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric F on \mathbb{R}^n. And consider the mapping

$$\alpha : \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}^n \setminus \{0\}, \quad x \mapsto qx,$$

where $q > 0, \ q \neq 1$. That mapping generates a free and discrete action of the group \mathbb{Z} on $\mathbb{R}^n \setminus \{0\}$, with the quotient space $M = (\mathbb{R}^n \setminus \{0\})/\mathbb{Z}$ diffeomorphic to $S^{n-1} \times S^1$. The group \mathbb{Z} acts by isometries of the metric $\frac{1}{\|x\|}F$ and hence induces a Finsler metric on M, which is locally conformally related to the Berwald (even Minkowski) metric F. But if F is not-Riemannian, the resulting metric is not globally conformally Berwald, as conformally related Berwald metrics are either homothetic, or Riemannian [Vincze, 2006] (consider the lift to $\mathbb{R}^n \setminus \{0\}$).
Definition

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric F on \mathbb{R}^n. And consider the mapping

$$\alpha : \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}^n \setminus \{0\}, \quad x \mapsto q x,$$

where $q > 0$, $q \neq 1$. That mapping generates a free and discrete action of the group \mathbb{Z} on $\mathbb{R}^n \setminus \{0\}$, with the quotient space $M = (\mathbb{R}^n \setminus \{0\})/\mathbb{Z}$ diffeomorphic to $S^{n-1} \times S^1$. The group \mathbb{Z} acts by isometries of the metric $\frac{1}{\|x\|} F$ and hence induces a Finsler metric on M, which is locally conformally related to the Berwald (even Minkowski) metric F. But if F is not-Riemannian, the resulting metric is not globally conformally Berwald, as conformally related Berwald metrics are either homothetic, or Riemannian [Vincze, 2006] (consider the lift to $\mathbb{R}^n \setminus \{0\}$).
Definition

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric F on \mathbb{R}^n. And consider the mapping

$$\alpha : \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}^n \setminus \{0\}, \quad x \mapsto qx,$$

where $q > 0$, $q \neq 1$. That mapping generates a free and discrete action of the group \mathbb{Z} on $\mathbb{R}^n \setminus \{0\}$, with the quotient space $M = (\mathbb{R}^n \setminus \{0\})/\mathbb{Z}$ diffeomorphic to $S^{n-1} \times S^1$. The group \mathbb{Z} acts by isometries of the metric $\frac{1}{||x||}F$ and hence induces a Finsler metric on M, which is locally conformally related to the Berwald (even Minkowski) metric F. But if F is not-Riemannian, the resulting metric is not globally conformally Berwald, as conformally related Berwald metrics are either homothetic, or Riemannian [Vincze, 2006] (consider the lift to $\mathbb{R}^n \setminus \{0\}$).
Definition

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric \(F \) on \(\mathbb{R}^n \). And consider the mapping

\[
\alpha : \mathbb{R}^n \setminus \{0\} \rightarrow \mathbb{R}^n \setminus \{0\}, \quad x \mapsto qx,
\]

where \(q > 0, \ q \neq 1 \). That mapping generates a free and discrete action of the group \(\mathbb{Z} \) on \(\mathbb{R}^n \setminus \{0\} \), with the quotient space \(M = (\mathbb{R}^n \setminus \{0\})/\mathbb{Z} \) diffeomorphic to \(S^{n-1} \times S^1 \). The group \(\mathbb{Z} \) acts by isometries of the metric \(\frac{1}{\|x\|} F \) and hence induces a Finsler metric on \(M \), which is locally conformally related to the Berwald (even Minkowski) metric \(F \). But if \(F \) is not-Riemannian, the resulting metric is not globally conformally Berwald, as conformally related Berwald metrics are either homothetic, or Riemannian [Vincze, 2006] (consider the lift to \(\mathbb{R}^n \setminus \{0\} \)).
Question:
Is it so that the above example is the only nontrivial possible? In other words, is the following true: “let \((M, F)\) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either \(F\) is globally conformally Berwald or is conformally flat (in which case a finite cover of \((M, F)\) is diffeomorphic to the direct product \(S^{n-1} \times S^1\) by [Matveev-Troyanov, 2012, from Fried, 1980])”?

True (Theorem; MN, 2015) if the Berwald connection
• is either complete,
• or has holonomy of a symmetric space of rank \(\geq 2\).

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

On a closed manifold, any reducible locally metric connection that preserves a conformal structure is either the Levi-Civita connection of a certain Riemannian metric, or is flat.
Question:

Is it so that the above example is the only nontrivial possible? In other words, is the following true: “let \((M, F)\) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either \(F\) is globally conformally Berwald or is conformally flat (in which case a finite cover of \((M, F)\) is diffeomorphic to the direct product \(S^{n-1} \times S^1\) by [Matveev-Troyanov, 2012, from Fried, 1980])”?

True (Theorem; MN, 2015) if the Berwald connection

- is either complete,
- or has holonomy of a symmetric space of rank \(\geq 2\).

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

On a closed manifold, any reducible locally metric connection that preserves a conformal structure is either the Levi-Civita connection of a certain Riemannian metric, or is flat.
Question:
Is it so that the above example is the only nontrivial possible? In other words, is the following true: “let \((M, F)\) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either \(F\) is globally conformally Berwald or is conformally flat (in which case a finite cover of \((M, F)\) is diffeomorphic to the direct product \(S^{n-1} \times S^1\) by [Matveev-Troyanov, 2012, from Fried, 1980])”?

True (Theorem; MN, 2015) if the Berwald connection
- is either complete,
- or has holonomy of a symmetric space of rank \(\geq 2\).

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

On a closed manifold, any reducible locally metric connection that preserves a conformal structure is either the Levi-Civita connection of a certain Riemannian metric, or is flat.
Question:

Is it so that the above example is the only nontrivial possible? In other words, is the following true: “let \((M, F)\) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either \(F\) is globally conformally Berwald or is conformally flat (in which case a finite cover of \((M, F)\) is diffeomorphic to the direct product \(S^{n-1} \times S^1\) by [Matveev-Troyanov, 2012, from Fried, 1980])”?

True (Theorem; MN, 2015) if the Berwald connection

- is either complete,
- or has holonomy of a symmetric space of rank \(\geq 2\).

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

On a closed manifold, any reducible locally metric connection that preserves a conformal structure is either the Levi-Civita connection of a certain Riemannian metric, or is flat.
Question:

Is it so that the above example is the only nontrivial possible? In other words, is the following true: “let \((M, F)\) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either \(F\) is globally conformally Berwald or is conformally flat (in which case a finite cover of \((M, F)\) is diffeomorphic to the direct product \(S^{n-1} \times S^1\) by [Matveev-Troyanov, 2012, from Fried, 1980])”?

True (Theorem; MN, 2015) if the Berwald connection

- is either complete,
- or has holonomy of a symmetric space of rank \(\geq 2\).

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

On a closed manifold, any reducible locally metric connection that preserves a conformal structure is either the Levi-Civita connection of a certain Riemannian metric, or is flat.
Question:
Is it so that the above example is the only nontrivial possible? In other words, is the following true: “let \((M, F)\) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either \(F\) is globally conformally Berwald or is conformally flat (in which case a finite cover of \((M, F)\) is diffeomorphic to the direct product \(S^{n-1} \times S^1\) by [Matveev-Troyanov, 2012, from Fried, 1980])”?

True (Theorem; MN, 2015) if the Berwald connection
- is either complete,
- or has holonomy of a symmetric space of rank \(\geq 2\).

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)
On a closed manifold, any reducible locally metric connection that preserves a conformal structure is either the Levi-Civita connection of a certain Riemannian metric, or is flat.
Question:
Is it so that the above example is the only nontrivial possible? In other words, is the following true: “let \((M, F)\) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either \(F\) is globally conformally Berwald or is conformally flat (in which case a finite cover of \((M, F)\) is diffeomorphic to the direct product \(S^{n-1} \times S^1\) by [Matveev-Troyanov, 2012, from Fried, 1980])”?

True (Theorem; MN, 2015) if the Berwald connection
- is either complete,
- or has holonomy of a symmetric space of rank \(\geq 2\).

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)
On a closed manifold, any reducible locally metric connection that preserves a conformal structure is either the Levi-Civita connection of a certain Riemannian metric, or is flat.
Riemannianisation:
We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \tilde{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question
Is such g flat?
Riemannianisation:

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \tilde{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?
Riemannianisation:
We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \tilde{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question
Is such g flat?
Riemannianisation:

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \tilde{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?
Riemannianisation:

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \tilde{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?
Riemannianisation:

We are given a closed Riemannian manifold \tilde{M}. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \tilde{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?
Riemannianisation:
We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \tilde{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question
Is such g flat?
Riemannianisation:

We are given a closed Riemannian manifold \mathcal{M}. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $\tilde{\mathcal{M}}$ carries a Riemannian metric \tilde{g}

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of \tilde{g}, with $\tilde{\mathcal{M}}/G = \mathcal{M}$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such \tilde{g} flat?
Riemannianisation:

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \tilde{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?
How close one can get to a possible proof/counterexample?

We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let (\tilde{M}, g) be a connected, simply connected, non-complete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M}, g) cocompactly and freely by homothecies. Then (\tilde{M}, g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

Proof, idea:

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g).
- If the shortest incomplete geodesic doesn’t lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).
How close one can get to a possible proof/counterexample? We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let (\tilde{M}, g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M}, g) cocompactly and freely by homothecies. Then (\tilde{M}, g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

Proof, idea:

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g).
- If the shortest incomplete geodesic doesn't lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).
How close one can get to a possible proof/counterexample? We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let \((\tilde{M}, g)\) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group \(G\) acts upon \((\tilde{M}, g)\) cocompactly and freely by homothecies. Then \((\tilde{M}, g)\) is the (global) Riemannian product of a Euclidean space \(\mathbb{R}^k\) and an incomplete Riemannian manifold \(N\).

Proof, idea:
- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on \((\tilde{M}, g)\).
- If the shortest incomplete geodesic doesn’t lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).
How close one can get to a possible proof/counterexample? We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let \((\tilde{M}, g)\) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group \(G\) acts upon \((\tilde{M}, g)\) cocompactly and freely by homothecies. Then \((\tilde{M}, g)\) is the (global) Riemannian product of a Euclidean space \(\mathbb{R}^k\) and an incomplete Riemannian manifold \(N\).

Proof, idea:

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on \((\tilde{M}, g)\).
- If the shortest incomplete geodesic doesn't lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).
How close one can get to a possible proof/counterexample? We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let (\tilde{M}, g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M}, g) cocompactly and freely by homothecies. Then (\tilde{M}, g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

Proof, idea:

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g).
- If the shortest incomplete geodesic doesn’t lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).
How close one can get to a possible proof/counterexample?
We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let (\tilde{M}, g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M}, g) cocompactly and freely by homothecies. Then (\tilde{M}, g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

Proof, idea:

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g).
- If the shortest incomplete geodesic doesn’t lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).
How close one can get to a possible proof/counterexample?
We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let (\tilde{M}, g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M}, g) cocompactly and freely by homothecies. Then (\tilde{M}, g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

Proof, idea:

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g).
- If the shortest incomplete geodesic doesn’t lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).
How close one can get to a possible proof/counterexample? We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let (\tilde{M}, g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M}, g) cocompactly and freely by homothecies. Then (\tilde{M}, g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

Proof, idea:

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g).
- If the shortest incomplete geodesic doesn’t lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).
But in general the answer is “no” (MN, 2015, CRAS).
Let \(g \) be a 3-dimensional Lie algebra defined by

\[
\]

Its (simply connected) Lie group \(G \) is solvable and is the Lorentz group of motions of the Minkowski plane. The group \(G \) is isomorphic to \(\mathbb{R}^3 \) with the multiplication defined by

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \left(\begin{array}{c} D \left(\begin{pmatrix} x' \\ y' \end{pmatrix} \right) + \begin{pmatrix} x \\ y \end{pmatrix} \right),
\]

where \(D = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix} \).

Another way to visualise \(G \) is as the group of matrices

\[
\begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix}, \quad x, y, z \in \mathbb{R}.
\]

The group \(G \) admits a compact quotient by a subgroup \(\Gamma \subset G \) such that \(G/\Gamma \) is diffeomorphic to the torus \(\mathbb{T}^3 \).
But in general the answer is “no” (MN, 2015, CRAS).

Let \(g \) be a 3-dimensional Lie algebra defined by

\[
\]

Its (simply connected) Lie group \(G \) is solvable and is the Lorentz group of motions of the Minkowski plane. The group \(G \) is isomorphic to \(\mathbb{R}^3 \) with the multiplication defined by

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z + z' \end{pmatrix}, \quad \text{where } D = \begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix}.
\]

Another way to visualise \(G \) is as the group of matrices

\[
\begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix}, \quad x, y, z \in \mathbb{R}.
\]

The group \(G \) admits a compact quotient by a subgroup \(\Gamma \subset G \) such that \(G/\Gamma \) is diffeomorphic to the torus \(\mathbb{T}^3 \).
But in general the answer is “no” (MN, 2015, CRAS).

Let \(\mathfrak{g} \) be a 3-dimensional Lie algebra defined by

\[
\]

Its (simply connected) Lie group \(G \) is solvable and is the Lorentz group of motions of the Minkowski plane. The group \(G \) is isomorphic to \(\mathbb{R}^3 \) with the multiplication defined by

\[
\begin{pmatrix}
 x \\
 y \\
 z
\end{pmatrix} \cdot \begin{pmatrix}
 x' \\
 y' \\
 z'
\end{pmatrix} = \begin{pmatrix}
 D \begin{pmatrix}
 x' \\
 y'
\end{pmatrix} + \begin{pmatrix}
 x \\
 y
\end{pmatrix}, \quad & \text{where } D = \begin{pmatrix}
 e^z & 0 \\
 0 & e^{-z}
\end{pmatrix}.
\]

Another way to visualise \(G \) is as the group of matrices

\[
\begin{pmatrix}
 e^z & 0 & x \\
 0 & e^{-z} & y \\
 0 & 0 & 1
\end{pmatrix}, \quad x, y, z \in \mathbb{R}.
\]

The group \(G \) admits a compact quotient by a subgroup \(\Gamma \subset G \) such that \(G/\Gamma \) is diffeomorphic to the torus \(\mathbb{T}^3 \).
But in general the answer is “no” (MN, 2015, CRAS). Let \(g \) be a 3-dimensional Lie algebra defined by

\[
\]

Its (simply connected) Lie group \(G \) is solvable and is the Lorentz group of motions of the Minkowski plane. The group \(G \) is isomorphic to \(\mathbb{R}^3 \) with the multiplication defined by

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix}
\cdot
\begin{pmatrix}
x' \\
y' \\
z'
\end{pmatrix} = \begin{pmatrix}
D \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\
z + z'
\end{pmatrix},
\]

where \(D = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix} \).

Another way to visualise \(G \) is as the group of matrices

\[
\begin{pmatrix}
e^z & 0 & x \\
0 & e^{-z} & y \\
0 & 0 & 1
\end{pmatrix}, \quad x, y, z \in \mathbb{R}.
\]

The group \(G \) admits a compact quotient by a subgroup \(\Gamma \subset G \) such that \(G/\Gamma \) is diffeomorphic to the torus \(\mathbb{T}^3 \).
But in general the answer is “no” (MN, 2015, CRAS). Let \(g \) be a 3-dimensional Lie algebra defined by

\[
\]

Its (simply connected) Lie group \(G \) is solvable and is the Lorentz group of motions of the Minkowski plane. The group \(G \) is isomorphic to \(\mathbb{R}^3 \) with the multiplication defined by

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} D \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}, \quad \text{where } D = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix}.
\]

Another way to visualise \(G \) is as the group of matrices

\[
\begin{pmatrix} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{pmatrix}, \quad x, y, z \in \mathbb{R}.
\]

The group \(G \) admits a compact quotient by a subgroup \(\Gamma \subset G \) such that \(G/\Gamma \) is diffeomorphic to the torus \(\mathbb{T}^3 \).
Consider a matrix $A \in \text{SL}(2, \mathbb{Z})$ with two different real eigenvalues e^λ and $e^{-\lambda}$, e.g. $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} = T^{-1} \text{diag}(e^\lambda, e^{-\lambda}) T$ for some nonsingular T. Then changing the xy-coordinates by the transformation T and the coordinate z, by $z \mapsto \lambda z$, we get the group law in G written as

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} A^z \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}.
$$

As $A \in \text{SL}(2, \mathbb{Z})$, the action of A^m, $m \in \mathbb{Z}$, on \mathbb{R}^2 preserves the integer lattice \mathbb{Z}^2. So the integer lattice $\Gamma = \mathbb{Z}^3$ is a subgroup of G, with a compact quotient diffeomorphic to the torus \mathbb{T}^3 (one can visualise that quotient as follows: we first take the torus \mathbb{T}^2, the quotient of the xy-plane by \mathbb{Z}^2, then multiply it by $[0, 1]$ and then identify the top and the bottom by the diffeomorphism of \mathbb{T}^2 defined by A).
Consider a matrix $A \in \operatorname{SL}(2, \mathbb{Z})$ with two different real eigenvalues e^λ and $e^{-\lambda}$, e.g. $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} = T^{-1} \operatorname{diag}(e^\lambda, e^{-\lambda}) T$ for some nonsingular T. Then changing the xy-coordinates by the transformation T and the coordinate z, by $z \mapsto \lambda z$, we get the the group law in G written as

\[
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} A^z \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}.
\]

As $A \in \operatorname{SL}(2, \mathbb{Z})$, the action of A^m, $m \in \mathbb{Z}$, on \mathbb{R}^2 preserves the integer lattice \mathbb{Z}^2. So the integer lattice $\Gamma = \mathbb{Z}^3$ is a subgroup of G, with a compact quotient diffeomorphic to the torus \mathbb{T}^3 (one can visualise that quotient as follows: we first take the torus \mathbb{T}^2, the quotient of the xy-plane by \mathbb{Z}^2, then multiply it by $[0, 1]$ and then identify the top and the bottom by the diffeomorphism of \mathbb{T}^2 defined by A).
Consider a matrix $A \in \text{SL}(2, \mathbb{Z})$ with two different real eigenvalues e^{λ} and $e^{-\lambda}$, e.g. $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} = T^{-1} \text{diag}(e^{\lambda}, e^{-\lambda}) T$ for some nonsingular T. Then changing the xy-coordinates by the transformation T and the coordinate z, by $z \mapsto \lambda z$, we get the group law in G written as

$$
\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} A^z \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}.
$$

As $A \in \text{SL}(2, \mathbb{Z})$, the action of A^m, $m \in \mathbb{Z}$, on \mathbb{R}^2 preserves the integer lattice \mathbb{Z}^2. So the integer lattice $\Gamma = \mathbb{Z}^3$ is a subgroup of G, with a compact quotient diffeomorphic to the torus \mathbb{T}^3 (one can visualise that quotient as follows: we first take the torus \mathbb{T}^2, the quotient of the xy-plane by \mathbb{Z}^2, then multiply it by $[0, 1]$ and then identify the top and the bottom by the diffeomorphism of \mathbb{T}^2 defined by A).
Left-invariant Riemannian metric on G: the vector fields $e^z \partial_x, e^{-z} \partial_y, \partial_z$ are left-invariant (they are X, Y, Z we started with, respectively). Take them orthonormal. In coordinates (x, y, z) we get the following metric on \mathbb{R}^3:

$$ds^2 = e^{-2z} dx^2 + e^{2z} dy^2 + dz^2.$$

The foliation $x = \text{const}$ is totally geodesic and G-invariant (and so also Γ-invariant) and its orthogonal 1-dimensional foliation is also G-invariant. Now multiply ds^2 by e^{2z}. The resulting metric

$$ds'{}^2 = dx^2 + e^{4z} dy^2 + e^{2z} dz^2$$

is a direct product of the line \mathbb{R}^1 and a noncomplete two-dimensional Riemannian manifold (the negative half of the z-axis has finite length). Γ acts on it by homothecies, with $G/\Gamma = \mathbb{T}^3$.

Left-invariant Riemannian metric on G: the vector fields $e^z \partial_x, e^{-z} \partial_y, \partial_z$ are left-invariant (they are X, Y, Z we started with, respectively). Take them orthonormal. In coordinates (x, y, z) we get the following metric on \mathbb{R}^3:

$$ds^2 = e^{-2z} dx^2 + e^{2z} dy^2 + dz^2.$$

The foliation $x = \text{const}$ is totally geodesic and G-invariant (and so also Γ-invariant) and its orthogonal 1-dimensional foliation is also G-invariant. Now multiply ds^2 by e^{2z}. The resulting metric

$$ds' = dx^2 + e^{4z} dy^2 + e^{2z} dz^2$$

is a direct product of the line \mathbb{R}^1 and a noncomplete two-dimensional Riemannian manifold (the negative half of the z-axis has finite length). Γ acts on it by homothecies, with $G/\Gamma = \mathbb{T}^3$.
Left-invariant Riemannian metric on G: the vector fields $e^z \partial_x, e^{-z} \partial_y, \partial_z$ are left-invariant (they are X, Y, Z we started with, respectively). Take them orthonormal. In coordinates (x, y, z) we get the following metric on \mathbb{R}^3:

$$ds^2 = e^{-2z} dx^2 + e^{2z} dy^2 + dz^2.$$

The foliation $x = \text{const}$ is totally geodesic and G-invariant (and so also Γ-invariant) and its orthogonal 1-dimensional foliation is also G-invariant. Now multiply ds^2 by e^{2z}. The resulting metric

$$ds'{}^2 = dx^2 + e^{4z} dy^2 + e^{2z} dz^2$$

is a direct product of the line \mathbb{R}^1 and a noncomplete two-dimensional Riemannian manifold (the negative half of the z-axis has finite length). Γ acts on it by homothecies, with $G/\Gamma = \mathbb{T}^3$.