Locally conformally Berwald manifolds and compact quotients of reducible manifolds by homotheties

V.Matveev ¹ Y. Nikolayevsky ²

¹Institute of Mathematics, Friedrich-Schiller-Universität, Jena, Germany

²La Trobe University, Melbourne, Australia

Workshop on almost hermitian and contact geometry Bedlewo, Poland, October 20, 2015

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1}\times S^1$.

"Conformally flat" means "locally conformally Minkowski". We wanted to extend this to the "next simplest" class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1}\times S^1$.

"Conformally flat" means "locally conformally Minkowski". We wanted to extend this to the "next simplest" class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1}\times S^1$.

"Conformally flat" means "locally conformally Minkowski".

We wanted to extend this to the "next simplest" class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1}\times S^1$.

"Conformally flat" means "locally conformally Minkowski". We wanted to extend this to the "next simplest" class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler manifold is either a Bieberbach manifolds or a Hopf manifolds. In particular, it is finitely covered either by a torus \mathbb{T}^n or by $S^{n-1}\times S^1$.

"Conformally flat" means "locally conformally Minkowski". We wanted to extend this to the "next simplest" class of Finsler manifolds – Berwald manifolds.

Question: is the following true?

A Finsler metric on a smooth manifold M of dimension $n \geqslant 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

$$F_{\mathsf{X}}(\xi) = 0 \Leftrightarrow \xi = 0.$$

- ullet Riemannian: $F_{\mathrm{x}}(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in

A Finsler metric on a smooth manifold M of dimension $n \ge 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

Examples

• Riemannian: $F_x(\xi) = \sqrt{g_{ii}(x)} \xi^i \xi^j$

• Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in

A Finsler metric on a smooth manifold M of dimension $n \geqslant 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

$$P_{\mathsf{x}}(\xi+\eta) \leqslant F_{\mathsf{x}}(\xi) + F_{\mathsf{x}}(\eta).$$

$$F_{\mathsf{x}}(\xi) = 0 \Leftrightarrow \xi = 0.$$

- Riemannian: $F_x(\xi) = \sqrt{g_{ii}(x)} \xi^i \xi^j$
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in

A Finsler metric on a smooth manifold M of dimension $n \geqslant 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

$$P_x(\xi+\eta)\leqslant F_x(\xi)+F_x(\eta).$$

$$F_{\mathsf{x}}(\xi) = 0 \Leftrightarrow \xi = 0.$$

- Riemannian: $F_x(\xi) = \sqrt{g_{ii}(x)}\xi^i\xi^j$
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in

A Finsler metric on a smooth manifold M of dimension $n \geqslant 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

- $P_x(\xi+\eta)\leqslant F_x(\xi)+F_x(\eta).$
- $F_{x}(\xi) = 0 \Leftrightarrow \xi = 0.$

- Riemannian: $F_{x}(\xi) = \sqrt{g_{ii}(x)} \xi^{i} \xi$
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in
 - Riemannian settings

A Finsler metric on a smooth manifold M of dimension $n \geqslant 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

- $P_x(\xi+\eta)\leqslant F_x(\xi)+F_x(\eta).$
- $F_{x}(\xi) = 0 \Leftrightarrow \xi = 0.$

- Riemannian: $F_{x}(\xi) = \sqrt{g_{ii}(x)} \xi^{i} \xi$
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in
 - Riemannian settings

A Finsler metric on a smooth manifold M of dimension $n \ge 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

- $P_x(\xi+\eta) \leqslant F_x(\xi) + F_x(\eta).$
- $F_{\mathsf{x}}(\xi) = 0 \Leftrightarrow \xi = 0.$

Examples:

• Riemannian: $F_x(\xi) = \sqrt{g_{ii}(x)} \xi^i \xi^j$

• Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in

A Finsler metric on a smooth manifold M of dimension $n \geqslant 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

- $P_x(\xi+\eta) \leqslant F_x(\xi) + F_x(\eta).$
- $F_{x}(\xi) = 0 \Leftrightarrow \xi = 0.$

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in

A Finsler metric on a smooth manifold M of dimension $n \ge 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

- $P_x(\xi+\eta) \leqslant F_x(\xi) + F_x(\eta).$
- $F_{x}(\xi) = 0 \Leftrightarrow \xi = 0.$

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings

A Finsler metric on a smooth manifold M of dimension $n \ge 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

- $P_x(\xi+\eta) \leqslant F_x(\xi) + F_x(\eta).$
- $F_{x}(\xi) = 0 \Leftrightarrow \xi = 0.$

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings

A Finsler metric on a smooth manifold M of dimension $n \geqslant 2$ is a continuous function $F: TM \to [0,\infty)$ that is smooth on the slit tangent bundle $TM^0 = TM \setminus (\text{the zero section})$ and such that for every point $x \in M$ the restriction $F_x := F_{\mid T_xM}$ is a Minkowski norm, that is, F_x is positively homogenous and convex and it vanishes only on the zero section:

- $P_x(\xi+\eta) \leqslant F_x(\xi) + F_x(\eta).$
- $F_{x}(\xi) = 0 \Leftrightarrow \xi = 0.$

- Riemannian: $F_x(\xi) = \sqrt{g_{ij}(x)\xi^i\xi^j}$.
- Minkowski: take a Minkowski norm F_0 on \mathbb{R}^n and define the Finsler metric on \mathbb{R}^n by $F_x(\xi) := F_0(\xi)$ for $x \in \mathbb{R}^n$; plays the same role in Finsler settings as the Euclidean metric in Riemannian settings.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples

- 1 Riemannian: ∇ is the Levi-Civita connection.
- ② Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- ③ Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- Riemannian: \(\nabla \) is the Levi-Civita connection.
- ② Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- ③ Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- **1** Riemannian: ∇ is the Levi-Civita connection.
- ② Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- ③ Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- **1** Riemannian: ∇ is the Levi-Civita connection.
- ② Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- ③ Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- **1** Riemannian: ∇ is the Levi-Civita connection.
- **2** Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- ② Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- **1** Riemannian: ∇ is the Levi-Civita connection.
- ② Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- ③ Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- **1** Riemannian: ∇ is the Levi-Civita connection.
- ② Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- **3** Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- **1** Riemannian: ∇ is the Levi-Civita connection.
- **2** Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- **3** Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- **1** Riemannian: ∇ is the Levi-Civita connection.
- **2** Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- **3** Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

A Finsler metric F is Berwald, if there exists a torsion-free affine connection ∇ on M whose parallel transport preserves F.

Examples:

- **1** Riemannian: ∇ is the Levi-Civita connection.
- ② Minkowski: ∇ is the standard flat connection of \mathbb{R}^n .
- **3** Cartesian product M of two Berwald manifolds (M_i, F_i, ∇_i) . Define the product connection on M, and for an arbitrary Minkowski norm N on \mathbb{R}^2 define the Finsler metric F on M by

$$F((x_1,x_2),(\xi_1,\xi_2)) = N(F_1(x_1,\xi_1),F_2(x_2,\xi_2)).$$

This can be naturally generalised to the Cartesian product of any number of manifolds.

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n) then the Berwald space is Riemannian.

Dowód.

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n) then the Berwald space is Riemannian.

Dowód.

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n) then the Berwald space is Riemannian.

Dowód

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n) then the Berwald space is Riemannian.

Dowód

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n) then the Berwald space is Riemannian.

Dowód

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n) then the Berwald space is Riemannian.

Dowód

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n) then the Berwald space is Riemannian.

Dowód

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n), then the Berwald space is Riemannian.

Dowód

- (Metrisability) Any Berwald connection is a Levi-Civita connection of some Riemannian metric.
- (local de Rham) Any Berwald manifold is locally the Cartesian product (in the sense of Example 3) of Riemannian manifolds, Minkowski spaces and symmetric spaces of rank ≥ 2.

Any of these factors may be absent.

"Symmetric space" means that the space has the same reduced holonomy; those were completely classified.

In particular, if the reduced holonomy group is the whole SO(n), then the Berwald space is Riemannian.

Dowód.

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric F on \mathbb{R}^n . And consider the mapping

$$\alpha: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}, \ x \mapsto qx,$$

where $q>0,\ q\neq 1$. That mapping generates a free and discrete action of the group $\mathbb Z$ on $\mathbb R^n\setminus\{0\}$, with the quotient space $M=(\mathbb R^n\setminus\{0\})/\mathbb Z$ diffeomorphic to $S^{n-1}\times S^1$. The group $\mathbb Z$ acts by isometries of the metric $\frac{1}{\|\mathbf x\|}F$ and hence induces a Finsler metric on M, which is locally conformally related to the Berwald (even Minkowski) metric F. But if F is not-Riemannian, the resulting metric is not globally conformally Berwald, as conformally related Berwald metrics are either homothetic, or Riemannian [Vincze, 2006] (consider the lift to $\mathbb R^n\setminus\{0\}$).

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric F on \mathbb{R}^n . And consider the mapping

$$\alpha: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}, \ x \mapsto qx,$$

where q>0, $q\neq 1$. That mapping generates a free and discrete action of the group \mathbb{Z} on $\mathbb{R}^n\setminus\{0\}$, with the quotient space $M=(\mathbb{R}^n\setminus\{0\})/\mathbb{Z}$ diffeomorphic to $S^{n-1}\times S^1$. The group \mathbb{Z} acts by isometries of the metric $\frac{1}{\|\mathbf{x}\|}F$ and hence induces a Finsler metric on M, which is locally conformally related to the Berwald (even Minkowski) metric F. But if F is not-Riemannian, the resulting metric is not globally conformally Berwald, as conformally related Berwald metrics are either homothetic, or Riemannian [Vincze, 2006] (consider the lift to $\mathbb{R}^n\setminus\{0\}$).

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric F on \mathbb{R}^n . And consider the mapping

$$\alpha: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}, \ x \mapsto qx,$$

where q>0, $q\neq 1$. That mapping generates a free and discrete action of the group \mathbb{Z} on $\mathbb{R}^n\setminus\{0\}$, with the quotient space $M=(\mathbb{R}^n\setminus\{0\})/\mathbb{Z}$ diffeomorphic to $S^{n-1}\times S^1$. The group \mathbb{Z} acts by isometries of the metric $\frac{1}{\|\mathbf{x}\|}F$ and hence induces a Finsler metric on M, which is locally conformally related to the Berwald (even Minkowski) metric F. But if F is not-Riemannian, the resulting metric is not globally conformally Berwald, as conformally related Berwald metrics are either homothetic, or Riemannian [Vincze, 2006] (consider the lift to $\mathbb{R}^n\setminus\{0\}$).

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric F on \mathbb{R}^n . And consider the mapping

$$\alpha: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}, \ x \mapsto qx,$$

where $q>0,\ q\neq 1$. That mapping generates a free and discrete action of the group $\mathbb Z$ on $\mathbb R^n\setminus\{0\}$, with the quotient space $M=(\mathbb R^n\setminus\{0\})/\mathbb Z$ diffeomorphic to $S^{n-1}\times S^1$. The group $\mathbb Z$ acts by isometries of the metric $\frac{1}{\|\mathbf x\|}F$ and hence induces a Finsler metric on M, which is locally conformally related to the Berwald (even Minkowski) metric F. But if F is not-Riemannian, the resulting metric is not globally conformally Berwald, as conformally related Berwald metrics are either homothetic, or Riemannian [Vincze, 2006] (consider the lift to $\mathbb R^n\setminus\{0\}$).

Is it so that the above example is the only nontrivial possible? In other words, is the following true: "let (M,F) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either F is globally conformally Berwald or is conformally flat (in which case a finite cover of (M,F) is diffeomorphic to the direct product $S^{n-1}\times S^1$ by [Matveev-Troyanov, 2012, from Fried, 1980])"?

True (Theorem; MN, 2015) if the Berwald connection

• or has holonomy of a symmetric space of rank ≥ 2.
Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

Is it so that the above example is the only nontrivial possible? In other words, is the following true: "let (M,F) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either F is globally conformally Berwald or is conformally flat (in which case a finite cover of (M,F) is diffeomorphic to the direct product $S^{n-1}\times S^1$ by [Matveev-Troyanov, 2012, from Fried, 1980])"?

True (Theorem; MN, 2015) if the Berwald connection

ullet or has holonomy of a symmetric space of rank $\geqslant 2$.

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

Is it so that the above example is the only nontrivial possible? In other words, is the following true: "let (M,F) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either F is globally conformally Berwald or is conformally flat (in which case a finite cover of (M,F) is diffeomorphic to the direct product $S^{n-1}\times S^1$ by [Matveev-Troyanov, 2012, from Fried, 1980])"?

True (Theorem; MN, 2015) if the Berwald connection

- is either complete,
- \bullet or has holonomy of a symmetric space of rank $\geqslant 2.$

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

Is it so that the above example is the only nontrivial possible? In other words, is the following true: "let (M,F) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either F is globally conformally Berwald or is conformally flat (in which case a finite cover of (M,F) is diffeomorphic to the direct product $S^{n-1}\times S^1$ by [Matveev-Troyanov, 2012, from Fried, 1980])"?

True (Theorem; MN, 2015) if the Berwald connection

- is either complete,
- ullet or has holonomy of a symmetric space of rank $\geqslant 2$.

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

Is it so that the above example is the only nontrivial possible? In other words, is the following true: "let (M,F) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either F is globally conformally Berwald or is conformally flat (in which case a finite cover of (M,F) is diffeomorphic to the direct product $S^{n-1}\times S^1$ by [Matveev-Troyanov, 2012, from Fried, 1980])"?

True (Theorem; MN, 2015) if the Berwald connection

- is either complete,
- ullet or has holonomy of a symmetric space of rank $\geqslant 2$.

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

Is it so that the above example is the only nontrivial possible? In other words, is the following true: "let (M,F) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either F is globally conformally Berwald or is conformally flat (in which case a finite cover of (M,F) is diffeomorphic to the direct product $S^{n-1}\times S^1$ by [Matveev-Troyanov, 2012, from Fried, 1980])"?

True (Theorem; MN, 2015) if the Berwald connection

- is either complete,
- or has holonomy of a symmetric space of rank $\geqslant 2$.

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

Is it so that the above example is the only nontrivial possible? In other words, is the following true: "let (M,F) be a connected, closed, locally conformally Berwald Finsler manifold. Then, either F is globally conformally Berwald or is conformally flat (in which case a finite cover of (M,F) is diffeomorphic to the direct product $S^{n-1}\times S^1$ by [Matveev-Troyanov, 2012, from Fried, 1980])"?

True (Theorem; MN, 2015) if the Berwald connection

- is either complete,
- or has holonomy of a symmetric space of rank ≥ 2 .

Is it still true when the holonomy is reducible? Equivalent to the following:

Conjecture (Belgun-Moroianu, 2014)

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover \hat{M} carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

ls such φ flat?

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $ilde{M}$ carries a Riemannian metric g

- whose holonomy group is reducible
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $ilde{M}$ carries a Riemannian metric g

whose holonomy group is reducible

• such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G=M$, closed;

 (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $ilde{M}$ carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G=M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $ilde{M}$ carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G=M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $ilde{M}$ carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G = M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such σ flat?

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $ilde{M}$ carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G=M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question Is such g flat?

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $ilde{M}$ carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G=M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question Is such g flat?

We are given a closed Riemannian manifold M. It is locally conformally reducible (and the conformal factor is unique up to multiplication by a positive constant, by [Vincze, 2006]). Is it true that it is either globally conformally reducible or (locally) conformally flat?

If not, then the universal cover $ilde{M}$ carries a Riemannian metric g

- which is incomplete;
- whose holonomy group is reducible;
- such that the fundamental group G acts by homothecies (not all isometries) of g, with $\tilde{M}/G=M$, closed;
- (not that important) conformally equivalent to the lift of the initial metric.

Question

Is such g flat?

How close one can get to a possible proof/counterexample?

We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let (\tilde{M},g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M},g) cocompactly and freely by homothecies. Then (\tilde{M},g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g) .
- If the shortest incomplete geodesic doesn't lie on a leaf, then the leaf must be flat.
- Just two foliations: the leaves of one are flat and complete
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).

Theorem (MN, 2015)

Let (M,g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M},g) cocompactly and freely by homothecies. Then (\tilde{M},g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M},g) .
- If the shortest incomplete geodesic doesn't lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).

Theorem (MN, 2015)

Let (\tilde{M},g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M},g) cocompactly and freely by homothecies. Then (\tilde{M},g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

Proof, idea

orthogonal totally geodesic foliations on (M, g).
If the shortest incomplete geodesic doesn't lie on a leaf, the the leaf must be flat.
Just two foliations; the leaves of one are flat and complete.
The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).

Theorem (MN, 2015)

Let (\tilde{M},g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M},g) cocompactly and freely by homothecies. Then (\tilde{M},g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

Theorem (MN, 2015)

Let (\tilde{M},g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M},g) cocompactly and freely by homothecies. Then (\tilde{M},g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g) .
- If the shortest incomplete geodesic doesn't lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).

Theorem (MN, 2015)

Let (\tilde{M},g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M},g) cocompactly and freely by homothecies. Then (\tilde{M},g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g) .
- If the shortest incomplete geodesic doesn't lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).

Theorem (MN, 2015)

Let (\tilde{M},g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M},g) cocompactly and freely by homothecies. Then (\tilde{M},g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g) .
- If the shortest incomplete geodesic doesn't lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).

Theorem (MN, 2015)

Let (\tilde{M},g) be a connected, simply connected, noncomplete, analytic Riemannian manifold with reducible holonomy. Suppose a group G acts upon (\tilde{M},g) cocompactly and freely by homothecies. Then (\tilde{M},g) is the (global) Riemannian product of a Euclidean space \mathbb{R}^k and an incomplete Riemannian manifold N.

- Local product structure: a finite collection of complementary orthogonal totally geodesic foliations on (\tilde{M}, g) .
- If the shortest incomplete geodesic doesn't lie on a leaf, then the leaf must be flat.
- Just two foliations; the leaves of one are flat and complete.
- The claim follows from [Ponge-Reckziegel, 1993] (which generalises the results of [Blumenthal-Hebda, 1983]).

But in general the answer is "no" (MN, 2015, CRAS). Let a be a 3-dimensional Lie algebra defined by

$$[Z, X] = X, \quad [Z, Y] = -Y, \quad [X, Y] = 0.$$

Its (simply connected) Lie group G is solvable and is the Lorentz group of motions of the Minkowski plane. The group G is isomorphic to \mathbb{R}^3 with the multiplication defined by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} D \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}, \quad \text{where } D = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix}$$

Another way to visualise G is as the group of matrices

$$\left(\begin{array}{ccc} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{array}\right), \qquad x, y, z \in \mathbb{R}.$$

But in general the answer is "no" (MN, 2015, CRAS).

Let g be a 3-dimensional Lie algebra defined by

$$[Z, X] = X, \quad [Z, Y] = -Y, \quad [X, Y] = 0.$$

Its (simply connected) Lie group G is solvable and is the Lorentz group of motions of the Minkowski plane. The group G is isomorphic to \mathbb{R}^3 with the multiplication defined by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} D \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}, \quad \text{where } D = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix}.$$

Another way to visualise G is as the group of matrices

$$\left(egin{array}{ccc} \mathrm{e}^z & 0 & x \ 0 & \mathrm{e}^{-z} & y \ 0 & 0 & 1 \end{array}
ight), \qquad x,y,z \in \mathbb{R}.$$

But in general the answer is "no" (MN, 2015, CRAS). Let $\mathfrak g$ be a 3-dimensional Lie algebra defined by

$$[Z,X]=X,\quad [Z,Y]=-Y,\quad [X,Y]=0.$$

Its (simply connected) Lie group G is solvable and is the Lorentz group of motions of the Minkowski plane. The group G is isomorphic to \mathbb{R}^3 with the multiplication defined by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} D \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}, \quad \text{where } D = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix}.$$

Another way to visualise G is as the group of matrices

$$\left(\begin{array}{ccc} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{array}\right), \qquad x,y,z \in \mathbb{R}.$$

But in general the answer is "no" (MN, 2015, CRAS). Let $\mathfrak g$ be a 3-dimensional Lie algebra defined by

$$[Z, X] = X, \quad [Z, Y] = -Y, \quad [X, Y] = 0.$$

Its (simply connected) Lie group G is solvable and is the Lorentz group of motions of the Minkowski plane. The group G is isomorphic to \mathbb{R}^3 with the multiplication defined by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} D \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}, \quad \text{where } D = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix}.$$

Another way to visualise G is as the group of matrices

$$\left(egin{array}{ccc} \mathrm{e}^z & 0 & x \ 0 & \mathrm{e}^{-z} & y \ 0 & 0 & 1 \end{array}
ight), \qquad x,y,z \in \mathbb{R}.$$

But in general the answer is "no" (MN, 2015, CRAS). Let $\mathfrak g$ be a 3-dimensional Lie algebra defined by

$$[Z, X] = X, \quad [Z, Y] = -Y, \quad [X, Y] = 0.$$

Its (simply connected) Lie group G is solvable and is the Lorentz group of motions of the Minkowski plane. The group G is isomorphic to \mathbb{R}^3 with the multiplication defined by

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} D \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}, \quad \text{where } D = \begin{pmatrix} e^z & 0 \\ 0 & e^{-z} \end{pmatrix}.$$

Another way to visualise G is as the group of matrices

$$\left(\begin{array}{ccc} e^z & 0 & x \\ 0 & e^{-z} & y \\ 0 & 0 & 1 \end{array}\right), \qquad x,y,z \in \mathbb{R}.$$

Consider a matrix $A \in SL(2,\mathbb{Z})$ with two different real eigenvalues e^{λ} and $e^{-\lambda}$, e.g. $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} = T^{-1} \mathrm{diag}(e^{\lambda}, e^{-\lambda}) T$ for some

nonsingular T. Then changing the xy-coordinates by the transformation T and the coordinate z, by $z \mapsto \lambda z$, we get the the group law in G written as

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} A^z \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}.$$

As $A \in SL(2,\mathbb{Z})$, the action of A^m , $m \in \mathbb{Z}$, on \mathbb{R}^2 preserves the integer lattice \mathbb{Z}^2 . So the integer lattice $\Gamma = \mathbb{Z}^3$ is a subgroup of G, with a compact quotient diffeomorphic to the torus \mathbb{T}^3 (one can visulaise that quotient as follows: we first take the torus \mathbb{T}^2 , the quotient of the xy-plane by \mathbb{Z}^2 , then multiply it by [0,1] and then identify the top and the bottom by the diffeomorphism of \mathbb{T}^2 defined by A).

Consider a matrix $A \in SL(2,\mathbb{Z})$ with two different real eigenvalues e^{λ} and $e^{-\lambda}$, e.g. $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} = T^{-1}\mathrm{diag}(e^{\lambda},e^{-\lambda})T$ for some nonsingular T. Then changing the xy-coordinates by the transformation T and the coordinate z, by $z \mapsto \lambda z$, we get the the group law in G written as

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} A^z \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}.$$

As $A \in SL(2,\mathbb{Z})$, the action of A^m , $m \in \mathbb{Z}$, on \mathbb{R}^2 preserves the integer lattice \mathbb{Z}^2 . So the integer lattice $\Gamma = \mathbb{Z}^3$ is a subgroup of G, with a compact quotient diffeomorphic to the torus \mathbb{T}^3 (one can visulaise that quotient as follows: we first take the torus \mathbb{T}^2 , the quotient of the xy-plane by \mathbb{Z}^2 , then multiply it by [0,1] and then identify the top and the bottom by the diffeomorphism of \mathbb{T}^2 defined by A).

Consider a matrix $A \in SL(2,\mathbb{Z})$ with two different real eigenvalues

$$e^{\lambda}$$
 and $e^{-\lambda}$, e.g. $A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} = T^{-1} \operatorname{diag}(e^{\lambda}, e^{-\lambda}) T$ for some nonsingular T . Then changing the xy -coordinates by the

transformation T and the coordinate z, by $z \mapsto \lambda z$, we get the the group law in G written as

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \cdot \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} A^z \begin{pmatrix} x' \\ y' \end{pmatrix} + \begin{pmatrix} x \\ y \end{pmatrix} \\ z + z' \end{pmatrix}.$$

As $A \in SL(2,\mathbb{Z})$, the action of A^m , $m \in \mathbb{Z}$, on \mathbb{R}^2 preserves the integer lattice \mathbb{Z}^2 . So the integer lattice $\Gamma = \mathbb{Z}^3$ is a subgroup of G, with a compact quotient diffeomorphic to the torus \mathbb{T}^3 (one can visulaise that quotient as follows: we first take the torus \mathbb{T}^2 , the quotient of the xy-plane by \mathbb{Z}^2 , then multiply it by [0,1] and then identify the top and the bottom by the diffeomorphism of \mathbb{T}^2 defined by A).

Left-invariant Riemannian metric on G: the vector fields $e^z\partial_x, e^{-z}\partial_y, \partial_z$ are left-invariant (they are X, Y, Z we started with, respectively). Take them orthonormal. In coordinates (x, y, z) we get the following metric on \mathbb{R}^3 :

$$ds^2 = e^{-2z} dx^2 + e^{2z} dy^2 + dz^2.$$

The foliation x = const is totally geodesic and G-invariant (and so also Γ -invariant) and its orthogonal 1-dimensional foliation is also G-invariant. Now multiply ds^2 by e^{2z} . The resulting metric

$$ds'^2 = dx^2 + e^{4z}dy^2 + e^{2z}dz^2$$

is a direct product of the line \mathbb{R}^1 and a noncomplete two-dimensional Riemannian manifold (the negative half of the z-axis has finite length). Γ acts on it by homothecies, with $G/\Gamma=\mathbb{T}^3$.

Left-invariant Riemannian metric on G: the vector fields $e^z\partial_x, e^{-z}\partial_y, \partial_z$ are left-invariant (they are X, Y, Z we started with, respectively). Take them orthonormal. In coordinates (x, y, z) we get the following metric on \mathbb{R}^3 :

$$ds^2 = e^{-2z} dx^2 + e^{2z} dy^2 + dz^2.$$

The foliation x= const is totally geodesic and G-invariant (and so also Γ -invariant) and its orthogonal 1-dimensional foliation is also G-invariant. Now multiply ds^2 by e^{2z} . The resulting metric

$$ds'^{2} = dx^{2} + e^{4z}dy^{2} + e^{2z}dz^{2}$$

is a direct product of the line \mathbb{R}^1 and a noncomplete two-dimensional Riemannian manifold (the negative half of the z-axis has finite length). Γ acts on it by homothecies, with $G/\Gamma=\mathbb{T}^3$.

Left-invariant Riemannian metric on G: the vector fields $e^z\partial_x$, $e^{-z}\partial_y$, ∂_z are left-invariant (they are X,Y,Z we started with, respectively). Take them orthonormal. In coordinates (x,y,z) we get the following metric on \mathbb{R}^3 :

$$ds^2 = e^{-2z} dx^2 + e^{2z} dy^2 + dz^2.$$

The foliation x = const is totally geodesic and G-invariant (and so also Γ -invariant) and its orthogonal 1-dimensional foliation is also G-invariant. Now multiply ds^2 by e^{2z} . The resulting metric

$$ds'^2 = dx^2 + e^{4z}dy^2 + e^{2z}dz^2$$

is a direct product of the line \mathbb{R}^1 and a noncomplete two-dimensional Riemannian manifold (the negative half of the z-axis has finite length). Γ acts on it by homothecies, with $G/\Gamma=\mathbb{T}^3$.