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Background, motivation and reduction Theorem Counterexample

Starting point:

Theorem (Matveev-Troyanov, 2012)

A connected closed conformally flat non-Riemannian Finsler
manifold is either a Bieberbach manifolds or a Hopf manifolds. In
particular, it is finitely covered either by a torus Tn or by
Sn−1 × S1.

“Conformally flat” means “locally conformally Minkowski”.
We wanted to extend this to the “next simplest” class of Finsler
manifolds – Berwald manifolds.

Question: is the following true?

A connected closed locally conformally Berwald Finsler manifold is
either globally conformally Berwald or is finitely covered by
Sn−1 × S1.
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Definition

A Finsler metric on a smooth manifold M of dimension n ­ 2 is a
continuous function F : TM → [0,∞) that is smooth on the slit
tangent bundle TM0 = TM \ (the zero section) and such that for
every point x ∈ M the restriction Fx := F|TxM is a Minkowski
norm, that is, Fx is positively homogenous and convex and it
vanishes only on the zero section:

1 Fx(λ · ξ) = λ · Fx(ξ) for any λ ­ 0.
2 Fx(ξ + η) ¬ Fx(ξ) + Fx(η).
3 Fx(ξ) = 0 ⇔ ξ = 0.

Examples:

Riemannian: Fx(ξ) =
√
gij(x)ξiξj .

Minkowski: take a Minkowski norm F0 on Rn and define the
Finsler metric on Rn by Fx(ξ) := F0(ξ) for x ∈ Rn; plays the
same role in Finsler settings as the Euclidean metric in
Riemannian settings.
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Definition

A Finsler metric F is Berwald, if there exists a torsion-free affine
connection ∇ on M whose parallel transport preserves F .

Examples:

1 Riemannian: ∇ is the Levi-Civita connection.
2 Minkowski: ∇ is the standard flat connection of Rn.
3 Cartesian product M of two Berwald manifolds (Mi ,Fi ,∇i ).

Define the product connection on M, and for an arbitrary
Minkowski norm N on R2 define the Finsler metric F on M by

F
(
(x1, x2), (ξ1, ξ2)

)
= N(F1(x1, ξ1),F2(x2, ξ2)).

This can be naturally generalised to the Cartesian product of
any number of manifolds.

Surprisingly, these examples almost exhaust all the possible cases
for Berwald manifolds.
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Theorem (Szabó, 1981)

(Metrisability) Any Berwald connection is a Levi-Civita
connection of some Riemannian metric.

(local de Rham) Any Berwald manifold is locally the Cartesian
product (in the sense of Example 3) of Riemannian manifolds,
Minkowski spaces and symmetric spaces of rank ­ 2.

Any of these factors may be absent.
“Symmetric space” means that the space has the same reduced
holonomy; those were completely classified.
In particular, if the reduced holonomy group is the whole SO(n),
then the Berwald space is Riemannian.

Dowód.

Idea: Binet-Legendre metric (introduced in Centore, 1999; used in
Matveev-Troyanov, 2012).
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Definition

Locally (globally) conformally Berwald.

Example

Consider a Minkowski metric F on Rn. And consider the mapping

α : Rn \ {0} → Rn \ {0}, x 7→ qx ,

where q > 0, q 6= 1. That mapping generates a free and discrete
action of the group Z on Rn \ {0}, with the quotient space
M = (Rn \ {0})/Z diffeomorphic to Sn−1 × S1. The group Z acts
by isometries of the metric 1

‖x‖F and hence induces a Finsler
metric on M, which is locally conformally related to the Berwald
(even Minkowski) metric F . But if F is not-Riemannian, the
resulting metric is not globally conformally Berwald, as conformally
related Berwald metrics are either homothetic, or Riemannian
[Vincze, 2006] (consider the lift to Rn \ {0}).
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Question:

Is it so that the above example is the only nontrivial possible? In
other words, is the following true: “let (M,F ) be a connected,
closed, locally conformally Berwald Finsler manifold. Then, either
F is globally conformally Berwald or is conformally flat (in which
case a finite cover of (M,F ) is diffeomorphic to the direct product
Sn−1 × S1 by [Matveev-Troyanov, 2012, from Fried, 1980])”?

True (Theorem; MN, 2015) if the Berwald connection
is either complete,
or has holonomy of a symmetric space of rank ­ 2.

Is it still true when the holonomy is reducible? Equivalent to the
following:

Conjecture (Belgun-Moroianu, 2014)

On a closed manifold, any reducible locally metric connection that
preserves a conformal structure is either the Levi-Civita connection
of a certain Riemannian metric, or is flat.

This is already a “Finsler-free” formulation. We (together with
Belgun-Moroianu) go one step further:
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Riemannianisation:

We are given a closed Riemannian manifold M. It is locally
conformally reducible (and the conformal factor is unique up to
multiplication by a positive constant, by [Vincze, 2006]). Is it true
that it is either globally conformally reducible or (locally)
conformally flat?

If not, then the universal cover M̃ carries a Riemannian metric g

which is incomplete;
whose holonomy group is reducible;
such that the fundamental group G acts by homothecies (not
all isometries) of g , with M̃/G = M, closed;
(not that important) conformally equivalent to the lift of the
initial metric.

Question

Is such g flat?
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How close one can get to a possible proof/counterexample?
We have the following de Rham-type decomposition theorem.

Theorem (MN, 2015)

Let (M̃, g) be a connected, simply connected, noncomplete,
analytic Riemannian manifold with reducible holonomy. Suppose a
group G acts upon (M̃, g) cocompactly and freely by homothecies.
Then (M̃, g) is the (global) Riemannian product of a Euclidean
space Rk and an incomplete Riemannian manifold N.

Proof, idea:

Local product structure: a finite collection of complementary
orthogonal totally geodesic foliations on (M̃, g).
If the shortest incomplete geodesic doesn’t lie on a leaf, then
the leaf must be flat.
Just two foliations; the leaves of one are flat and complete.
The claim follows from [Ponge-Reckziegel, 1993] (which
generalises the results of [Blumenthal-Hebda, 1983]).
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But in general the answer is “no” (MN, 2015, CRAS).
Let g be a 3-dimensional Lie algebra defined by

[Z ,X ] = X , [Z ,Y ] = −Y , [X ,Y ] = 0.

Its (simply connected) Lie group G is solvable and is the Lorentz
group of motions of the Minkowski plane. The group G is
isomorphic to R3 with the multiplication defined byx

y
z

 ·
x ′

y ′

z ′

 =

D
(
x ′

y ′

)
+

(
x
y

)
z + z ′

 , where D =

(
ez 0
0 e−z

)
.

Another way to visualise G is as the group of matrices ez 0 x
0 e−z y
0 0 1

 , x , y , z ∈ R.

The group G admits a compact quotient by a subgroup Γ ⊂ G
such that G/Γ is diffeomorphic to the torus T3.
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such that G/Γ is diffeomorphic to the torus T3.
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Consider a matrix A ∈ SL(2,Z) with two different real eigenvalues

eλ and e−λ, e.g. A =

(
5 2
2 1

)
= T−1diag(eλ, e−λ)T for some

nonsingular T . Then changing the xy -coordinates by the
transformation T and the coordinate z , by z 7→ λz , we get the the
group law in G written asx

y
z

 ·
x ′

y ′

z ′

 =

Az

(
x ′

y ′

)
+

(
x
y

)
z + z ′

 .
As A ∈ SL(2,Z), the action of Am, m ∈ Z, on R2 preserves the
integer lattice Z2. So the integer lattice Γ = Z3 is a subgroup of
G , with a compact quotient diffeomorphic to the torus T3 (one can
visulaise that quotient as follows: we first take the torus T2, the
quotient of the xy -plane by Z2, then multiply it by [0, 1] and then
identify the top and the bottom by the diffeomorphism of T2
defined by A).
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Left-invariant Riemannian metric on G : the vector fields
ez∂x , e

−z∂y , ∂z are left-invariant (they are X ,Y ,Z we started
with, respectively). Take them orthonormal. In coordinates (x , y , z)
we get the following metric on R3:

ds2 = e−2zdx2 + e2zdy2 + dz2.

The foliation x = const is totally geodesic and G -invariant (and so
also Γ-invariant) and its orthogonal 1-dimensional foliation is also
G -invariant. Now multiply ds2 by e2z . The resulting metric

ds ′
2

= dx2 + e4zdy2 + e2zdz2

is a direct product of the line R1 and a noncomplete
two-dimensional Riemannian manifold (the negative half of the
z-axis has finite length). Γ acts on it by homothecies, with
G/Γ = T3.
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