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Let V be a linear connection on a smooth connected almost
complex manifold (M?2",.J) of C-dimension n > 2. We will assume
it is a complex connection V.J = 0. Every almost complex
structure projects to a complex connection: V — 3(V — JV.J).

The torsion Ty € Q?(M) ® D(M) has the total complex-antilinear
part Tg~ € Q%%(M) ® D(M) equal to 1N, where

Ny(X,Y)=[JX,JY] - J[JX,Y] - J|X,JY] - [X,Y]

is the Nijenhuis tensor of J. In particular, for non-integrable .J, the
complex connection V is never symmetric. However the other parts
of T can be set to zero by a choice of complex connection. There
always exist minimal connections V characterized by Ty = T ™.

Recall that two real connections are projectively equivalent if their
(unparametrized) geodesics v given by V:4 € R - % are the same.
Thus equivalence V ~ V means VxX —VxX e R- X

VX € D(M), and any connection is projectively equivalent to a
symmetric one: V >~V — %TV.
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The complex case is different. A J-planar curve v : R DT — M is
given by the differential equation V4 € C¥ = (¥, Jy)r.
Reparametrization does not change this property. The class of
unparametrized J-planar curves is encoded by 1 function ¢ given in
terms of decomposition V4 = af + 8J% by ¢ = (a + V5)(871).
Geodesics correspond to 8 = 0. J-planar curves, as complex
analogs of geodesics, are of certain interest in Hermitian geometry.

Two pairs (J, V) with V.J = 0 on the same manifold M are called
c-projectively equivalent if they share the same class of J-planar
curves. It is easy to show that the almost complex structure J is
restored up to sign by the c-projective equivalence, so we fix it.

Definition

Two complex connections on almost complex background (M, J)
are equivalent V ~ V if they have the same J-planar curves, i.e.
VxX —VxX €C-X VX € D(M). An equivalence class (J,[V])

of complex connections is called a c-projective structure. *
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Let us reformulate this definition tensorially in the case of minimal
connections (the general case requires additional normalization).

The above equivalence relation on the space of all minimal complex
connections writes V ~ V =V +1d ¥ — J ® J*¥ for some
1-form ¥ € QY(M). In other words, V is c-projectively equivalent
to V if and only if (notice that Ty = Tg)

VxY = VxY + U(X)Y + U(YV)X — U(JX)JY — U(JY)JX

A vector field v is called a c-projective symmetry, if its local flow
7 preserves the class of J-planar curves. Equivalently we have:
(®Y)*J = J, [(®})*V] = [V]. The first equation can be re-written
as L,J = 0. The second equation can be re-written as L,[V] = 0,
or in local coordinates, with the connection V given by the
Christoffel symbols Fék S0:

e = 0%k + dad gy = 0
where Qi = Lv(r)jk and ¢; = 2(n+1)Q
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The space of c-projective vector fields forms a Lie algebra, denoted
cp(V, J). The maximal dimension of this algebra is equal to

2(n? + 2n), and this bound is achieved only if the structure is flat,
i.e. c-projectively locally equivalent to CP™ equipped with the
standard complex structure Je,, and the class of the Levi-Civita
connection VS of the Fubini-Studi metric. Indeed, the group of
c-projective automorphisms of (CP™, Jean, [VF®]) is PSL(n + 1, C),
s0 ¢p(VF>, Jean) = sl(n + 1,C).

To explain this upper bound let me briefly recall the (real)
projective situation. This is a Cartan geometry of type G/ P, where
G =SL(n+ 1,R) and P is the 1st parabolic subgroup (stabilizer of
a line). The maximal dimension of the symmetry of the Cartan
geometry is dim(G) = n? 4 2n, and this bound is achieved only if
the structure is flat, i.e. projectively locally equivalent to RP™
equipped with the class of V€.

Similarly, c-projective structures are described in the context of
Cartan geometry of type G/P, where G = SL(n+1,C) and Pis g2
the 1st parabolic subgroup (stabilizer of a complex line). )

7RO
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For many geometric structures the natural (and often nontrivial)
problem is to compute the next possible/realizable dimension, the
so-called submaximal dimension, of the algebra of symmetries.
Namely, this is the maximal dimension of a non-flat geometry.
For the algebra of (usual) projective vector fields the question was
settled by A.Tresse for n = 2 and |.Egorov for n > 2. For
c-projective vector fields the answer is as follows.

Theorem (BK & V.Matveev & D.The 2015)

Consider a c-projective structure (J,[V]) on M. If it is not
everywhere flat, then dim c¢p(V, J) is bounded from above by

S — 2n2 —2n+4, n#3,
] 18, n = 3.

and this estimate is sharp (realizable).

The sub-maximal dimensional bound 2n? — 2n + 4 is realizable for e
S
both non-minimal and minimal complex connections.

e
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Background: Cartan and parabolic geometries

Recall that a Cartan geometry of type G/P is given by a Lie group
G, its subgroup P, a principal bundle G — M with the structure
group P and a 1-form (Cartan connection) w € Q(G, g) such that

o w:T,G6 g ucPh,

° R;;w = Ad;lw, pE P,

o w(X,)=v,veEp.

Parabolic geometries are Cartan geometries with G a semi-simple
Lie group and P a parabolic subgroup (notice play G vs. g).

Model G/P Underlying (curved) geometry
SO(p+1,q+1)/P, sign (p, q) conformal structure
SLpm+2/P12 2nd ord ODE system in m dep vars
Ga/ Py (2,3, 5)-distributions
SHPIEY 01z Lagrangian contact structures .
SU(p+1,q+1)/Pim CR-structures with (p, ¢) Levi signature =

v
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A parabolic subgroup P C G defines the gradation
0=9-xD - Dg- 108000910 D g,

and p = @;>0g;. Denote also m = ®;0g;. The curvature of the
geometry is fully encoded into its harmonic part ki € H2 (m, g),
(normalization is given by the Kostant co-differential: 9*x = 0).
For any ag C go the Tanaka prolongation pr(m, ag) is the maximal
graded Lie algebra containing g_ @ ag as the non-positive part.
The symmetry algebra S has a filtration determined by a point

u € G such that the associated graded Lie algebra s C g. We have

The embedding s; C g; at a regular point satisfies: [s;, 1] C 8;_1.

In the flat case K.Yamaguchi's prolongation theorem states that all

but two parabolic G/P type geometries for a (complex) simple Lie
group G and parabolic P are obtained via a reduction of gy and
Tanaka prolongation. The two exceptional structures of types *
A,,/Py and C,,/P; are obtained by a higher order reduction.
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Example ((2, 3, 5)-distributions)

Any such A can be described as Monge eqn 2’ = f(z,2,y,y',9y").

M : (xazayap7q)' A= {aqaax —i—pay + qap + faz}: qu # 0.
m=g_1®g_o®g_3 with dims (2,1,2), and gy = gls.

Same as
G/ P data:

P1

Lie(Go) = g_3® 92D -1 D G0 D g1 D g2 D 03

Yamaguchi pr(m, go) = Lie(G2).
Any (2,3,5)-dist. = (G2, P1)-type geom.

£
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Example (Conformal geometry)

Let (M, [u]) be sig. (p,q) conformal mfld, n = p + q. Here,
A=TM, m=g_q, and go = co(g_1).

. o o0 1
Same as SOp41,4+1/ P data: if g = ( 0 Ipa O ) then

Szl =

p1
—
50p+1,9+1 = 9-1 D g0 D 1

Yamaguchi pr(m, go) = §0p+1,g+1-
Any conformal geometry = (SOp41,4+1, P1)-type geom.

X—e—e o—ere (n odd);
X—e—o '—'<: (n even).
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Example (Projective structure: type A, /P1 = SL(n+1)/P;)

To obtain the real projective geometry consider the algebra

Do (R™) of formal vector fields on V' = R™, with gradation

g1 :V, gozv*®V:R@5[(V), g1 :SQ‘/*(}@‘/'v

The go-module decomposition into irreducibles g; = g} @ g/ has
components g; = (S?V*®@ V) = Ker(q: S?’V*®@V — V*) and
gl =V* 5 S2V* eV, i(p)(v,w) = pv)w + p(w)v.
Prolongation of the firstis g’ = g_1 ®go D g} ®gh D ..., where
g, = Ker(q : S¥™1V* @ V. — S*V*). This is the gradation of the
algebra D (R") = {{ € Do (R") : div(£) = const}.

The other reduction has the trivial prolongation and we get

g" =9-1®go® g} =sl(n+1) - the grading of SL(n + 1,R)/P;.

C-projective structure is obtained similarly by a complex space W:
g=0-19g90 D g1 =W @ glc(W) & W™ (real reductions). This
parabolic geometry has type SL(n + 1,C)r/P;.
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The gap problem

Question: What is the symmetry bound of a non-flat geometry?

Often there is a gap between maximal and submaximal symmetry
dimensions, i.e. 3 forbidden dimensions.

Example (Riemannian geometry in dim = n)

n ‘ max ‘ submax ‘ Ref
2 3 1 Lie (1882), Darboux (1894)
3| 6 4 | Bianchi (1898), Ricci (1898)
4 10 8 Egorov (1955)
>5 | ("5 | (5) +1 | Wang (1947)
For other signatures the result is the same, except the 4D case

SNERg,

NB: We restrict to symmetry algebras, i.e. study the geometric
structures locally. i g

y Globally some other bounds can be achle\2/ed, e.g e
for n = 2 there is a global model with 2 symmetries (flat T<). =
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Old and new results on the parabolic gap phenomenon

Geometry Max Submazx  Clitation
scalar 2nd order ODE 8 3 Tresse (1896)
mod point / proj 2D str
(2,3, 5)-distributions 14 7 Cartan (1910)
proj (n + 1)-dimstr ~ n?+4n+3  n?+4 Egorov (1951)
scalar 3rd order ODE 10 5 Wafo Soh, Qu
mod contact Mahomed (2002)
’ Geometry ‘ Max ‘ Submax ‘
Sign (p,q) conf geom n42 n-1
n=p+q pq=>2 (") (") +6
Systems 2nd ord ODE | (m +2)? — 1 m?+5
Lagrangian contact str m? + 2m (m—12+4,m>3

Contact projective str | m(2m +1) | 2m? —5m + 8 + &2,

Exotic parabolic contact
24 14
structure of type Fg /P e !
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General dim bound for regular normal parabolic geometries

¢ € H2(m,g), af = ann(¢) C go, a® = pr(m,af) = m ® Y50 af

Theorem (BK & D.The 2013)

For G/ P parabolic geometry: dim(inf(G,w)) < inf dim(a"#®)).

zeM

Algorithm to compute the sub-maximal bound:

o Compute by Kostant BBW: HZ (m, g) = @, V;;

e Find Iwv v; € V; in go-irreps;
o Compute the annihilator ay = ann(v;) C go;
@ Prolong ag' > a¥i =m@ai ®al' .. .;
@ Most cases are prolongation rigid, exceptions are classified;
@ Most cases have the universal bound sharp (excepts classified):
U= max dim(a“?). =
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Finite type structures have finite-dimensional symmetry algebra and
the symmetry transformations form a Lie group. In particular, this
is true for all Cartan geometries. Beyond the realm of Cartan
geometries the gap phenomenon is more complicated.

Almost complex structures have infinite type. The most symmetric
structure is integrable: the symmetry of the complex structure Jy
on C™ is parametrized by 2n functions of n arguments. In the next
(submaximal) case the symmetry is parametrized by

n — 2+ 62 + 63 functions of (n — 1) arguments.

Example: n = 2. Consider C?(z,w) with the almost complex

structure
JO, = i0, + wlg, JOu = i0y.

This structure is non-integrable N;(9.,0y,) = —2i0g, and it has
the following infinite transformation pseudogroup of symmetries:

(z,w) = (%72 +c,e™ (w +¢(2))),

3

’l§ :
S

7RO

where r € R, c € C and (z = %f (reducible to the Laplace eqn).
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C-projective structures: curvature types

In the case of c-projective geometry we compute by Kostant's BBW
theorem that the curvature module H? (m, g) over go = gl(n, C)r
has 3 irreducible components (real: in complexification there are 6):

H2(g—,9) =V ®& Vi ® Vi,

where V; = A%29g* ®¢sl(g_,C) for n > 2 and V; = A%20g* ®¢ g*
for n =2; Vi = Ablg* ®csl(g—,C); Vir = A%?g* ®cg-.
The harmonic curvature splits in accordance to the above into
irreducible components kg = k1 + K11 + K117 and
@ g is the (2,0)-part of Weyl projective curvature of V, n > 2;
@ kg is the (2,0)-part of the Liouville tensor when n = 2;
@ «jp is the (1,1)-part of Weyl projective curvature tensor of V;
@ K Is %NJ (torsion of a minimal complex connection V).
We remark that on a complex background (M, J) (ki1 = 0):
@ A holomorphic connection exists in [V] < ki1 = 0;
o 1 = 0 is a necessary condition for (M, J, [V]) to be (pseudo-) 325
Kahler metrizable (Calderbank-Eastwood-Matveev-Neusser). -

Workshop Hermitian Contact Etc ¢ 2015 Bedlewo Boris Kruglikov (Tromsg) ¢ Symmetry of c-projective str



Main result: submaximal dimensions

Step 1. Prove prolongation-rigidity: for any ¢ € V we have

pr(m, a§)+ =0. Thusa®? =g_ & ag and to maximize this choose
the lowest weight vector in V.

Step 2. Compute the lowest weight in every go-module Vi, Vi1, Viip
and determine the bound in every type of the curvature.

Theorem (BK & V.Matveev & D.The 2015)

SubMax | n=2 | n=3|n=4|n=5| ...

Type 1 6 16 26 40 ... | 2n? —4n+10
Type 11 8 16 28 44 | ... | 2n®—2n+4
Type 111 8 18 28 42 | ... | 2n® —4n+12

The middle line (winning submax) is the only candidate and it is
metrizable c-proj structure (in contrast with the real case!).

To finish the proof we need Step 3: Realization.
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Model - Type |

This is the holomorphic version of the Egorov's (symm) connection.
So J =i and in complex coordinates the only non-trivial Christoffel
symbols are (conjugate equations are shortened to +Cc):

I} = 22 (+Cc Fgg = 22).
The harmonic curvature Ky = K1 # 0 corresponds to
Wy = d2? ANd2® ® 220,1 (+Cc).

The c-projective symmetries are 2 - (n? — 2n + 5) vector fields
(both real and imaginary parts shall be counted):

Oy1, O3, ...y O, 20,5 (1>2, j#2,3),
210,10 + 2202, 210, + 2%0,5, 222301 — 0,2, (22)30,1 — 32%0,5.

For n = 2 the model and 2 - 3 = 6 symmetries come from Tresse:

1
I, = -T1 = — (+Co).

1 =
*
0,2, Z1821 4F 228z2, 21Z28Z1 aF %(z2)2822. =
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Model - Type Il

Consider the complex connection V with respect to the standard
complex structure J =i on C™ given in the complex coordinates by

I3, =21 (+Cc: 2 =2Y).
Its curvature has pure type ll, kg = ki1 # 0:
Wy =dz' Ad2l ® 2'0,2 (+Cc).

The c-projective symmetries are found by straightforward
computation to be real and imaginary parts of the following
(linearly independent) complex-valued vector fields:

D2, ..., O, 20, (i#2,j>1),
210, + 22202 + 220, 0,1 — (21)%0

z

Ry,

Since the totality of these 2 - (n? — n + 2) coincides with the
universal upper bound, these are all symmetries, and so the above *
(J,[V]) is a sub-maximal c-projective structure of curvature type Il.
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Model - Type Illl, n > 2

Consider a sub-maximal symmetric almost complex structure on C"
found in BK'2014 (there are two, only one works):

JO =0, + 220, JO,2 =1i0,2, ..., J0:m = i0:n.

Let V = d be the trivial connection, and V = %(@ — JV.J) the
corresponding complex connection. Its nontrivial Christoffel
symbols are (our convention: Vj,0; = I‘fj@k):

3, = % (+Cc: T3 = —%).
Thus the torsion Ty # 0 is as required, and the curvature Ry = 0.
Consequently, the curvature kg = ki1 # 0 has type .
There are 2 - (n? — 2n + 6) c-projective symmetries:

0,1, 0,3, ..., O, Ziazj (i#3, j>2),
20, + 2305, 220p+2805 0:2+% (8 s +03),
00— 1 o, 20m— 120
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Model - Type lll, n = 2

This is an exceptional case, for which the abstract realization fails.
The local model is expressed in real coordinates (z,y, p, q), frame
e1 = Oy, ez = Oy, egzap, e4 =04 — 3—y8 —5—758 and dueal
co-frame 60 —dx—i— dq 0 —dy+ dq 03 —dp 04 = dgq so:

Jeip = e, J6’2 = —eq, Jeg =ey4, Jeq = —es.
1 1
Vei = %626@04, Ves = —13(61@91 —e2®02+e3®03+e4®04)
1
4 — (61 ® (303 + 3yby) + e2 ® (3ybs + 13:[794))
The torsion Ty represents ki1 7 0. The curvature Ry # 0, yet
kg = Kir. The 8 symmetries are:
iy A yaya p_3/2aya pap + qaq: 8(]7
p (y0y — x0y) — 2pq ) + (p? — q2)aq, (p1/2 4 p73/2q2)(pa$ —q0y),
(0" +p7%¢*)0y + 2p~3q(q0, — pda), p~*/*(¢0y — §p0a).
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Model - Type IV

If the connection is not minimal, then Kostant's normalization fails
0*k1 # 0, but it is possible to construct the canonical Cartan
connection by a different normalization:

To=T  +T+

traceless”

In the case when Traceless # 0 the submaximal bound is again
2(n% —n +2) as for type Il. In complex notations choose J = i and
the nontrivial Christoffels:

2 2
1—‘11 = Fil = 1

Its torsion Ty = (0,2 — ) @ dz Adzt =Tt ..., while Tg™ =0
and Ry = 0. The totality of 2(n? — n 4 2) c-projective symmetrles
are real and imaginary parts of the following vector fields:

UERg,

Oy, 20, (i#2,5#1), 2'0,+2°0,2+ 2205

z TRO®
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Metrizability

An important problem in projective geometry is to decide if a given
projective connection is metrizable. In the c-projective case, the
corresponding problem is to determine if a representative of [V] is
given by a Levi-Civita connection of a pseudo-Kahler structure
(g,J). For such structures we can also compute the submaximal
symmetry dimension.

Theorem (BK & V.Matveev & D.The 2015)

For the Levi-Civita connection V9 of a Kahler structure (g, J),
which is not of constant holomorphic sectional curvature,

dim cp(V9, J) < 2n? — 2n + 3, the bound is realized by

M?" = CP' x C™! with its natural Kahler form and connection.
In the pseudo-Kahler case we have: dim cp(V9,J) < 2n% — 2n + 4,
the estimate is sharp in any signature (2p,2(n —p)), 0 < p < n.

Thus the submaximal symmetry dimension &y = 2n? — 2n + 4 for e
complex c-projective structures realizes on a pseudo-Kahler metric. ™
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To see the claim for the pseudo-Kahler metric consider
n
g= |21‘2 dz1dz1 +dz dzo + dz dzo + Zd € dzyp dzy,.
Its Levi-Civita connection coincides with the sub-maximal V of type
[I, whence the latter is metrizable.

To see the drop of the sub-maximal dimension in the Kahler case
assume first there are no essential c-projective transformations, i.e.
for some metric g with Levi-Civita connection in the c-proj class:

cp(V7, J) = aff(g, J).
For € M with Rys(z) # 0 by the Ambrose-Singer theorem the
holonomy algebra H, C u(n) is nontrivial. From the de Rham
decomposition theorem T, M = @} (IIj, where II; are
H-invariant and Iy = ann(H,). Then

aff(g, J) > dolw) = {diag(A, 1, ., em)},
where A € gl(Ilp, J), cx € R. Consequently we obtain
dim aff(g, J) < 2n+ap(z) < 2n+m<ax(2r2+n—r) < 2n%—2n+3. =
rn
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Finally assume there is an essential c-projective symmetry.
Two pseudo-Kahler metrics g and g on a complex manifold (M, J)
are c-projectively equivalent (V9 ~ V9) if for (1,1)-tensor
det(g) 1/2(n+1)
det(g)
and w(X,Y) = g(JX,Y), 7a = 2 tr(A), va = grad, 74, it holds:
(VxA)Y =g(X,Y)va+Y(14) X +w(X,Y)Jvg — JY (14)J X.
Degree of mobility D(g, J) is dimension of the solution space of
this finite type overdetermined PDE system on A. Denote i(g, J)
resp. h(g, J) the algebra of J-holomorphic infinitesimal isometries/
homotheties of g. Note that (g, J) = i(g, J) if the symmetry acts
transitively. By Domashev-Mikes - Matveev-Roseman

dim cp(VY, J) < dimb(g,J) + D(g,J) — 1,
D(g,J) < (n+1)%, D(g,Nsubmax=n—1)2+1=n%—2n+2.
Now the claim follows from

dim i(g, ‘]) =n’ +2n, dim i(g, '])Sub.max < n? + 2.

A=g1g- :TM — TM,
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