Formality of cosymplectic and Sasakian manifolds

Marisa Fernández

Workshop "Almost Hermitian and Contact Geometry" Będlewo, Poland, 18-24 October 2015

Joint works with Giovanni Bazzoni, Indranil Biswas, Vicente Muñoz and Aleksy Tralle: arXiv:1203.6422 [math.AT], arXiv:1402.6861 [math.DG]

- N compact cokähler manifold ⇒ N × S¹ compact Kähler manifold and so formal ⇒ N formal.
- Sasakian manifolds
 - All higher Massey products are trivial. But formality is not an obstruction to the existence of Sasakian structures even for simply-connected Sasakian manifolds.
- Cosymplectic (also called almost cosymplectic) manifolds, i.e. the odd-dimensional counterpart to symplectic manifolds:

There exist compact non-formal cosymplectic manifolds of dimension $(2n+1) \ge 3$.

- Minimal models. Formal manifolds. Obstructions: Massey products
- Cosymplectic and cokähler manifolds. Sasakian and *K*-contact manifolds
- Formality of cosymplectic manifolds
- Sasakian and K-contact manifolds
 - Formality of Sasakian manifolds
 - Simply connected K-contact non-Sasakian manifolds

Differential graded commutative algebras (DGAs)

 $(\mathcal{A}, d_\mathcal{A})$ is a DGA (or differential algebra for short) over $\mathbb R$ if

• \mathcal{A} is a graded commutative algebra over \mathbb{R} , i.e.

$$\mathcal{A} = \mathop{\oplus}\limits_{i \geq 0} \mathcal{A}^i \qquad (\mathcal{A}^i ext{ subspace of elements of degree } i)$$

 $\begin{aligned} \mathcal{A}^p \times \mathcal{A}^q & \xrightarrow{\cdot} \mathcal{A}^{p+q} & \text{commutative in the graded sense} \\ x \cdot y \ = \ (-1)^{pq} \ y \cdot x, & x \in \mathcal{A}^p, \ y \in \mathcal{A}^q, \end{aligned}$

• $d_{\mathcal{A}} : \mathcal{A}^* \longrightarrow \mathcal{A}^{*+1}$ differential of degree +1 \mathbb{R} -linear, $d_{\mathcal{A}}^2 = 0$, $d_{\mathcal{A}}(x \cdot y) = (d_{\mathcal{A}}x) \cdot y + (-1)^p x \cdot (d_{\mathcal{A}}y)$

EXAMPLES. M differentiable manifold:

 $(\Omega^*(M), d)$ de Rham complex of differential forms on M. $(H^*(M), 0)$ de Rham cohomology algebra of M with differential = 0. $(\mathcal{A}, d_{\mathcal{A}}) \text{ is a minimal differential algebra if}$ $\bullet \mathcal{A} = \bigwedge V = \text{Symmetric} (V^{2k}) \otimes \text{Exterior} (V^{2k-1}),$

 $V = \oplus V^i$

- V has a basis {a₁, a₂,...} such that
 o in each degree, the number of generators is finite;
 o if i < i, then |a_i| < |a_i|, where |a_i| = deg(a_i)
 - if i < j, then $|a_i| \le |a_j|$, where $|a_i| = \deg(a_i)$;
 - $d_{\mathcal{A}}a_j \in \bigwedge (a_1, \ldots, a_{j-1})$, i.e. $d_{\mathcal{A}}a_j$ is expressed in terms of the preceding a_i (i < j).
- In general, $(\Omega^*(M), d)$ and $(H^*(M), d = 0)$ are non-minimals: they are non-free algebras.

Minimal models

• A minimal differential algebra $(\bigwedge V, d_V)$ is a minimal model of a differentiable manifold M if there is a quasi-isomorphism $\rho: (\bigwedge V, d_V) \longrightarrow (\Omega^*(M), d)$, that is, there is

$$\begin{split} \rho &: (\bigwedge V, d_V) \longrightarrow (\Omega^*(M), d) \quad \text{ morphism of DGAs} \\ \rho^* &: H^*(\bigwedge V, d_V) \overset{\cong}{\longrightarrow} H^*(M) \end{split}$$

• A DGA $(\mathcal{B}, d_{\mathcal{B}})$ is a model of M, with minimal model $(\bigwedge V, d_V)$, if there is $\nu : (\bigwedge V, d_V) \longrightarrow (\mathcal{B}, d_{\mathcal{B}})$ quasi \cong . So,

$$(\mathcal{B}, d_{\mathcal{B}}) \xleftarrow{\nu} (\bigwedge V, d_V) \xrightarrow{\rho} (\Omega^*(M), d)$$

where ρ and ν are quasi \cong .

(D. Sullivan) If M is simply connected, and (∧V, d_V) is the minimal model of M ⇒ ((π_i(M) ⊗ ℝ))* ≅ Vⁱ

A differentiable manifold M, with minimal model $(\bigwedge V, d_V)$, is formal if $(H^*(M), 0)$ is a model of M, that is,

$$\exists \psi : \left(\bigwedge V, d_V\right) \longrightarrow (H^*(M), 0) \quad \text{quasi} \cong$$
$$(H^*(M), 0) \xleftarrow{\psi} \left(\bigwedge V, d_V\right) \xrightarrow{\rho} (\Omega^*(M), d)$$

- If M has a Riemannian metric for which all wedge products of harmonic forms are harmonic, then M is formal. In this case, M is said to be geometrically formal.
- M simply connected compact manifold, $\dim M \le 6 \Longrightarrow M$ is formal.
- M connected and compact orientable manifold, dim M ≤ 4 and with b₁(M) = 1 ⇒ M is formal.

Triple Massey products

Consider ${\boldsymbol{M}}$ a differentiable manifold, and

 $a=[\alpha]\in H^p(M), \quad \ b=[\beta]\in H^q(M), \quad \ c=[\gamma]\in H^r(M).$

The (triple) Massey product $\langle a, b, c \rangle$ is defined if $a \cup b = 0 = b \cup c$, i.e.

$$\begin{aligned} \alpha \wedge \beta &= d\mu, \qquad \mu \in \Omega^{p+q-1}(M), \\ \beta \wedge \gamma &= d\nu, \qquad \nu \in \Omega^{q+r-1}(M). \end{aligned}$$

Then, $d(\alpha \wedge \nu + (-1)^{p+1} \mu \wedge \gamma) = 0$, and

$$\begin{split} \langle a,b,c\rangle &= [\alpha \wedge \nu + (-1)^{p+1} \mu \wedge \gamma] \\ &\in \frac{H^{p+q+r-1}(M)}{a \cup H^{q+r-1}(M) + c \cup H^{p+q-1}(M)}. \end{split}$$

Higher Massey products

$$\begin{split} a_i \in H^{p_i}(M), \quad a_i &= [\alpha_i], \quad 1 \leq i \leq t, \quad t \geq 4. \\ \text{The higher Massey product } \langle a_1, a_2, \cdots, a_{t-1}, a_t \rangle \text{ is defined if} \\ \langle a_i, a_{i+1}, a_{i+2}, \cdots, a_j \rangle &= 0, \qquad 1 \leq i < j \leq t, \qquad (i,j) \neq (1,t), \\ \text{i.e., there are } \alpha_{i,j} \in \Omega^*(M), \quad 1 \leq i \leq j \leq t, \quad (i,j) \neq (1,t) \text{ s. t.} \end{split}$$

$$\begin{aligned} &\alpha_{i,i} = \alpha_i, \\ &d \,\alpha_{i,i+1} = (-1)^{|\alpha_{i,i}|} \alpha_{i,i} \wedge \alpha_{i+1,i+1}, \\ &d \,\alpha_{i,i+2} = (-1)^{|\alpha_{i,i}|} \alpha_{i,i} \wedge \alpha_{i+1,i+2} + (-1)^{|\alpha_{i,i+1}|} \alpha_{i,i+1} \wedge \alpha_{i+2,i+2}, \cdots \\ &d \,\alpha_{i,j} = \sum_{k=i}^{j-1} (-1)^{|\alpha_{i,k}|} \alpha_{i,k} \wedge \alpha_{k+1,j}. \end{aligned}$$

Then, $\langle a_1, a_2, \cdots, a_t \rangle$ is the set of cohomology classes:

$$\left\{ \left[\sum_{k=1}^{t-1} (-1)^{|\alpha_{1,k}|} \alpha_{1,k} \wedge \alpha_{k+1,t} \right] \right\} \subset H^{p_1 + \dots + p_t - (t-2)}(M) \,,$$

and $\langle a_1, a_2, \cdots, a_t \rangle$ is trivial if $0 \in \langle a_1, a_2, \cdots, a_t \rangle$.

M formed and Monoral and A and the state

Cosymplectic (or almost cosymplectic) manifolds

N is a cosymplectic manifold if N is a differentiable manifold, $\dim N=2n+1,$ admitting a

• cosymplectic structure, that is, a pair (η, F) of differential forms, where $\eta \in \Omega^1(N)$ and $F \in \Omega^2(N)$ such that

$$d\eta = 0 = dF, \qquad \eta \wedge F^n \neq 0$$
 at every $p \in N$

- N is orientable; and if N is compact $\implies b_{2i}(N)$ and $b_1(N) \neq 0$, and so N non-simply connected.
- Examples: (M, ω) symplectic manifold $\implies (N = M \times \mathbb{R}, \eta, F)$ cosymplectic with

$$\eta = dt, \quad F = \omega$$

 $(N,\,\eta,\,F)$ cosymplectic $\Longrightarrow (N\times\mathbb{R},\,\omega=F+\eta\wedge\,dt)$ symplectic

Cosymplectic manifolds

 (N,η,F) cosymplectic manifold. Then,

- the distribution $H = \ker(\eta)$ is integrable since $d\eta = 0$; and
- η ∧ Fⁿ volume form on N ⇒ there exists a nowhere vanishing vector field ξ (Reeb vector field) on N given by

$$\eta(\xi) = 1, \quad \imath_{\xi}(F) = 0 \iff \imath_{\xi} (\eta \wedge F^n) = F^n$$

So,

$$TN=H\oplus \langle \xi\rangle$$

and $H = \ker(\eta)$ is also a symplectic distribution.

• If (g_H, J) is an almost Hermitian structure on H with Kähler form F, we have

 $g = g_H + \eta^2$ Riemannian metric on N, such that $TN = H \oplus \langle \xi \rangle$ is orthogonal, $g(\xi, \xi) = 1$, and $\phi: TN \to TN$, $\phi_H = J$, $\phi(\xi) = 0$.

Almost contact metric structures

Let N be a differentiable manifold, $\dim N = 2n + 1$. An almost contact metric structure (η, ξ, ϕ, g) on N:

 $\circ~\eta\in\Omega^1(N),$ and a nowhere vanishing vector field ξ on N s. t.

$$\eta(\xi) = 1$$

 $\circ \ \phi: TN \ \rightarrow \ TN$ is an endomorphism satisfying

$$\phi^2 = -\mathrm{Id} + \eta \otimes \xi \qquad \qquad \phi(\xi) = 0;$$

 $\circ g$ Riemannian metric such that, for X,Y vector fields on N,

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$$

Thus, the decomposition $TN = H \oplus \langle \xi \rangle$, with $H = \ker(\eta)$, is orthogonal.

• The fundamental 2-form F of (η, ξ, ϕ, g) is defined by

$$F(X,Y) = g(\phi(X),Y),$$

and it satisfies $F(X,Y) = F(\phi(X),\phi(Y))$ and $\eta \wedge F^n \neq 0$.

Cokähler manifolds

An almost contact metric structure (η,ξ,ϕ,g) on N is cokähler if

- (η, F) cosymplectic $(d\eta = 0 = dF)$; and
- $N_{\phi} = 0$, where N_{ϕ} is the Nijenhuis tensor of ϕ given by

$$N_{\phi}(X,Y) = \phi^{2}[X,Y] - \phi[\phi X,Y] - \phi[X,\phi Y] + [\phi X,\phi Y],$$

for all vector fields X, Y on N. So (η, ξ, ϕ, g) is normal, i.e. $N_{\phi} + d\eta \otimes \xi = 0$.

• (N, η, ξ, ϕ, g) is a cokähler manifold $\implies (M = N \times \mathbb{R}, h, J)$ $(M = N \times S^1)$ is Kähler, with $h = g + (dt)^2$, $J(\xi) = \partial_t$, and $J(X) = \phi(X)$, for X vector field on N.

So, if N is compact, then

- $b_1(N) = \text{odd}, \qquad b_{2i}(N) \neq 0;$
- N is formal $(M = N \times S^1 \text{ formal} \Longrightarrow N \text{ formal}).$

Sasakian manifolds

 (η,ξ,ϕ,g) is a Sasakian structure on N if

- (η, ξ, ϕ, g) is contact metric, i.e., $F = d\eta$, so η is a contact form $(\eta \wedge (d\eta)^n \neq 0)$.
- (η,ξ,ϕ,g) normal i.e., the Nijenhuis tensor N_ϕ satisfies

$$N_{\phi} + d\eta \otimes \xi = 0.$$

or, equivalently,

(N,g) Sasakian $\iff \left(M = N \times \mathbb{R}^+, \, g^c = t^2 \, g + (dt)^2 \right)$ Kähler

- (N, η, ξ, ϕ, g) is Sasakian manifold $\Longrightarrow \xi$ is a Killing vector field, $\mathcal{L}_{\xi}g = 0$.
- (N, η, ξ, ϕ, g) compact Sasakian manifold, dim N = 2n + 1, $\implies b_{2i+1}(N)$ are even for $1 \le (2i + 1) \le n$.
- (η, ξ, φ, g) is K-contact if it is contact and ξ is a Killing vector field.

The mapping torus of a diffeomorphism

M differentiable manifold, and $\varphi: M \to M$ diffeomorphism. The mapping torus M_{φ} of φ is the manifold, $\dim M_{\varphi} = (\dim M) + 1$,

$$M_{\varphi} = \frac{M \times [0,1]}{(x,0) \sim (\varphi(x),1)} = \frac{M \times \mathbb{R}}{\mathbb{Z}}$$

where the action of $\mathbb Z$ on $M\times \mathbb R$ is given by the diffeomorphism

$$M \times \mathbb{R} \longrightarrow M \times \mathbb{R}$$
$$(x,t) \longrightarrow (\varphi(x), t+1)$$

• $\varphi = Id \Longrightarrow M_{\varphi} = M \times S^1$. In general,

$$\begin{array}{rcl} M \hookrightarrow & M_{\varphi} \stackrel{\pi}{\longrightarrow} S^{1} \\ & (x,t) \rightsquigarrow e^{2\pi \, it} \end{array}$$

LOCALLY TRIVIAL FIBER BUNDLE OVER S^1 and fiber M

Symplectic mapping tori

 (M,ω) symplectic manifold, $\dim M=2n,$ and $\varphi:(M,\omega)\to (M,\omega)$ symplectomorphism, i.e.,

• $\varphi: M \to M$ diffeomorphism such that $\varphi^* \omega = \omega$

The mapping torus M_{φ} (of a symplectomorphism $\varphi)$ is a cosymplectic manifold

 (M,ω) symplectic $\implies (M\times\mathbb{R},\,dt,\,\omega)$ cosymplectic manifold. If $\varphi:(M,\omega)\to(M,\omega)$ is a symplectomorphism. Then, we have

$$M \times \mathbb{R} \longrightarrow M_{\varphi} = \frac{M \times \mathbb{R}}{\mathbb{Z}}$$

The forms dt and ω on $M \times \mathbb{R}$ are \mathbb{Z} -invariant. So, they induce a closed 1-form $\eta \in \Omega^1(M_{\varphi})$ and a closed 2-form $F \in \Omega^2(M_{\varphi})$ s. t.

$$d\eta = 0 = dF, \qquad \eta \wedge F^n \neq 0$$

Not all cosymplectic manifolds are symplectic mapping tori. Example: \mathbb{R}^{2n+1} .

Theorem (H. Li, Asian J. Math, **12**, 2008)

If N is a compact cosymplectic manifold $\implies N$ is the mapping torus of a symplectomorphism of a compact symplectic manifold, i.e. there exist a compact symplectic manifold (M, ω) and a symplectomorphism $\varphi : (M, \omega) \to (M, \omega)$ such that

$$N = M_{\varphi}$$

• If (N, η, F) compact cosymplectic $\implies 0 \neq [\eta] \in H^1(N)$. Thus, N is a mapping torus.

Theorem (D. Tischler, Topology 9, 1970.)

A compact manifold is a mapping torus if and only if it admits a non-vanishing closed 1-form.

Cohomology of a mapping torus

M differentiable manifold, and $\varphi: M \to M$ diffeomorphism.

$$M \times \mathbb{R} \longrightarrow M_{\varphi} = \frac{M \times \mathbb{R}}{\mathbb{Z}}$$

Mayer-Vietoris sequence implies that for any $p \ge 0$,

$$H^{p}(M_{\varphi}) \cong \ker \left(\varphi^{*} - Id : H^{p}(M) \longrightarrow H^{p}(M)\right)$$
$$\oplus \left[dt\right] \wedge \frac{H^{p-1}(M)}{\operatorname{Im}\left(\varphi^{*} - Id : H^{p-1}(M) \longrightarrow H^{p-1}(M)\right)}$$

Non-formal mapping tori

M compact oriented manifold, and $\varphi: M \longrightarrow M \text{ an orientation-preserving diffeomorphism}.$

$$M \times \mathbb{R} \longrightarrow M_{\varphi} = \frac{M \times \mathbb{R}}{\mathbb{Z}}$$

 $\eta\,\in\Omega^1(M_\varphi)\ \text{ closed 1-form on }M_\varphi\text{ induced by }dt\in\Omega^1(\mathbb{R}).$

Theorem (G. Bazzoni, -, V. Muñoz, Trans. AMS 367, 2015)

If for some p > 0, the map

$$\varphi^*: H^p(M) \longrightarrow H^p(M)$$

has the eigenvalue $\lambda = 1$ with multiplicity r = 2 (*), then M_{φ} has a non-trivial Massey product, and so it is non-formal.

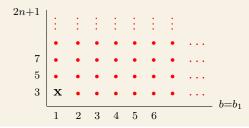
*
$$K^p = K_1^p = \ker(\varphi^* - I) \subseteq K_2^p = \ker(\varphi^* - I)^2 = K_r^p \subset H^p(M), \quad r \ge 2$$

$$\begin{split} & [\beta] \in (\ker(\varphi^* - I)^2) - \ker(\varphi^* - I) \quad \text{and} \quad [\alpha] = (\varphi^* - Id)[\beta] \\ & \text{Since } [\alpha] \in \ker(\varphi^* - Id) \cap \operatorname{Im}(\varphi^* - Id), \text{ the Massey product} \\ & \langle [\eta], [\eta], [\widetilde{\alpha}] \rangle \text{ is defined and it is non-trivial.} \end{split}$$

Theorem (G. Bazzoni, –, V. Muñoz, Trans. AMS 367, 2015)

For every pair $(2n + 1, b) \neq (3, 1)$, with $n, b \geq 1$, there is a compact non-formal cosymplectic manifold of dimension 2n + 1 and with first Betti number $b_1 = b$.

If (2n+1,b) = (3,1) all are formal but not necessarily cokähler.



Examples 3-dim. non-formal with $b_1 = 2k$

 Σ_k symplectic surface of genus $k \ge 1$, $H^1(\Sigma_k) = \langle \xi_1, \ldots, \xi_{2k} \rangle$. Take

 $\varphi: \Sigma_k \longrightarrow \Sigma_k \quad \text{ symplectomorphism }$

* $\mathbf{T}^{1}(\mathbf{\Sigma})$, $\mathbf{T}^{1}(\mathbf{\Sigma})$

$$\varphi : H (\Sigma_k) \longrightarrow H (\Sigma_k)$$

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \oplus \ldots \oplus \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ with respect to the basis } \langle \xi_i \rangle.$$

Now,

$$\varphi^*(\xi_1) = \xi_1 + \xi_2, \qquad \varphi^*(\xi_i) = \xi_i, \ 2 \le i \le k$$

So, $b_1((\Sigma_k)_{\varphi}) = 2k$ since $H^1((\Sigma_k)_{\varphi}) = \langle [\eta], \widetilde{\xi}_2, \dots, \widetilde{\xi}_{2k} \rangle$, and

$$\underbrace{\xi_2 \in \ker(\varphi^* - Id) \cap \operatorname{Im}(\varphi^* - Id)}_{\Longrightarrow \langle [\eta], [\eta], \widetilde{\xi}_2 \rangle \neq 0 \Rightarrow (\Sigma_k)_{\varphi} \text{ NON-FORMAL} }$$

Examples 3-dim. non-formal with $b_1 = 2k - 1$

 Σ_k symplectic surface of genus $k \ge 2$, $H^1(\Sigma_k) = \langle \xi_1 \dots \xi_{2k} \rangle$. Consider

 $\psi: \Sigma_k \longrightarrow \Sigma_k \quad \text{symplectomorphism}$ $\psi^*: H^1(\Sigma_k) \longrightarrow H^1(\Sigma_k)$ $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \oplus \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \oplus \dots \oplus \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

with respect to the basis $\langle \xi_i \rangle$.

$$\psi^*(\xi_1) = \xi_1 + \xi_2, \quad \psi^*(\xi_2) = \xi_2.$$

$$\psi^*(\xi_3) = \xi_3 + \xi_4, \quad \psi^*(\xi_i) = \xi_i, \quad 4 \le i \le 2k.$$

$$H^1((\Sigma_k)_{\psi}) = \langle [\eta], \tilde{\xi}_2, \tilde{\xi}_4, \dots, \tilde{\xi}_{2k} \rangle, \quad b_1 = 2k - 1.$$

Example 5-dim. non-formal with $b_1 = 1$

$$\begin{split} \mathbb{T}^4: \mbox{ 4-torus, } H^1(\mathbb{T}^4) &= \langle [e^i], \ 1 \leq i \leq 4 \rangle, \\ \omega &= e^1 \wedge e^2 + e^3 \wedge e^4 \mbox{ symplectic form. Define } \end{split}$$

$$\begin{split} \varphi : \mathbb{T}^4 &\longrightarrow \mathbb{T}^4 \quad \text{symplectomorphism} \\ \varphi^* : H^1 \left(\mathbb{T}^4 \right) &\longrightarrow H^1 \left(\mathbb{T}^4 \right) \\ \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}. \end{split}$$

Now $\varphi^* : H^1(\mathbb{T}^4) \longrightarrow H^1(\mathbb{T}^4)$ has no the eigenvalue $\lambda = 1$. Thus, $H^1((\mathbb{T}^4)_{\varphi}) = \langle [\eta] \rangle$, i.e., $b_1(\mathbb{T}^4_{\varphi}) = 1$.

A non-trivial Massey product on $(\mathbb{T}^4)_{\odot}$

$$\begin{split} \varphi^*[e^1 \wedge e^3] &= [e^1 \wedge e^3] - [e^1 \wedge e^4],\\ \varphi^*[e^2 \wedge e^3] &= [e^2 \wedge e^3] - [e^2 \wedge e^4],\\ \varphi^*[e^i \wedge e^j] &= [e^i \wedge e^j] \text{ otherwise.} \end{split}$$

•
$$[e^1 \wedge e^4] \in \ker(\varphi^* - Id) \cap \operatorname{Im}(\varphi^* - Id)$$

 $\implies \mathbb{T}_{\varphi}^4$ is non-formal, since it has a non-zero Massey product

$$\langle [\eta], [\eta], [\widetilde{e^1 \wedge e^4}] \rangle \neq 0$$

The basic forms and the basic cohomology

 (N, η, ξ, ϕ, g) almost contact metric manifold, dim N = 2n + 1, \mathcal{F}_{ξ} characteristic foliation. A k-form $\alpha \in \Omega^k(N)$ on N is basic if

$$\iota_{\xi}\alpha = 0 = \iota_{\xi}(d\alpha) \iff \iota_{\xi}\alpha = 0 = \mathcal{L}_{\xi}\alpha$$

$$\Omega^k_B(N) = \left\{ \alpha \in \Omega^k(N) \mid \alpha \text{ basic } k \text{-form} \right\}$$

•
$$\eta \notin \Omega^1_B(N)$$
 since $\iota_{\xi}\eta = 1$;

- η contact form (so $\iota_{\xi} d\eta = 0$) $\implies d\eta \in \Omega^2_B(N)$;
- $\Omega^0_B(N) = \{ f \in \Omega^0(N) \mid \iota_{\xi} df = \xi(f) = 0 \} .$

If (x, y_1, \ldots, y_{2n}) is a local system of foliated coordinates on an open $U \subset N$, $\xi = \frac{\partial}{\partial x}$, the local expression of a basic k-form α is

$$\alpha_{|U} = \sum f_{i_1 \cdots i_k}(y_1, \dots, y_{2n}) \, d \, y_{i_1} \wedge \dots \wedge d \, y_{i_k}$$

•
$$\Omega_B^k(N) = 0, \qquad k \ge 2n + 1 = \dim N.$$

The basic cohomology

•
$$\alpha \wedge \beta \in \Omega_B^{k+r}(N)$$
 and $d\alpha \in \Omega_B^{k+1}(N)$, for $\alpha \in \Omega_B^k(N)$ and
 $\beta \in \Omega_B^r(N)$. So, $\Omega_B^*(N) = \bigoplus_{k=0}^{2n} \Omega_B^k(N)$,
 $(\Omega_B^*(N), d) \hookrightarrow (\Omega^*(N), d)$.

The cohomology of $(\Omega^*_B(N),d)$ is the basic cohomology of $(N,\eta,\xi,\phi,g),$

$$H^k_B(N) \,=\, \frac{ \ker \left(d:\, \Omega^k_B(N) \longrightarrow \Omega^{k+1}_B(N) \right) }{d\left(\Omega^{k-1}_B(N) \right)}, \quad \ 0 \leq k \leq 2n$$

- $H_B^k(N) = 0$, $k \ge 2n + 1 = \dim N$.
- $H^0_B(N) \cong \mathbb{R} \cong H^0(N), \qquad H^1_B(N) \hookrightarrow H^1(N).$ So, if N is compact $\Longrightarrow \dim H^1_B(N) \leq \dim H^1(N) < \infty$. But, for $k \ge 2$, $H^k_B(N)$ may be infinite dimensional.
- $N \text{ compact}, \eta \text{ contact} \Longrightarrow 0 \neq [(d\eta)^k]_B \in H^{2k}_B(N), k \ge 1.$

The basic cohomology of K-contact manifolds

Theorem (A. El Kacimi and G. Hector, Ann. Inst. Fourier 36, 1986; F. Kamber and Ph. Tondeur, Math. Ann. 277, 1987; A. El Kacimi, Compositio Math. 73, 1990.)

 $\begin{array}{ll} (N,\eta,\xi,\phi,g) \text{ compact K-contact manifold, } \dim N = 2n+1, \text{ then} \\ \text{i) } \dim H^k_B(N) < \infty, & 0 \leq k \leq 2n; \\ \text{ii) } H^1_B(N) \cong H^1(N), & H^{2n}_B(N) = \langle [(d\eta)^n]_B \rangle; \\ \text{iii) } \text{ If } (N,\eta,\xi,\phi,g) \text{ is a compact Sasakian manifold, then} \end{array}$

$$H_B^*(N) = \bigoplus_{k=0}^{2n} H_B^k(N)$$

satisfies the hard Lefschetz property with respect to $\omega = [d\eta]_B \in H^2_B(N)$, that is, for $k \leq n$, the map

$$\begin{array}{cccc} L^{n-k}_{\omega} \colon & H^k_B(N) & \longrightarrow & H^{2n-k}_B(N) & \quad \text{isomorphism} \\ & \alpha & \longrightarrow & \alpha \cup \omega^{n-k} \end{array}$$

A model for a compact Sasakian manifold

Theorem (A.M. Tievsky, PhD Thesis, MIT, 2008)

 $(N,\eta\,,\xi\,,\phi\,,g)$ compact Sasakian manifold, $\dim\,N=2n+1.$ Then, a model for N is the DGA

|x| = 1, $d(H_B^*(N)) = 0$, $dx = \omega (= [d\eta]_B)$.

 $(H_B^*(N) \otimes \bigwedge (x), d),$

•
$$|x| = 1 \Longrightarrow x \cdot x = 0;$$

• $\gamma \in H^*_B(N) \otimes \bigwedge(x)$ and $|\gamma| = p \Longrightarrow \gamma = \alpha + \beta \cdot x$, $\alpha \in H^p_B(N)$, $\beta \in H^{p-1}_B(N)$. So, $d\gamma = (-1)^{|\beta|} \beta \cdot \omega$;

• If
$$a = [\alpha + \beta \cdot x] \in H^p(H^*_B(N) \otimes \bigwedge(x), d)$$
, then
• $a = [\alpha] \in H^p(H^*_B(N) \otimes \bigwedge(x), d)$ if $p \le n$;
• $a = [\beta \cdot x] \in H^p(H^*_B(N) \otimes \bigwedge(x), d)$ if $p > n$.

Higher order Massey products on Sasakian manifolds

Theorem (I. Biswas, –, V. Muñoz, A. Tralle: arXiv: 1402.6861)

If N is a compact Sasakian manifold, $\dim N = 2n + 1$, then all the higher Massey products on N are trivial.

<u>Proof</u>. A model of (N, η, ξ, ϕ, g) is $(H^*_B(N) \otimes \bigwedge(x), d)$, where

$$|x| = 1,$$
 $d(H_B^*(N)) = 0,$ $dx = \omega (= [d\eta]_B).$

To prove this theorem is equivalent to prove that the higher Massey products

$$\langle a_1, \cdots, a_t \rangle, \quad a_i = [\alpha_i + \beta_i \cdot x] \in H^{p_i} \Big(H^*_B(N) \otimes \bigwedge(x), d \Big), \ t \ge 4,$$

are trivial. But dim N = 2n + 1 implies that there is at most one cohomology class a_j with $|a_i| = p_i \ge n + 1$, that is,

•
$$a_i = [\alpha_i]$$
 if $|a_i| = p_i \le n$, for $1 \le i \le t$; or

• there is only one cohomology class $a_j, \ 1\leq j\leq t, \quad {\rm s. \ t.} \quad p_j \ \geq \ n+1, \ {\rm i.e.}$

$$\alpha = \begin{bmatrix} \beta & m \end{bmatrix}$$
 but $\alpha = \begin{bmatrix} \alpha \end{bmatrix}$ for $i \neq i$

Suppose that it is defined the quadruple Massey product

$$\langle a_1, a_2, a_3, a_4 \rangle \subset H^{p_1 + \dots + p_4 - 2} \Big(H^*_B(N) \otimes \bigwedge(x), d \Big), \quad \deg(a_i) \leq n,$$

So, $a_i = [\alpha_i]$, where $\alpha_i \in H^{p_i}_B(N)$, $1 \le i \le 4$. Take $b \in \langle a_1, a_2, a_3, a_4 \rangle$. Then, there are

$$\gamma_{i,j} = \alpha_{i,j} + \beta_{i,j} \cdot x \in \Big(H_B^*(N) \otimes \bigwedge(x), d\Big),$$

 $1\,\leq\,i\,\leq\,j\,\leq\,4$ and $(i,j)\neq\,(1,4),$ such that

$$\begin{aligned} \gamma_{i,i} &= \alpha_{i,i} = \alpha_i, & 1 \le i \le 4, \\ d \gamma_{i,i+1} &= (-1)^{|\gamma_{i,i}|} \gamma_{i,i} \cdot \gamma_{i+1,i+1}, & 1 \le i \le 3, \\ d \gamma_{1,3} &= (-1)^{|\gamma_{1,1}|} \gamma_{1,1} \cdot \gamma_{2,3} + (-1)^{|\gamma_{1,2}|} \gamma_{1,2} \cdot \gamma_{3,3}, \\ d \gamma_{2,4} &= (-1)^{|\gamma_{2,2}|} \gamma_{2,2} \cdot \gamma_{3,4} + (-1)^{|\gamma_{2,3}|} \gamma_{2,3} \cdot \gamma_{4,4}. \end{aligned}$$

$$b = (-1)^{|\gamma_{1,1}|} \gamma_{1,1} \cdot \gamma_{2,4} + (-1)^{|\gamma_{1,2}|} \gamma_{1,2} \cdot \gamma_{3,4} + (-1)^{|\gamma_{1,3}|} \gamma_{1,3} \cdot \gamma_{4,4}$$

$$\begin{split} \gamma_{i,i} &= \alpha_{i,i} = \alpha_i, \qquad 1 \leq i \leq 4, \\ (-1)^{|\beta_{i,i+1}|} \beta_{i,i+1} \cdot \omega &= (-1)^{|\alpha_{i,i}|} \alpha_{i,i} \cdot \alpha_{i+1,i+1}, \qquad 1 \leq i \leq 3, \\ (-1)^{|\beta_{1,3}|} \beta_{1,3} \cdot \omega &= (-1)^{|\alpha_{1,1}|} \alpha_{1,1} \cdot \alpha_{2,3} + (-1)^{|\alpha_{1,2}|} \alpha_{1,2} \cdot \alpha_{3,3}, \\ (-1)^{|\beta_{2,4}|} \beta_{2,4} \cdot \omega &= (-1)^{|\alpha_{2,2}|} \alpha_{2,2} \cdot \alpha_{3,4} + (-1)^{|\alpha_{2,3}|} \alpha_{2,3} \cdot \alpha_{4,4}, \\ 0 &= (-1)^{|\alpha_{1,1}|} \alpha_{1,1} \cdot \beta_{2,3} - (-1)^{|\beta_{1,2}| + |\alpha_{3,3}|} \beta_{1,2} \cdot \alpha_{3,3}, \\ 0 &= (-1)^{|\alpha_{2,2}|} \alpha_{2,2} \cdot \beta_{3,4} - (-1)^{|\beta_{2,3}| + |\alpha_{4,4}|} \beta_{2,3} \cdot \alpha_{4,4}. \end{split}$$

Now, for $1 \leq i \leq j \leq 4$ and $(i, j) \neq (1, 4)$, we consider the new elements $\widetilde{\gamma}_{ij} \in (H_B^*(N) \otimes \bigwedge(x), d)$ given by

$$\begin{split} \widetilde{\gamma}_{ij} &= \widetilde{\alpha}_{ij} + \widetilde{\beta}_{ij} \cdot x \in \left(H_B^*(N) \otimes \bigwedge(x), d \right) \\ \widetilde{\gamma}_{i,i} &= \alpha_i \,, \qquad \widetilde{\gamma}_{i,i+1} \,= \, \beta_{i,i+1} \cdot x \,, \qquad \widetilde{\gamma}_{i,j} \,= \, 0 \ \text{ for } \ j \,\geq \, i+2 \,. \end{split}$$

 $\widetilde{b} = (-1)^{|\widetilde{\gamma}_{1,1}|} \widetilde{\gamma}_{1,1} \cdot \widetilde{\gamma}_{2,4} + (-1)^{|\widetilde{\gamma}_{1,2}|} \widetilde{\gamma}_{1,2} \cdot \widetilde{\gamma}_{3,4} + (-1)^{|\widetilde{\gamma}_{1,3}|} \widetilde{\gamma}_{1,3} \cdot \widetilde{\gamma}_{4,4} = 0$

(M, g, J) compact Kähler manifold, dim M = 2n, with Kähler form ω such that $[\omega] \in H^2(M, \mathbb{Z})$. Take the principal S^1 -bundle corresponding to $[\omega]$, that is,

$$S^1 \hookrightarrow N^{2n+1} \xrightarrow{\pi} M^{2n}, \qquad d\eta = \pi^* \omega.$$

Then, η is a contact form on N. Moreover, there is a Sasakian structure (η, ξ, ϕ, G) on N (with contact form η) given by

• ξ is the vector field on N such that

$$\eta(\xi) = 1, \qquad \imath_{\xi}(d\eta) = 0$$

So,

$$TN = H \oplus \langle \xi \rangle, \qquad H = \ker(\eta)$$

• ϕ and G are given by

$$\phi(X) = (J(\pi_*X))^h, \qquad G = \pi^*(g) + (\eta)^2$$

Non-simply connected non-formal Sasakian mfds

Generalized Heisenberg nilmanifold N^{2n+1} . Take the 2n-dimensional torus T^{2n} with Kähler form

$$\omega = \xi_1 \wedge \xi_2 + \ldots + \xi_{2n-1} \wedge \xi_{2n},$$

where $[\xi_1], [\xi_2], \ldots, [\xi_{2n}]$ are the generators of $H^1(T^{2n}, \mathbb{Z})$. Take the principal S^1 -bundle corresponding to $[\omega] \in H^2(T^{2n}, \mathbb{Z})$,

$$S^1 \hookrightarrow N \xrightarrow{\pi} T^{2n}, \qquad \qquad d\eta = \pi^*(\omega),$$

Then, N is a non-simply connected Sasakian manifold which is non-formal. In fact, the minimal model of N is

$$\left(\bigwedge(a_1, \ldots, a_{2n}, x), d\right), \qquad |a_i| = |x| = 1,$$

 $da_i = 0, \qquad dx = a_1 \cdot a_2 + a_3 \cdot a_4 + \ldots + a_{2n-1} \cdot a_{2n}.$

Now,

$$a_1 \cdot a_1 = 0, \quad a_1 \cdot (a_2 \cdot a_3 \cdot a_5 \cdot \ldots \cdot a_{2n-1}) = d(x \cdot a_3 \cdot a_5 \cdot \ldots \cdot a_{2n-1}).$$

$$\langle a_1, a_1, a_2 \cdot a_3 \cdot a_5 \cdot \ldots \cdot a_{2n-1} \rangle \neq 0$$

Simply connected compact non-formal Sasakian

 $S^2 \times S^2 \times S^2$ simply connected compact Kähler manifold with Kähler form

 $\omega = \omega_1 + \omega_2 + \omega_3,$

where $[\omega_1], [\omega_2], [\omega_3]$ are the generators of the cohomology $H^2(S^2, \mathbb{Z})$ of each of the S^2 -factors. Consider the principal S^1 -bundle

$$S^1 \hookrightarrow N \xrightarrow{\pi} S^2 \times S^2 \times S^2, \qquad d\eta = \pi^*(\omega).$$

Then, N is a simply connected compact non-formal Sasakian manifold.

If $(x, y) \in S^2 \times S^2$, the restriction to each $(x, y) \times S^2$ is the circle bundle with Euler class equal to $[\omega_3]$, i.e it is the Hopf bundle

$$S^1 \hookrightarrow S^3 \longrightarrow S^2.$$

Varying $(x,y)\in S^2\times S^2,$ we have that N is the $S^3\text{-bundle over }S^2\times S^2$

$$S^3 \hookrightarrow N \longrightarrow S^2 \times S^2.$$

A minimal model of $S^2 \times S^2$ is the differential algebra

$$(\bigwedge (a, b, x, y), d),$$
 $|a| = |b| = 2,$ $|x| = |y| = 3,$
 $da = db = 0,$ $dx = a^2,$ $dy = b^2.$

Thus, a minimal model of the total space of the fiber bundle $S^3 \hookrightarrow N^7 \longrightarrow S^2 \times S^2$ is the differential algebra

$$(\bigwedge (a, b, x, y, z), d),$$
 $|a| = |b| = 2,$ $|x| = |y| = |z| = 3,$
 $da = db = 0,$ $dx = a^2,$ $dy = b^2,$ $dz = ab.$

Now $a^2 = dx$, ab = dz, which implies that it is defined the triple Massey product

$$\langle a,a,b\rangle \neq 0$$

Simply connected K-contact non-Sasakian manifolds

Theorem (I. Biswas, –, V. Muñoz, A. Tralle: arXiv: 1402.6861)

Let (M, ω) be a simply connected compact symplectic manifold, dim M = 2n, with $0 \notin \langle a_1, a_2, a_3, a_4 \rangle \subset H^*(M)$. Then, there exists a sphere bundle

$$S^{2k+1} \hookrightarrow N \longrightarrow M^{2n}, \qquad (k+1) > n,$$

such that the total space N is K-contact, but N does not admit any Sasakian structure.

<u>Proof</u>. $S^1 \hookrightarrow P^{2n+1} \longrightarrow M^{2n}$ principal S^1 -bundle corresponding to $[\omega] \in H^2(M, \mathbb{Z})$, and (S^{2k+1}, ν) compact K-contact manifold. Then, the associated S^{2k+1} -bundle

$$S^{2k+1} \hookrightarrow N = P \times_{S^1} S^{2k+1} \longrightarrow M$$

is such that N has a K-contact structure. The model of N is $((\bigwedge V_M, d_V) \otimes \bigwedge(z), D)$, where $\deg(z) = 2k + 1$, $D(V_M) = d_V$, and D(z) = 0 since $2k + 2 > 2n = \dim M$.

THANK YOU VERY MUCH!!