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• N compact cokähler manifold =⇒ N × S1 compact Kähler
manifold and so formal =⇒ N formal.

• Sasakian manifolds

◦ All higher Massey products are trivial. But formality
is not an obstruction to the existence of Sasakian
structures even for simply-connected Sasakian
manifolds.

• Cosymplectic (also called almost cosymplectic) manifolds, i.e.
the odd-dimensional counterpart to symplectic manifolds:

There exist compact non-formal cosymplectic manifolds of
dimension (2n+ 1) ≥ 3.
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Differential graded commutative algebras (DGAs)
(A, dA) is a DGA (or differential algebra for short) over R if

• A is a graded commutative algebra over R, i.e.

A = ⊕
i≥0
Ai (Ai

subspace of elements of degree i)

Ap ×Aq ·−→ Ap+q commutative in the graded sense

x · y = (−1)pq y ·x, x ∈ Ap, y ∈ Aq,

• dA : A∗ −→ A∗+1 differential of degree +1

R-linear, dA
2 = 0,

dA(x · y) = (dAx) · y + (−1)p x · (dAy)

Examples. M differentiable manifold:

(Ω∗(M), d) de Rham complex of differential forms on M .

(H∗(M), 0) de Rham cohomology algebra of M with
differential = 0.



Minimal differential algebras

(A, dA) is a minimal differential algebra if

• A =
∧
V = Symmetric

(
V 2k

)
⊗ Exterior

(
V 2k−1) ,

V = ⊕V i

• V has a basis {a1, a2, . . .} such that

◦ in each degree, the number of generators is finite;

◦ if i < j, then |ai| ≤ |aj |, where |ai| = deg(ai);

◦ dAaj ∈
∧

(a1, . . . , aj−1), i.e. dAaj is expressed in
terms of the preceding ai (i < j).

• In general, (Ω∗(M), d) and (H∗(M), d = 0) are non-minimals:
they are non-free algebras.



Minimal models

• A minimal differential algebra (
∧
V, dV ) is a minimal model of

a differentiable manifold M if there is a quasi-isomorphism
ρ : (

∧
V, dV ) −→ (Ω∗(M), d), that is, there is

ρ : (
∧
V, dV ) −→ (Ω∗(M), d) morphism of DGAs

ρ∗ : H∗(
∧
V, dV )

∼=−→ H∗ (M)

• A DGA (B, dB) is a model of M , with minimal model
(
∧
V, dV ), if there is ν : (

∧
V, dV ) −→ (B, dB) quasi ∼=. So,

(B, dB)
ν←− (

∧
V, dV )

ρ−→ (Ω∗(M), d)

where ρ and ν are quasi ∼=.

• (D. Sullivan) If M is simply connected, and (
∧
V, dV ) is the

minimal model of M =⇒ ((πi(M)⊗ R))∗ ∼= V i



Formal manifolds

A differentiable manifold M , with minimal model (
∧
V, dV ), is

formal if (H∗(M), 0) is a model of M , that is,

∃ ψ :
(∧

V, dV

)
−→ (H∗(M), 0) quasi ∼=

(H∗(M), 0)
ψ←− (

∧
V, dV )

ρ−→ (Ω∗(M), d)

• If M has a Riemannian metric for which all wedge products of
harmonic forms are harmonic, then M is formal. In this case,
M is said to be geometrically formal.

• M simply connected compact manifold, dimM ≤ 6 =⇒ M is
formal.

• M connected and compact orientable manifold, dimM ≤ 4
and with b1(M) = 1 =⇒ M is formal.



Triple Massey products

Consider M a differentiable manifold, and

a = [α] ∈ Hp(M), b = [β] ∈ Hq(M), c = [γ] ∈ Hr(M).

The (triple) Massey product 〈a, b, c〉 is defined if a∪ b = 0 = b∪ c,
i.e.

α ∧ β = dµ, µ ∈ Ωp+q−1(M),

β ∧ γ = dν, ν ∈ Ωq+r−1(M).

Then, d
(
α ∧ ν + (−1)p+1µ ∧ γ

)
= 0, and

〈a, b, c〉 = [α ∧ ν + (−1)p+1µ ∧ γ]

∈ Hp+q+r−1(M)

a ∪Hq+r−1(M) + c ∪Hp+q−1(M)
.



Higher Massey products

ai ∈ Hpi(M), ai = [αi], 1 ≤ i ≤ t, t ≥ 4.

The higher Massey product 〈a1, a2, · · · , at−1, at〉 is defined if

〈ai, ai+1, ai+2, · · · , aj〉 = 0, 1 ≤ i < j ≤ t, (i, j) 6= (1, t),

i.e., there are αi,j ∈ Ω∗(M), 1 ≤ i ≤ j ≤ t, (i, j) 6= (1, t) s. t.

αi,i = αi,

d αi,i+1 = (−1)|αi,i|αi,i ∧ αi+1,i+1, 1 ≤ i ≤ t− 1,

d αi,i+2 = (−1)|αi,i|αi,i ∧ αi+1,i+2 + (−1)|αi,i+1|αi,i+1 ∧ αi+2,i+2, · · ·

dαi,j =

j−1∑
k=i

(−1)|αi,k|αi,k ∧ αk+1,j .

Then, 〈a1, a2, · · · , at〉 is the set of cohomology classes:{[
t−1∑
k=1

(−1)|α1,k|α1,k ∧ αk+1,t

]}
⊂ Hp1+...+pt−(t−2)(M) ,

and 〈a1, a2, · · · , at〉 is trivial if 0 ∈ 〈a1, a2, · · · , at〉 .
• M formal =⇒ all Massey products of M are trivial.



Cosymplectic (or almost cosymplectic) manifolds

N is a cosymplectic manifold if N is a differentiable manifold,
dimN = 2n+ 1, admitting a

• cosymplectic structure, that is, a pair (η, F ) of differential
forms, where η ∈ Ω1(N) and F ∈ Ω2(N) such that

dη = 0 = dF, η ∧ Fn 6= 0 at every p ∈ N

• N is orientable; and if N is compact =⇒ b2i(N) and
b1(N) 6= 0, and so N non-simply connected.

• Examples: (M,ω) symplectic manifold
=⇒ (N = M × R, η, F ) cosymplectic with

η = dt, F = ω

(N, η, F ) cosymplectic =⇒ (N × R, ω = F + η ∧ dt)
symplectic



Cosymplectic manifolds
(N, η, F ) cosymplectic manifold. Then,

• the distribution H = ker(η) is integrable since dη = 0; and

• η ∧ Fn volume form on N =⇒ there exists a nowhere
vanishing vector field ξ (Reeb vector field) on N given by

η(ξ) = 1, ıξ(F ) = 0 ⇐⇒ ıξ (η ∧ Fn) = Fn

So,
TN = H ⊕ 〈ξ〉

and H = ker(η) is also a symplectic distribution.

• If (gH , J) is an almost Hermitian structure on H with Kähler
form F , we have

g = gH + η2 Riemannian metric onN,

such that TN = H ⊕ 〈ξ〉 is orthogonal, g(ξ, ξ) = 1, and

φ : TN → TN, φH = J, φ(ξ) = 0.



Almost contact metric structures
Let N be a differentiable manifold, dimN = 2n+ 1. An almost
contact metric structure (η, ξ, φ, g) on N :

◦ η ∈ Ω1(N), and a nowhere vanishing vector field ξ on N s. t.

η(ξ) = 1

◦ φ : TN → TN is an endomorphism satisfying

φ2 = −Id + η ⊗ ξ φ(ξ) = 0;

◦ g Riemannian metric such that, for X,Y vector fields on N ,

g(φX, φY ) = g(X,Y )− η(X)η(Y )

Thus, the decomposition TN = H ⊕ 〈ξ〉, with H = ker(η), is
orthogonal.

• The fundamental 2-form F of (η, ξ, φ, g) is defined by

F (X,Y ) = g(φ(X), Y ),

and it satisfies F (X,Y ) = F (φ(X), φ(Y )) and η ∧ Fn 6= 0.



Cokähler manifolds

An almost contact metric structure (η, ξ, φ, g) on N is cokähler if

• (η, F ) cosymplectic (dη = 0 = dF ); and

• Nφ = 0, where Nφ is the Nijenhuis tensor of φ given by

Nφ(X,Y ) = φ2[X,Y ]− φ[φX, Y ]− φ[X,φY ] + [φX, φY ],

for all vector fields X,Y on N . So (η, ξ, φ, g) is normal, i.e.
Nφ + dη ⊗ ξ = 0.

• (N, η, ξ, φ, g) is a cokähler manifold =⇒ (M = N × R, h, J)
(M = N × S1) is Kähler, with h = g + (dt)2, J(ξ) = ∂t, and
J(X) = φ(X), for X vector field on N .

So, if N is compact, then

• b1(N) = odd, b2i(N) 6= 0;

• N is formal (M = N × S1 formal =⇒ N formal).



Sasakian manifolds

(η, ξ, φ, g) is a Sasakian structure on N if

• (η, ξ, φ, g) is contact metric, i.e., F = dη, so η is a contact
form

(
η ∧ (dη)n 6= 0

)
.

• (η, ξ, φ, g) normal i.e., the Nijenhuis tensor Nφ satisfies

Nφ + dη ⊗ ξ = 0.

or, equivalently,

(N, g) Sasakian ⇐⇒
(
M = N × R+, gc = t2 g + (dt)2

)
Kähler

• (N, η, ξ, φ, g) is Sasakian manifold =⇒ ξ is a Killing vector
field, Lξg = 0.

• (N, η, ξ, φ, g) compact Sasakian manifold, dimN = 2n+ 1,
=⇒ b2i+1(N) are even for 1 ≤ (2i+ 1) ≤ n.

• (η, ξ, φ, g) is K-contact if it is contact and ξ is a Killing vector
field.



The mapping torus of a diffeomorphism
M differentiable manifold, and ϕ : M →M diffeomorphism. The
mapping torus Mϕ of ϕ is the manifold, dimMϕ = (dimM) + 1,

Mϕ =
M × [0, 1]

(x, 0) ∼ (ϕ(x), 1)
=

M × R
Z

where the action of Z on M × R is given by the diffeomorphism

M × R //M × R
(x, t) // (ϕ(x), t+ 1)

• ϕ = Id =⇒Mϕ = M × S1. In general,

M ↪→ Mϕ
π−→ S1

(x, t) e2π it
locally trivial fiber
bundle over S1 and fiber M



Symplectic mapping tori
(M,ω) symplectic manifold, dimM = 2n, and
ϕ : (M,ω)→ (M,ω) symplectomorphism, i.e.,

• ϕ : M →M diffeomorphism such that ϕ∗ω = ω

The mapping torus Mϕ (of a symplectomorphism ϕ) is a cosymplectic
manifold

(M,ω) symplectic =⇒ (M × R, dt, ω) cosymplectic manifold. If
ϕ : (M,ω)→ (M,ω) is a symplectomorphism. Then, we have

M × R −→Mϕ =
M × R

Z
The forms dt and ω on M × R are Z-invariant. So, they induce a
closed 1-form η ∈ Ω1(Mϕ) and a closed 2-form F ∈ Ω2(Mϕ) s. t.

dη = 0 = dF, η ∧ Fn 6= 0

Not all cosymplectic manifolds are symplectic mapping tori.
Example: R2n+1.



A theorem of Li

Theorem (H. Li, Asian J. Math, 12, 2008)

If N is a compact cosymplectic manifold =⇒ N is the
mapping torus of a symplectomorphism of a compact
symplectic manifod, i.e. there exist a compact symplectic
manifold (M,ω) and a symplectomorphism
ϕ : (M,ω)→ (M,ω) such that

N = Mϕ

• If (N, η, F ) compact cosymplectic =⇒ 0 6= [η] ∈ H1(N).
Thus, N is a mapping torus.

Theorem (D. Tischler, Topology 9, 1970.)

A compact manifold is a mapping torus if and only if it admits a
non-vanishing closed 1-form.



Cohomology of a mapping torus

M differentiable manifold, and ϕ : M →M diffeomorphism.

M × R −→Mϕ =
M × R

Z

Mayer-Vietoris sequence implies that for any p ≥ 0,

Hp(Mϕ) ∼= ker (ϕ∗ − Id : Hp(M) −→ Hp(M))

⊕ [dt] ∧ Hp−1(M)

Im (ϕ∗ − Id : Hp−1(M) −→ Hp−1(M))



Non-formal mapping tori

M compact oriented manifold, and
ϕ : M −→M an orientation-preserving diffeomorphism.

M × R −→Mϕ =
M × R

Z
η ∈ Ω1(Mϕ) closed 1-form on Mϕ induced by dt ∈ Ω1(R).

Theorem (G. Bazzoni, –, V. Muñoz, Trans. AMS 367, 2015)

If for some p > 0, the map

ϕ∗ : Hp(M) −→ Hp(M)

has the eigenvalue λ = 1 with multiplicity r = 2 (∗), then Mϕ has
a non-trivial Massey product, and so it is non-formal.

∗ Kp =Kp
1 =ker(ϕ∗−I) $ Kp

2 =ker(ϕ∗−I)2 =Kp
r ⊂Hp(M), r≥2

[β] ∈ (ker(ϕ∗ − I)2)− ker(ϕ∗ − I) and [α] = (ϕ∗ − Id)[β]
Since [α] ∈ ker(ϕ∗ − Id) ∩ Im(ϕ∗ − Id), the Massey product

〈[η], [η], [α̃]〉 is defined and it is non-trivial.



Geography of non-formal symplectic mapping tori

Theorem (G. Bazzoni, –, V. Muñoz, Trans. AMS 367, 2015)

For every pair (2n+ 1, b) 6= (3, 1), with n, b ≥ 1, there is a
compact non-formal cosymplectic manifold of dimension 2n+ 1
and with first Betti number b1 = b.

If (2n+ 1, b) = (3, 1) all are formal but not necessarily cokähler.

2n+1 ...
...

...
...

...
...

...
• • • • • • • . . .

7 • • • • • • • . . .
5 • • • • • • • . . .
3 x • • • • • • . . .

1 2 3 4 5 6
b=b1



Examples 3-dim. non-formal with b1 = 2k

Σk symplectic surface of genus k ≥ 1, H1(Σk) = 〈ξ1, . . . , ξ2k〉.
Take

ϕ : Σk −→ Σk symplectomorphism

ϕ∗ : H1(Σk) −→ H1(Σk)(
1 0
1 1

)
⊕
(

1 0
0 1

)
⊕ . . .⊕

(
1 0
0 1

)
with respect to the basis 〈ξi〉.

Now,

ϕ∗(ξ1) = ξ1 + ξ2, ϕ∗(ξi) = ξi, 2 ≤ i ≤ k

So, b1((Σk)ϕ) = 2k since H1((Σk)ϕ) = 〈[η], ξ̃2, . . . , ξ̃2k〉, and

ξ2 ∈ ker(ϕ∗ − Id) ∩ Im(ϕ∗ − Id)

=⇒〈[η], [η], ξ̃2〉 6= 0⇒ (Σk)ϕ non- formal



Examples 3-dim. non-formal with b1 = 2k − 1

Σk symplectic surface of genus k ≥ 2, H1(Σk) = 〈ξ1 . . . ξ2k〉.
Consider

ψ : Σk −→ Σk symplectomorphism

ψ∗ : H1(Σk) −→ H1(Σk)(
1 0
1 1

)
⊕
(

1 0
1 1

)
⊕
(

1 0
0 1

)
⊕ . . .⊕

(
1 0
0 1

)
with respect to the basis 〈ξi〉.

ψ∗(ξ1) = ξ1 + ξ2, ψ∗(ξ2) = ξ2.
ψ∗(ξ3) = ξ3 + ξ4, ψ∗(ξi) = ξi, 4 ≤ i ≤ 2k.

H1((Σk)ψ) = 〈[η], ξ̃2, ξ̃4, . . . , ξ̃2k〉, b1 = 2k − 1.



Example 5-dim. non-formal with b1 = 1

T4: 4-torus, H1(T4) = 〈[ei], 1 ≤ i ≤ 4〉,
ω = e1 ∧ e2 + e3 ∧ e4 symplectic form. Define

ϕ : T4 −→ T4 symplectomorphism

ϕ∗ : H1
(
T4
)
−→ H1

(
T4
)


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 1 −1

 .

Now ϕ∗ : H1
(
T4)
)
−→ H1

(
T4
)

has no the eigenvalue λ = 1.
Thus, H1

(
(T4)ϕ)

)
= 〈[η]〉, i.e., b1

(
T4
ϕ

)
= 1.



A non-trivial Massey product on (T4)ϕ

ϕ∗[e1 ∧ e3] = [e1 ∧ e3]− [e1 ∧ e4],
ϕ∗[e2 ∧ e3] = [e2 ∧ e3]− [e2 ∧ e4],
ϕ∗[ei ∧ ej ] = [ei ∧ ej ] otherwise.

• [e1 ∧ e4] ∈ ker(ϕ∗ − Id) ∩ Im(ϕ∗ − Id)

=⇒ T4
ϕ is non-formal, since it has a non-zero Massey product

〈[η], [η], ˜[e1 ∧ e4]〉 6= 0



The basic forms and the basic cohomology
(N, η, ξ, φ, g) almost contact metric manifold, dimN = 2n+ 1,
Fξ characteristic foliation. A k-form α ∈ Ωk(N) on N is basic if

ιξα = 0 = ιξ(dα) ⇐⇒ ιξα = 0 = Lξα

Ωk
B(N) =

{
α ∈ Ωk(N) | α basic k-form

}
.

• η 6∈ Ω1
B(N) since ιξη = 1;

• η contact form (so ιξdη = 0) =⇒ dη ∈ Ω2
B(N);

• Ω0
B(N) =

{
f ∈ Ω0(N) | ιξ df = ξ(f) = 0

}
.

If (x, y1, . . . , y2n) is a local system of foliated coordinates on an
open U ⊂ N , ξ = ∂

∂x , the local expression of a basic k-form α is

α|U =
∑

fi1···ik(y1, . . . , y2n) d yi1 ∧ . . . ∧ d yik .

• Ωk
B(N) = 0, k ≥ 2n+ 1 = dimN .



The basic cohomology

• α ∧ β ∈ Ωk+r
B (N) and dα ∈ Ωk+1

B (N), for α ∈ Ωk
B(N) and

β ∈ Ωr
B(N). So, Ω∗B(N) =

2n
⊕
k=0

Ωk
B(N),

(Ω∗B(N), d) ↪→ (Ω∗(N), d).

The cohomology of (Ω∗B(N), d) is the basic cohomology of
(N, η, ξ, φ, g),

Hk
B(N) =

ker
(
d : Ωk

B(N) −→ Ωk+1
B (N)

)
d (Ωk−1

B (N))
, 0 ≤ k ≤ 2n

• Hk
B(N) = 0, k ≥ 2n+ 1 = dimN .

• H0
B(N) ∼= R ∼= H0(N), H1

B(N) ↪→ H1(N). So,

if N is compact =⇒ dimH1
B(N) ≤ dimH1(N) <∞.

But, for k ≥ 2, Hk
B(N) may be infinite dimensional.

• N compact, η contact =⇒ 0 6= [(dη)k]B ∈ H2k
B (N), k ≥ 1.



The basic cohomology of K-contact manifolds

Theorem (A. El Kacimi and G. Hector, Ann. Inst. Fourier 36,
1986; F. Kamber and Ph. Tondeur, Math. Ann. 277, 1987;

A. El Kacimi, Compositio Math. 73, 1990.)

(N, η, ξ, φ, g) compact K-contact manifold, dim N = 2n+ 1, then

i) dimHk
B(N) <∞, 0 ≤ k ≤ 2n;

ii) H1
B(N) ∼= H1(N), H2n

B (N) = 〈[(dη)n]B〉;

iii) If (N, η, ξ, φ, g) is a compact Sasakian manifold, then

H∗B(N) =
2n
⊕
k=0

Hk
B(N)

satisfies the hard Lefschetz property with respect to
ω = [dη]B ∈ H2

B(N), that is, for k ≤ n, the map

Ln−kω : Hk
B(N) −→ H2n−k

B (N) isomorphism
α −→ α ∪ ωn−k



A model for a compact Sasakian manifold

Theorem (A.M. Tievsky, PhD Thesis, MIT, 2008)

(N, η , ξ , φ , g) compact Sasakian manifold, dim N = 2n+ 1.
Then, a model for N is the DGA(

H∗B(N)⊗
∧

(x), d
)
,

|x| = 1, d
(
H∗B(N)

)
= 0, d x = ω (= [dη]B).

• |x| = 1 =⇒ x · x = 0;

• γ ∈ H∗B(N)⊗
∧

(x) and |γ| = p =⇒ γ = α+ β · x,

α ∈ Hp
B(N), β ∈ Hp−1

B (N). So, d γ = (−1)|β| β · ω;

• If a = [α+ β · x] ∈ Hp
(
H∗B(N)⊗

∧
(x), d

)
, then

◦ a = [α] ∈ Hp
(
H∗B(N)⊗

∧
(x), d

)
if p ≤ n;

◦ a = [β · x] ∈ Hp
(
H∗B(N)⊗

∧
(x), d

)
if p > n.



Higher order Massey products on Sasakian manifolds

Theorem (I. Biswas, –, V. Muñoz, A. Tralle: arXiv: 1402.6861)

If N is a compact Sasakian manifold, dim N = 2n+ 1, then all
the higher Massey products on N are trivial.

Proof. A model of (N, η , ξ , φ , g) is
(
H∗B(N)⊗

∧
(x), d

)
, where

|x| = 1, d
(
H∗B(N)

)
= 0, d x = ω (= [dη]B).

To prove this theorem is equivalent to prove that the higher
Massey products

〈a1, · · · , at〉, ai = [αi+βi·x] ∈ Hpi
(
H∗B(N)⊗

∧
(x), d

)
, t ≥ 4,

are trivial. But dim N = 2n+ 1 implies that there is at most one
cohomology class aj with |ai| = pi ≥ n+ 1, that is,

• ai = [αi] if |ai| = pi ≤ n, for 1 ≤ i ≤ t; or

• there is only one cohomology class aj , 1 ≤ j ≤ t, s. t.
pj ≥ n+ 1, i.e.

aj = [βj · x] but ai = [αi], for i 6= j.



Suppose that it is defined the quadruple Massey product

〈a1, a2, a3, a4〉 ⊂ Hp1+...+p4−2
(
H∗B(N)⊗

∧
(x), d

)
, deg(ai) ≤ n,

So, ai = [αi], where αi ∈ Hpi
B (N), 1 ≤ i ≤ 4. Take

b ∈ 〈a1, a2, a3, a4〉. Then, there are

γi,j = αi,j + βi,j · x ∈
(
H∗B(N)⊗

∧
(x), d

)
,

1 ≤ i ≤ j ≤ 4 and (i, j) 6= (1, 4), such that

γi,i = αi,i = αi, 1 ≤ i ≤ 4,

d γi,i+1 = (−1)|γi,i| γi,i · γi+1,i+1, 1 ≤ i ≤ 3,

d γ1,3 = (−1)|γ1,1| γ1,1 · γ2,3 + (−1)|γ1,2| γ1,2 · γ3,3,
d γ2,4 = (−1)|γ2,2| γ2,2 · γ3,4 + (−1)|γ2,3| γ2,3 · γ4,4.

b = (−1)|γ1,1| γ1,1 · γ2,4 + (−1)|γ1,2| γ1,2 · γ3,4 + (−1)|γ1,3| γ1,3 · γ4,4



γi,i = αi,i = αi, 1 ≤ i ≤ 4,

(−1)|βi,i+1| βi,i+1 · ω = (−1)|αi,i| αi,i · αi+1,i+1, 1 ≤ i ≤ 3,

(−1)|β1,3| β1,3 · ω = (−1)|α1,1| α1,1 · α2,3 + (−1)|α1,2| α1,2 · α3,3,

(−1)|β2,4| β2,4 · ω = (−1)|α2,2| α2,2 · α3,4 + (−1)|α2,3| α2,3 · α4,4,

0 = (−1)|α1,1| α1,1 · β2,3 − (−1)|β1,2|+|α3,3| β1,2 · α3,3,

0 = (−1)|α2,2| α2,2 · β3,4 − (−1)|β2,3|+|α4,4| β2,3 · α4,4.

Now, for 1 ≤ i ≤ j ≤ 4 and (i, j) 6= (1, 4), we consider the new

elements γ̃ij ∈
(
H∗B(N)⊗

∧
(x), d

)
given by

γ̃ij = α̃ij + β̃ij · x ∈
(
H∗B(N)⊗

∧
(x), d

)
γ̃i,i = αi , γ̃i,i+1 = βi,i+1 · x , γ̃i,j = 0 for j ≥ i+ 2 .

b̃ = (−1)|γ̃1,1| γ̃1,1 · γ̃2,4 + (−1)|γ̃1,2| γ̃1,2 · γ̃3,4 + (−1)|γ̃1,3| γ̃1,3 · γ̃4,4 = 0



Regular Sasakian structures
(M, g, J) compact Kähler manifold, dim M = 2n, with Kähler
form ω such that [ω] ∈ H2(M,Z). Take the principal S1-bundle
corresponding to [ω], that is,

S1 ↪→ N2n+1 π−→ M2n, dη = π∗ω .

Then, η is a contact form on N . Moreover, there is a Sasakian
structure (η, ξ, φ,G) on N (with contact form η) given by

• ξ is the vector field on N such that

η(ξ) = 1, ıξ(dη) = 0

So,
TN = H ⊕ 〈ξ〉, H = ker(η)

• φ and G are given by

φ (X) =
(
J(π∗X)

)h
, G = π∗(g) + (η)2



Non-simply connected non-formal Sasakian mfds
Generalized Heisenberg nilmanifold N2n+1. Take the
2n-dimensional torus T 2n with Kähler form

ω = ξ1 ∧ ξ2 + . . .+ ξ2n−1 ∧ ξ2n,

where [ξ1], [ξ2], . . . , [ξ2n] are the generators of H1(T 2n,Z). Take
the principal S1-bundle corresponding to [ω] ∈ H2(T 2n,Z),

S1 ↪→ N
π−→ T 2n, dη = π∗(ω),

Then, N is a non-simply connected Sasakian manifold which is
non-formal. In fact, the minimal model of N is(∧

(a1, . . . , a2n, x), d
)
, |ai| = |x| = 1,

dai = 0, dx = a1 · a2 + a3 · a4 + . . .+ a2n−1 · a2n.

Now,
a1 · a1 = 0, a1 · (a2·a3·a5·. . .·a2n−1) = d(x · a3·a5 · . . .· a2n−1).

〈a1, a1, a2 · a3 · a5 · . . . · a2n−1〉 6= 0



Simply connected compact non-formal Sasakian
manifolds

S2 × S2 × S2 simply connected compact Kähler manifold with
Kähler form

ω = ω1 + ω2 + ω3,

where [ω1], [ω2], [ω3] are the generators of the cohomology
H2(S2,Z) of each of the S2-factors. Consider the principal
S1-bundle

S1 ↪→ N
π−→ S2 × S2 × S2, dη = π∗(ω).

Then, N is a simply connected compact non-formal Sasakian
manifold.

If (x, y) ∈ S2 × S2, the restriction to each (x, y)× S2 is the circle
bundle with Euler class equal to [ω3], i.e it is the Hopf bundle

S1 ↪→ S3 −→ S2.

Varying (x, y) ∈ S2 × S2, we have that N is the S3-bundle over
S2 × S2



S3 ↪→ N −→ S2 × S2.

A minimal model of S2 × S2 is the differential algebra

(
∧

(a, b, x, y), d), |a| = |b| = 2, |x| = |y| = 3,

da = db = 0, dx = a2, dy = b2.

Thus, a minimal model of the total space of the fiber bundle

S3 ↪→ N7 −→ S2 × S2 is the differential algebra

(
∧

(a, b, x, y, z), d), |a| = |b| = 2, |x| = |y| = |z| = 3,

da = db = 0, dx = a2, dy = b2, dz = a b.

Now a2 = dx, ab = dz, which implies that it is defined the
triple Massey product

〈a, a, b〉 6= 0



Simply connected K-contact non-Sasakian manifolds

Theorem (I. Biswas, –, V. Muñoz, A. Tralle: arXiv: 1402.6861)

Let (M,ω) be a simply connected compact symplectic manifold,
dim M = 2n, with 0 6∈ 〈a1, a2, a3, a4〉 ⊂ H∗(M). Then, there
exists a sphere bundle

S2k+1 ↪→ N −→ M2n, (k + 1) > n,

such that the total space N is K-contact, but N does not admit
any Sasakian structure.

Proof. S1 ↪→ P 2n+1−→M2n principal S1-bundle corresponding
to [ω] ∈ H2(M,Z), and (S2k+1, ν) compact K-contact manifold.
Then, the associated S2k+1-bundle

S2k+1 ↪→ N = P ×S1 S2k+1 −→ M

is such that N has a K-contact structure. The model of N is(
(
∧
VM , dV ) ⊗

∧
(z), D

)
, where deg(z) = 2k + 1, D(VM ) = dV ,

and D(z) = 0 since 2k + 2 > 2n = dimM .



THANK YOU VERY MUCH!!
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