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Introduction

How big is an infinite well determined family of geometric objects?
(pseudo-Riemannian metrics, affine connections,...)

To measure an infinite family of real analytic geometric objects
we use

I a finite family of arbitrary functions of k variables,

I a family of arbitrary functions of less variables,

I modulo another family of arbitrary functions of less variables.

The last family of functions corresponds to automorphisms of any
geometric object from the given family.



Introduction

In the real analytic case, the Cauchy-Kowalevski Theorem
is the standard tool.

Egorov, Yu.V., Shubin, M.A.: Foundations of the Classical
Theory of Partial Differential Equations, Springer-Verlag,
Berlin, 1998.

Kowalevsky, S.: Zur theorie der partiellen
differentialgleichungen, J. Reine Angew. Math. 80 (1875)
1–32.

Petrovsky, I.G.: Lectures on Partial Differential Equations,
Dover Publications, Inc., New York, 1991.



An example

How many real analytic Riemannian metrics in dimension 3?

I Every such metric can be put locally into a diagonal form

Eisenhart, L.P.: Fields of parallel vectors in a Riemannian
geometry, Trans. Amer. Math. Soc. 27 (4) (1925)
563–573.

Kowalski, O., Sekizawa, M.: Diagonalization of
three-dimensional pseudo-Riemannian metrics,
J. Geom. Phys. 74 (2013), 251–255.

I All coordinate transformations preserving diagonal form
of the given metric depend on 3 arbitrary functions
of two variables.

I Hence all Riemannian metrics in dimension 3 can be locally
described by 3 arbitrary functions of 3 variables modulo
3 arbitrary functions of 2 variables.



Overview of the results

An immediate question arise if we can determine the number
of other basic geometric objects, namely the affine connections,
in an arbitrary dimension n. We shall be occupied with real
analytic connections in arbitrary dimension n.

I We give an alternative proof of the existence of a system
of pre-semigeodesic coordinates.

I We describe the class of affine connections using
n(n2 − 1) functions of n variables
modulo 2n functions of n − 1 variables.

I We describe the class of torsion-free affine connections using
n(n − 1)(n + 2)/2 functions of n variables
modulo 2n functions of n − 1 variables.

A well known fact from Riemannian geometry is that a Riemannian
connection has symmetric Ricci form.



Overview of the results

I We prove that the class of all affine connections with
skew-symmetric Ricci form depends
on n(2n2 − n − 3)/2 functions of n variables
and n(n + 1)/2 functions of n − 1 variables,
modulo 2n functions of n − 1 variables.

I Class of connections with symmetric Ricci form depends
on n(2n2 − n − 1)/2 functions of n variables
and n(n − 1)/2 functions of n − 1 variables,
modulo 2n functions of n − 1 variables.

I Class of all torsion-free affine connections with
skew-symmetric Ricci form depends
on n(n2 − 3)/2 functions of n variables
and n(n + 1)/2 functions of n − 1 variables,
modulo 2n functions of n − 1 variables.

I Class of torsion-free connections with symmetric Ricci form
depends on (n3 + n2 − 4n + 2)/2 functions of n variables
modulo 2n functions of n − 1 variables.



Overview of the results

I All equiaffine connections depends
on n3 − 2n + 1 functions of n variables
modulo a constant and modulo 2n functions of n− 1 variables.

I Equiaffine connections with skew-symmetric Ricci form
depends on (2n3 − n2 − 5n + 2)/2 functions of n variables
and n(n + 1)/2 functions of n − 1 variables,
modulo a constant and modulo 2n functions of n− 1 variables.

I Equiaffine connections with symmetric Ricci form depends
on (2n3 − n2 − 3n + 2)/2 functions of n variables
and n(n − 1)/2 functions of n − 1 variables,
modulo a constant and modulo 2n functions of n− 1 variables.



The Cauchy-Kowalevski Theorem of order 1

Consider a system of PDEs for unknown functions
U1(x1, . . . , xn), . . . ,UN(x1, . . . , xn) on U ⊂ Rn and of the form
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where H i , i = 1, . . . ,N, are real analytic functions of all variables
in a neighborhood of

(x1
0 , . . . , x

n
0 , a

1, . . . , aN , a12, . . . , a
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i , aij are arbitrary constants.



The Cauchy-Kowalevski Theorem of order 1

Further, let the functions ϕ1(x2, . . . , xn), . . . , ϕN(x2, . . . , xn)
be real analytic in a neighborhood of (x2

0 , . . . , x
n
0 ) and satisfy

ϕj(x2
0 , .., x

n
0 ) = aj , j = 1, . . . ,N,(∂ϕ1

∂x2
, ..,

∂ϕ1

∂xn
, ..,
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(x2
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n
0 ) = (a12, .., a

1
n, .., a
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Then the system has a unique solution
(U1(x1, . . . , xn), . . . ,UN(x1, . . . , xn))
which is real analytic around (x1

0 , . . . , x
n
0 ), and satisfies

U i (x1
0 , x

2, . . . , xn) = ϕi (x2, . . . , xn), i = 1, . . . ,N.



The Cauchy-Kowalevski Theorem of order 2

The basic assumptions about the system of PDEs are analogous:
The left-hand sides are the second derivatives

∂2U1

(∂x1)2
, . . . ,

∂2UN

(∂x1)2

and the right-hand sides H1, . . . ,HN involve, as arguments,
the original coordinates, the unknown functions U1, . . . ,UN ,
their first derivatives and their second derivatives except
the derivatives written on the left-hand sides:

H i (x j ,U j ,
∂U j

∂xk
,
∂2U j

∂xk∂x l
),

j = 1, . . . ,N, k = 1, . . . , n, l = 2, . . . , n.



The Cauchy-Kowalevski Theorem of order 2

There exist locally a unique n-tuple (U1, . . . ,UN) of real analytic
functions which is a solution of the new PDE system, and satisfies
the initial conditions

U i (x1
0 , x

2, . . . , xn) = ϕi
0(x2, . . . , xn),

∂U i

∂x1
(x1

0 , x
2, . . . , xn) = ϕi

1(x2, . . . , xn).

The general solution then depends
on 2N arbitrary functions ϕi

0, ϕ
i
1 of n − 1 variables.

See [1], [2] and [3] for the general case and more details.



Transformation of the connection

We work locally with the spaces R[u1, . . . , un], or R[x1, . . . , xn].
We will use the notation u = (u1, . . . , un) and x = (x1, . . . , xn).
For a diffeomorphism f : R[u]→ R[x], we write
xk = f k(ul), or x = x(u) for short.

We start with the standard formula for the transformation
of the connection, which is

Γ̄h
ij(u) =

(
Γγ
αβ(x(u))

∂f α

∂ui

∂f β

∂uj
+

∂2f γ

∂ui∂uj

)
Gh
γ . (1)



Transformation of the connection

Lemma

For any affine connection determined by Γh
ij(x), there exist a local

transformation of coordinates determined by x = f (u) such that
the connection in new coordinates satisfies
Γ̄h
11(u) = 0, for h = 1, . . . , n. All such transformations

depend on 2n arbitrary functions of n − 1 variables.

Proof. We consider the equations (1) with Γ̄h
11(u) = 0, which are

0 =
(
Γγ
αβ(x(u))

∂f α

∂u1

∂f β

∂u1
+

∂2f γ

(∂u1)2
)
Gh
γ , h = 1, . . . , n.

We multiply these equations by the Jacobi matrix F γ
h

and we obtain the equivalent equations

∂2f γ

(∂u1)2
= −Γγ

αβ(x(u))
∂f α

∂u1

∂f β

∂u1
, γ = 1, . . . , n.

On the right-hand sides, we have analytic functions depending
on f 1, . . . , f n and their first derivatives.



Transformation of the connection

We choose arbitrary analytic functions
ϕi
λ(u2, . . . , un), for i = 1, . . . , n and λ = 0, 1.

According to the Cauchy-Kowalevski Theorem (of pure order 2),
there exist unique functions f i (u1, . . . , un) such that

f i (u1
0 , u

2, . . . , un) = ϕi
0(u2, . . . , un),

∂f i

∂u1
(u1

0 , u
2, . . . , un) = ϕi

1(u2, . . . , un).

Obviously, determinant of the Jacobi matrix for these functions will
be nonzero for the generic choice of the functions ϕi

λ(u2, . . . , un).
�



Connections with arbitrary torsion

Theorem

All affine connections with torsion in dimension n depend locally
on n(n2 − 1) arbitrary functions of n variables
modulo 2n arbitrary functions of (n − 1) variables.

Proof. In pre-semigeodesic coordinates,
we have n3 − n = n(n2 − 1) functions.
The transformations into pre-semigeodesic coordinates
is uniquely determined up to the choice of 2n functions
ϕi
0(u2, . . . , un), ϕi

1(u2, . . . , un) of n − 1 variables. �



Connection with zero torsion

Theorem

All affine connections without torsion in dimension n depend
locally on n(n−1)(n+2)

2 arbitrary functions of n variables
modulo 2n arbitrary functions of (n − 1) variables.

Proof. In pre-semigeodesic coordinates,

we have n2(n+1)
2 − n = n(n−1)(n+2)

2 functions.
The transformations into pre-semigeodesic coordinates
is uniquely determined up to the choice of 2n functions
ϕi
0(u2, . . . , un), ϕi

1(u2, . . . , un) of n − 1 variables. �



Skew-symmetric Ricci tensor

(Γ2
12)1 = −

n∑
k=3

(Γk
1k)1 + Λ′11 + Λ11,

(Γ1
ii )1 = Λ′ii + Λii , i > 1,

(Γ1
1i )1 = −

n∑
k=2

(Γk
ik)1 + Λ′1i + Λ1i , i > 1,

(Γ1
ij)1 = Λ′ij + Λij , 1 < i < j ≤ n,



Skew-symmetric Ricci tensor

Theorem

The family of connections with torsion whose Ricci form

is skew-symmetric depends locally, on n(2n2−n−3)
2 functions

of n variables and n(n+1)
2 functions of n − 1 variables, modulo

2n functions of n − 1 variables.

Proof.

I In pre-semigeodesic coordinates, the family of connections
with torsion depends on q(n) = n(n2 − 1) functions.

I We have p(n) = n(n + 1)/2 conditions for the skew-symmetry
of the Ricci form.

I We choose the q(n)− p(n) = n(2n2 − n − 3)/2 Christoffel
symbols as arbitrary functions.

�



Skew-symmetric Ricci tensor - without torsion

Theorem

The family of connections without torsion whose Ricci form is

skew-symmetric depends locally, on n(n2−3)
2 functions of n variables

and n(n+1)
2 functions of n − 1 variables, modulo 2n functions

of n − 1 variables.

Proof.

I In pre-semigeodesic coordinates, the family of torsion-free
connections depends on q(n) = n(n − 1)(n + 2)/2 functions.

I We have p(n) = n(n + 1)/2 conditions for the skew-symmetry
of the Ricci form.

I The q(n)− p(n) functions can be chosen arbitrarily.

�



Symmetric Ricci tensor

Theorem

A family of connections with torsion whose Ricci form is symmetric

depends locally on n(2n2−n−1)
2 functions of n variables and n(n−1)

2
functions of n − 1 variables modulo 2n arbitrary functions of n − 1
variables.

Proof. In pre-semigeodesic coordinates, there are just
q(n) = n3 − n = n(n2 − 1) nontrivial Christoffel symbols.

There are p(n) = n(n − 1)/2 conditions for the symmetry
of the Ricci form.

We let the p(n) Christoffel symbols Γ1
ij , to be determined later

and we fix arbitrarily the q(n)− p(n) = n(2n2 − n − 1)/2 other
Christoffel symbols. �



Symmetric Ricci tensor - without torsion

We introduce the notation

Pj =
n∑

k=1

Γk
kj , j = 1, . . . , n (2)

and we obtain the conditions

(Pi )j − (Pj)i = 0, 1 ≤ i < j ≤ n. (3)

This means that there is (locally) a function F (x1, . . . , xn)
(unique up to a constant), such that

dF =
n∑

i=1

Pi dx i . (4)

Conversely, for any choice of an arbitrary function F (x1, . . . , xn),
the formula (4) gives a solution (P1, . . . ,Pn) of the system (3).



Symmetric Ricci tensor - without torsion

Theorem

A family of connections without torsion whose Ricci form is
symmetric depends locally on n3+n2−4n+2

2 functions of n variables
modulo 2n arbitrary functions of n − 1 variables.

Proof. In pre-semigeodesic coordinates, there are just
q(n) = n(n − 1)(n + 2)/2 nontrivial Christoffel symbols.

We let the n Christoffel symbols Γn
in, i = 1, . . . , n, to be determined

later and we fix arbitrarily the q(n)− n other Christoffel symbols.
Let us choose further an arbitrary function F (x1, . . . , xn).

Then the functions Pi are well-determined by (4)
and the Christoffel symbols Γn

in are uniquely calculated
from the equalities (2).

Altogether, we can choose arbitrarily
the q(n)− n + 1 = (n3 + n2 − 4n + 2)/2 functions of n variables.

�



Equiaffine connections

We consider a volume element ω = f (x1, . . . , xn) · dx1 ∧ · · · ∧ dxn.

∇ω = 0.

In the coordinates, we obtain

fxk − f ·
n∑

i=1

Γi
ki = 0, k = 1, . . . , n.

If we put L(x1, . . . , xn) = log(f (x1, . . . , xn)), then these equations
can be written in the form fxk = f · Lxk . We choose an arbitrary
function L(x1, . . . , xn) and we want the conditions

Lxk =
n∑

i=1

Γi
ki , k = 1, . . . , n

to be satisfied.



Theorem

The family of equiaffine connections in dimension n depends
on n3 − 2n + 1 functions of n variables modulo a constant
and modulo 2n functions of n − 1 variables.

Proof. The family of all connections depends
on n(n2 − 1) Christoffel symbols.

Out of them, n Christoffel symbols are determined
from the n equations.
Hence, we choose arbitrarily the function L
and all Christoffel symbols except Γn

kn.

Altogether, we choose arbitrarily the
n(n2 − 1)− n + 1 = n3 − 2n + 1 functions. �



Equiaffine connections with torsion
and with skew-symmetric Ricci tensor

Theorem

The family of equiaffine connections in dimension n which have
skew-symmetric Ricci form depends on 2n3−n2−5n+2

2 functions

of n variables and n(n+1)
2 functions of n − 1 variables

modulo a constant and modulo 2n functions of n − 1 variables.

Proof. We have started with the n(n2 − 1) Christoffel symbols
in the pre-semigeodesic coordinates.

Out of them, n were determined using the conditions for ∇ω = 0
and n(n + 1)/2 of them were determined from the conditions
for the skew-symmetry of the Ricci form.
Further, the function L was chosen arbitrarily.

Altogether,
the n(n2 − 1)− n − n(n + 1)/2 + 1 = (2n3 − n2 − 5n + 2)/2
functions were chosen arbitrarily. �



Equiaffine connections with torsion
and with symmetric Ricci tensor

Theorem

The family of equiaffine connections in dimension n which have
symmetric Ricci form depends on 2n3−n2−3n+2

2 functions

of n variables and n(n−1)
2 functions of n − 1 variables

modulo a constant and modulo 2n functions of n − 1 variables.

Proof. We have started with the n(n2 − 1) Christoffel symbols
in the pre-semigeodesic coordinates.

Out of them, n were determined using the conditions for ∇ω = 0
and n(n − 1)/2 of them were determined from the conditions
for the symmetry of the Ricci form.
Further, the function L was chosed arbitrarily.

Altogether,
the n(n2 − 1)− n − n(n − 1)/2 + 1 = (2n3 − n2 − 3n + 2)/2
functions were chosen arbitrarily. �



Conclusions

Theorem

The number of all equiaffine connections with torsion,
or those with skew-symmetric Ricci tensor, or those with
symmetric Ricci tensor, respectively, is asymptotically equal
at infinity to the number of all affine connections with torsion.

Theorem

The number of torsion free affine connections with skew-symmetric
Ricci tensor, or those with symmetric Ricci tensor, respectively,
is asymptotically equal at infinity to the number of all torsion free
affine connections.
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